`\sum_{k=1}^n k^2=1/3n^3+1/2n^2+1/6n=1/6n(n+1)(2n+1)` `\sum_{k=1}^n k^3=1/4n^4+1/2n^3+1/4n^2=[1/2n(n+1)]^2`. *通常利用`(k+1)^{p+1}`公式 ...
確定! 回上一頁