[爆卦]factor數學是什麼?優點缺點精華區懶人包

雖然這篇factor數學鄉民發文沒有被收入到精華區:在factor數學這個話題中,我們另外找到其它相關的精選爆讚文章

在 factor數學產品中有31篇Facebook貼文,粉絲數超過5萬的網紅軟體開發學習資訊分享,也在其Facebook貼文中提到, NT 530 特價中 課程已於 2021 年 7 月更新 完整的資料科學訓練 : 數學、統計、 Python、 用 Python 實現進階統計、機器學習和深度學習 從這 28.5 小時的課程,你會學到 ✅這門課程提供了你成為一名資料科學家所需的整個工具箱 ✅將資料科學技能寫入你的履歷中 : ...

 同時也有37部Youtube影片,追蹤數超過6萬的網紅Herman Yeung,也在其Youtube影片中提到,購買此 e-book (HK$199.00) 的連結︰ https://play.google.com/store/books/details/Herman_Yeung_Herman_Yeung_F_3_Maths_%E4%B8%AD%E4%B8%89%E6%95%B8%E5%AD%B8_Exerc...

factor數學 在 辣媽英文天后 林俐 Carol Instagram 的最佳貼文

2021-07-06 05:58:15

感謝大家這禮拜對吳迪老師、李傑老師直播秀的支持🙏🏻 俐媽明晚7:30~8:30也要開播了🎉🎉 俐媽要告訴大家上高中基本需要具備的心態、背英文單字的方法、還有學英文需要的一些工具(書/APP),歡迎三升一孩子參加! 大家一起一排愛心❤️刷起來! 今天送上之前預告的數學大餐part 2! (感謝學...

factor數學 在 辣媽英文天后 林俐 Carol Instagram 的最讚貼文

2021-07-06 05:58:15

哇!英數合鳴! 這週四晚上7:30~8:30 —> 李傑老師 @jackleemath 這週六晚上7:30~8:30 —> 俐媽 我們即將要舉辦國三升高一線上直播活動了, 內容精彩、抽獎獎項豐富, 歡迎大家來喔! 今天,送上北一學姊編整的「數學篇」,剛好是英+數合體的最佳表現! ——————...

factor數學 在 Herman Yeung Instagram 的最佳貼文

2020-05-02 09:22:18

剛 upload 左一條好長的數學的片 (56分鐘) https://youtu.be/5QebKaoStZA 內容係講 意大利數學家 尼科洛 · 塔爾塔利亞 提供左一個解3次方程的方法 呢個技術係勁過 factor theorem 因式定理 因為無論三次方程的根 係實數,虛數都會計到 但內容會涉...

  • factor數學 在 軟體開發學習資訊分享 Facebook 的最讚貼文

    2021-08-03 12:47:41
    有 0 人按讚

    NT 530 特價中

    課程已於 2021 年 7 月更新

    完整的資料科學訓練 : 數學、統計、 Python、 用 Python 實現進階統計、機器學習和深度學習

    從這 28.5 小時的課程,你會學到

    ✅這門課程提供了你成為一名資料科學家所需的整個工具箱
    ✅將資料科學技能寫入你的履歷中 : 統計分析,使用 NumPy、pandas、matplotlib 和 Seaborn 做 Python 程式設計,進階的統計分析,Tableau,以 統計模型(stats models ) 和 scikit-learn 做機器學習,用 TensorFlow 做深度學習
    ✅通過展示對資料科學領域的理解給面試官深刻印象
    ✅學習如何預先處理資料
    ✅理解機器學習背後的數學原理(其他課程絕對沒有教授的)
    ✅開始用 Python 編寫程式碼,學習如何使用它進行統計分析
    ✅在 Python 中執行線性和邏輯迴歸
    ✅實踐叢集( cluster )和因子( factor )分析
    ✅能夠在 Python 使用 NumPy、統計模型( stats models ) 和 scikit-learn 創建機器學習演算法
    ✅把你的技能應用到現實生活中的商業案例中
    ✅使用最先進的深度學習框架,如 Google 的 Tensorflow,開發出商業直觀,同時寫程式並以大數據完成任務。
    ✅展開深層神經網路的力量
    ✅改進機器學習演算法,透過研究欠彌合( underfitting )、過度彌合( overfitting )、訓練( training )、驗證( validation )、n-折疊交叉驗證( n-fold cross validation )、測試( testing ),以及如何超參數( hyperparameters ) 可改善性能
    ✅從你的手指熱身起來,因為你會渴望把你在這裡學到的一切都應用到越來越多的真實生活中

    https://softnshare.com/the-data-science-course-complete-data-science-bootcamp/

  • factor數學 在 蔡依橙的閱讀筆記 Facebook 的精選貼文

    2021-03-13 09:28:57
    有 1,047 人按讚

    這篇有趣的論文,其出處 Nature Human Behaviour,是 impact factor 約 12 的高分期刊。這表示同儕肯定度高,研究品質通常很不錯。
     
