雖然這篇GoogLeNet pytorch鄉民發文沒有被收入到精華區:在GoogLeNet pytorch這個話題中,我們另外找到其它相關的精選爆讚文章
在 googlenet產品中有1篇Facebook貼文,粉絲數超過2萬的網紅工研院產業學院,也在其Facebook貼文中提到, 🔥(熱烈招生中,歡迎企業包班) 【政府補助50%】基於電腦視覺之物體偵測與辨識 本課程首先將介紹傳統的特徵式物體辨識系統,並以車道線偵測為例,接著我們將引入特徵(Feature)+分類器(Classifier)之機械學習技巧,並運用到汽車之偵測。從2010年開始,Imagenet大規模視覺辨...
同時也有10000部Youtube影片,追蹤數超過2,910的網紅コバにゃんチャンネル,也在其Youtube影片中提到,...
googlenet 在 工研院產業學院 Facebook 的精選貼文
🔥(熱烈招生中,歡迎企業包班)
【政府補助50%】基於電腦視覺之物體偵測與辨識
本課程首先將介紹傳統的特徵式物體辨識系統,並以車道線偵測為例,接著我們將引入特徵(Feature)+分類器(Classifier)之機械學習技巧,並運用到汽車之偵測。從2010年開始,Imagenet大規模視覺辨識競賽( Imagenet Large Scale Visual Recognition Competition, ILSVRC )以前所未有的資料量(>1 million)帶起了深度學習(Deep Learning)的熱潮,從2012年開始,各種不同的CNN(Convolutional Neural Network),如Alexnet, GoogLenet, VGG,Residual Network等分類器因此比賽不斷的被發明,而運用CNN之物體偵測與辨識亦從不可端對端(end-to-end)學習的R-CNN, Fast R-CNN, Faster R-CNN一路進化到真正實現端對端學習的YOLO(You Only Look Once)與SSD( Single Shot Multibox Detector),而這樣的單一CNN即可同時偵測多類(行人、腳踏車、汽車、機車、巴士等)物體。
課程網址:https://college.itri.org.tw/…/A4EA3591-12F0-4994-90E4-8D9D7…