    科學的根本,是批判,這個從科學論文的形式,跟科學史,就能很清楚的看到。
     
    科學論文的開頭,多數是一個假說,然後整篇就在想辦法推翻這個假說。
     
    科學史的進展,往往是典範轉移,這是委婉的說法,事實上就是更好更新更完整的觀念,把舊觀念送進歷史埋葬。
     
    而中共領導的社會,是不能允許這種批判的,你想推翻假說,哪天想推翻中共怎麼辦?哪天想用更好更新更完整的政治體制,把中共送進歷史埋葬,那可不行。
     
    或許這就是中國為什麼有那麼多成績優秀的人才,但說到高科技,還是要想辦法從美國偷,而沒辦法獨立發展出來的原因。
     
    「在物理和數學成績方面,中國學生在大學剛入學時和第二年末都領先於印度和俄羅斯學生,但是經過大學學習後,兩門成績卻出現極大的退步。
     
    在批判思維方面,剛入學時,中國學生的能力與美國學生差距不大,高於印度和俄羅斯學生。但在大學畢業時,批判性思維能力顯著下降,被俄羅斯學生反超,而美國學生則在畢業時批判性思維能力有了飛升,領先於其他國家的學生。」

  • factor數學 在 台灣物聯網實驗室 IOT Labs Facebook 的最佳解答

    2021-01-05 10:44:35
    有 1 人按讚

    用深度神經網路求解「薛丁格方程式」,AI 開啟量子化學新未來

    作者 雷鋒網 | 發布日期 2021 年 01 月 02 日 0:00 |

    19 世紀末,量子力學的提出為解釋微觀物質世界打開了一扇大門,徹底改變了人類對物質結構及相互作用的理解。已有實驗證明,量子力學解釋了許多被預言、無法直接想像的現象。

    由此,人們也形成了一種既定印象,所有難以理解的問題都可以透過求解量子力學方程式來解決。

    但事實上能夠精確求解方程式的體系少之又少。

    薛丁格方程式是量子力學的基本方程式,即便已經提出七十多年,它的氫原子求解還是很困難,超過兩個電子的氫原子便很難保證精確度。

    不過,多年來科學家們一直在努力克服這一難題。

    最近,來自柏林自由大學(Freie Universität Berlin) 的科學團隊取得了突破性進展,他們發表的一篇名為《利用深度神經網路解電子薛丁格方程式》的論文,登上《Nature Chemistry》子刊。

    論文明確指出:利用人工智慧求解薛丁格方程式基態解,達到了前所未有的準確度和運算效率。該人工智慧即為深度神經網路(Deep-neural-network),他們將其命名為 PauliNet。

    在介紹它之前,我們先來簡單了解薛丁格方程式。

    什麼是薛丁格方程式?

    薛丁格方程式(Schrödinger Equation),是量子力學中的一個基本方程式。又稱薛丁格波動方程式(Schrödinger Wave Equation),它的命名來自一位名為埃爾溫·薛丁格(Erwin Schrödinger)的奧地利物理學家。

    Erwin 曾在 1933 年獲得諾貝爾物理學獎,是量子力學奠基人之一。他在 1926 年發表的量子波形開創性論文中,首次提出了薛丁格方程式。它是一個非相對論的波動方程式,反映了描述微觀粒子的狀態隨時間變化的規律。

    具體來說,將物質波的概念和波動方程式相結合建立二階偏微分方程式,以描述微觀粒子的運動,每個微觀系統都有一個相應的薛丁格方程式,透過「解方程式」可得到波函數的具體形式以及對應的能量,從而了解微觀系統的性質。

    薛丁格方程式在量子力學的地位,類似牛頓運動定律在經典力學的地位,在物理、化學、材料科學等多領域都有廣泛應用價值。

    比如,應用量子力學的基本原理和方法研究化學問題已形成「量子化學」基礎學科,研究範圍包括分子的結構、分子結構與性能之間的關係;分子與分子之間的相互碰撞、相互作用等。

    也就是說,在量子化學,透過求解薛丁格方程式可以用來預測出分子的化學和物理性質。

    波函數(Wave Function)是求解薛丁格方程式的關鍵,在每個空間位置和時間都定義一個物理系統,並描述系統隨時間的變化,如波粒二象性。同時還能說明這些波如何受外力或影響發生改變。

    以下透過氫原子求解可得到正確的波函數。

    不過,波函數是高維實體,使捕獲特定編碼電子相互影響的頻譜變得異常困難。

    目前在量子化學領域,很多方法都證實無法解決這難題。如利用數學方法獲得特定分子的能量,會限制預測的精確度;使用大量簡單的數學構造塊表示波函數,無法使用少數原子進行計算等。

    在此背景下,柏林自由大學科學團隊提出了一種有效的應對方案。團隊成員簡‧赫爾曼(Jan Hermann)稱,到目前為止,離群值(Outlier)是最經濟有效的密度泛函理論(Density functional theory ,一種研究多電子體系電子結構的方法)。相比之下,他們的方法可能更成功,因在可接受計算成本下提供前所未有的精確度。

    PauliNet:物理屬性引入 AI 神經網路
    Hermann 所說的方法稱為量子蒙地卡羅法。

    論文顯示,量子蒙地卡羅(Quantum Monte Carlo)法提供可能的解決方案:對大分子來說,可縮放和並行化,且波函數的精確性只受 Ansatz 靈活性的限制。

    具體來說,團隊設計一個深層神經網路表示電子波函數,這是一種全新方法。PauliNet 有當成基準內建的多參考 Hartree-Fock 解決方案,結合有效波函數的物理特性,並使用變分量子蒙地卡洛訓練。

    弗蘭克‧諾(Frank Noé)教授解釋:「不同於簡單標準的數學公式求解波函數,我們設計的人工神經網路能夠學習電子如何圍繞原子核定位的複雜模式。」

    電子波函數的獨特特徵是反對稱性。當兩個電子交換時,波函數必須改變符號。我們必須將這種特性構建到神經網路體系結構才能工作。

    這類似包立不相容原理(Pauli’s Exclusion Principle),因此研究人員將該神經網路體系命名為「PauliNet」。

    除了包立不相容原理,電子波函數還具有其他基本物理特性。PauliNet 成功之處不僅在於利用 AI 訓練數據,還在將這些物理屬性全部整合到深度神經網路。

    對此,FrankNoé 還特意強調說:

    「將基本物理學納入 AI 至關重要,因為它能夠做出有意義的預測,這是科學家可以為 AI 做出有實質性貢獻的地方,也是我們關注的重點。」

    實驗結果:高精確度、高效率

    PauliNet 對電子薛丁格方程式深入學習的核心方法是波函數 Ansatz,它結合了電子波函數斯萊特行列式(Slater Determinants),多行列式展開(Multi-Determinant Expansion),Jastro 因子(Jastrow Factor),回流變換(backflow transformation,),尖點條件(Cusp Conditions)以及能夠編碼異質分子系統中電子運動複雜特徵的深層神經網路。如下圖:

    論文中,研究人員將 PauliNet 與 SD-VMC(singledeterminant variational,標準單行列式變分蒙地卡羅)、SD-DMC(singledeterminant diffusion,標準單行列式擴散蒙地卡羅)和 DeepWF 進行比較。

    實驗結果顯示,在氫分子(H_2)、氫化鋰(LiH)、鈹(Be)以及硼(B)和線性氫鏈 H_10 五種基態能量的對比下,PauliNe 相較於 SD-VMC、SD-DMC 以及 DeepWF 均表現出更高的精準度。

    同時論文中還表示,與專業的量子化學方法相比──處理環丁二烯過渡態能量,其準確性達到一致性的同時,也能夠保持較高的計算效率。

    開啟「量子化學」新未來

    需要說明的是,該項研究屬於一項基礎性研究。

    也就是說,它在真正應用到工業場景之前,還有很多挑戰需要克服。不過研究人員也表示,它為長久以來困擾分子和材料科學的難題提供了一種新的可能性和解決思路。

    此外,求解薛丁格方程式在量子化學領域的應用非常廣泛。從電腦視覺到材料科學,它將會帶來人類無法想像的科學進步。雖然這項革命性創新方法離落地應用還有很長的一段路要走,但它出現並活躍在科學世界已足以令人興奮。

    如 Frank Noé 教授所說:「相信它可以極大地影響量子化學的未來。」

    附圖:▲ Ψ 表示波函數。

    資料來源:https://technews.tw/2021/01/02/schrodinger-equation-ai/?fbclid=IwAR340MNmOkOxUQERLf4u3SK0Um6VQVBpvEkV_DxyxIIcUv8IP88btuXNJ6U

你可能也想看看

搜尋相關網站