雖然這篇畢氏定理數學鄉民發文沒有被收入到精華區:在畢氏定理數學這個話題中,我們另外找到其它相關的精選爆讚文章
在 畢氏定理數學產品中有57篇Facebook貼文,粉絲數超過14萬的網紅GodJJ,也在其Facebook貼文中提到, 傳奇J船長 https://youtu.be/VatDB-h6gOM 這肯定有人在搞,讓我們調黑盒子抓戰犯囉 畢氏定理全部都還給數學老師了 (゚∀。) #J群玩家 #危險時空的戀人...
同時也有9部Youtube影片,追蹤數超過11萬的網紅GreatKidsLearning,也在其Youtube影片中提到,利用等腰三角形性質、畢氏定理、三角形面積公式來解題 歡迎大家加入會員,贊助此影音頻道...
「畢氏定理數學」的推薦目錄
- 關於畢氏定理數學 在 高均數學/升學帳 Instagram 的最佳貼文
- 關於畢氏定理數學 在 ?賭Sir|數學考試專家 Instagram 的最佳解答
- 關於畢氏定理數學 在 瓊姐娛樂台™️ Instagram 的精選貼文
- 關於畢氏定理數學 在 GodJJ Facebook 的最佳貼文
- 關於畢氏定理數學 在 Facebook 的最佳貼文
- 關於畢氏定理數學 在 Facebook 的精選貼文
- 關於畢氏定理數學 在 GreatKidsLearning Youtube 的最讚貼文
- 關於畢氏定理數學 在 GreatKidsLearning Youtube 的精選貼文
- 關於畢氏定理數學 在 寶妮老師 Bonnie Youtube 的最佳解答
畢氏定理數學 在 高均數學/升學帳 Instagram 的最佳貼文
2021-09-24 18:58:12
【試把詳解倒著看🙃】 數學題目常有多步驟的解題過程 但是詳解寫作時不一定都會交代 為何可由某步驟思考到另一個步驟的原因 這常常會導致學生看解答時會在心中OS: 「為什麼知道這裡要這樣做?」 「我為什麼想不到?」 歸諸其原因 在於多步驟解答的題目 編寫解答流程和思考流程常常是反向的 也就是說 解答寫...
畢氏定理數學 在 ?賭Sir|數學考試專家 Instagram 的最佳解答
2021-02-20 09:26:17
有一條好幽默嘅「定理」叫做「帕金森瑣碎定理」——人類明明分得到,咩事情係重要?咩事情係瑣碎?但往往會花大量心神處理啲小事,反而大事就求求其其算數🥱 唔係講笑,賭Sir我見過無數人板,喺我第一次聽呢條定理之前,我已經講過無數次類似嘅觀察,我嘅說法係咁嘅👇🏻 重要嘅事,通常都係大事,比較難...
畢氏定理數學 在 瓊姐娛樂台™️ Instagram 的精選貼文
2020-12-15 14:45:54
【男神莫竣名同陳漢娜陪你打仗 !! 🔥🔥你地有無迷失過喺呢場⚔️「17歲的公開試戰役」⚔️?】 呢場17歲戰役,你同我都一定打過。當年拎住准考證,成副⚔️戰鬥格⚔️咁坐埋位,寫到隻右手神經衰弱都唔敢停,不過一路寫一路叫自己頂硬上,唔可以令自己後悔… 喂呀好熱血呀! 如果當年有個好似 MCM 咁靚...
-
畢氏定理數學 在 寶妮老師 Bonnie Youtube 的最佳解答
2021-01-23 19:53:48成為寶妮寶(頻道會員):
https://www.youtube.com/channel/UCFKb...
...................................................
我怎麼感覺每年記者下標都是史上最難啊XDDD
不過不管了
我們來看看今年的熱騰騰的學測吧 :)
為了當天上片
果斷不剪片
大家見諒 :)
反正你們都說當睡眠音樂或是ARMS聽(傲嬌
........................................
抖內:
https://payment.ecpay.com.tw/Broadcaster/Donate/C536FEE5D24C0AC7B285AA56C6DDEF41
........................................
Hello!我是Bonnie,大家最害怕的高中數學老師。
因為有感於現今網路多媒體遠比課本紙筆更有吸引力,所以決定除了在學校之外,也在網路上分享我的生活、教學、自修以及與學生相處的小心得。
如果你還是學生,你可以發現老師其實沒那麼討人厭😂如果你已經畢業,你可以在這裡找回一點青春回憶👩🎓👨🎓
Enjoy it and have a good time!
.........................................
IG: charmingteacherbonnie (Bonnie老師)
粉絲專頁: 寶妮老師
https://www.facebook.com/%E5%AF%B6%E5%A6%AE%E8%80%81%E5%B8%AB-Charming-Teacher-Bonnie-290462364959770/
畢氏定理數學 在 GodJJ Facebook 的最佳貼文
傳奇J船長 https://youtu.be/VatDB-h6gOM
這肯定有人在搞,讓我們調黑盒子抓戰犯囉
畢氏定理全部都還給數學老師了 (゚∀。)
#J群玩家 #危險時空的戀人
畢氏定理數學 在 Facebook 的最佳貼文
怕孩子浪費時間就拼命塞東西讓他學嗎?真正的學習需要可以吸收消化並且運用
大人常常覺得反正孩子的時間很多,就多讓他學習點東西,以免浪費了時間,但是這樣真的對嗎?
吃早餐時,讀國二的幼子跟我聊起怎麼證明畢氏定理的公式。他常常會在用餐時間跟我討論一些他覺得有趣或是有疑惑的東西,然後他突然問:
「媽媽!像是大角對大邊,這種東西需要背嗎?」
我站起來說:「不需要背啊!你看媽媽兩隻腳站著就像是三角形的兩邊。當兩隻腳打開的腳小,對的邊是不是小?當兩隻腳打開變大,角對的邊是不是就變成大邊了?你記得了,就比較容易證明。數學是有趣的學問,但數學有時候太抽象,所以常常需要具象化才容易思考,才能變成你帶得走的知識和能力。」
孩子拼命的學習,如果沒有經過消化和吸收,怎麼會變成自己的知識呢?就像是我們如果只是拼命的吃東西,卻沒有時間讓胃消化和吸收,怎麼能夠提供身體足夠的養分呢?甚至有社會新聞報導,有人就是一直吃、一直吃,吃到胃裝不下被撐破了!才緊急送醫急救。
拼命找學習內容讓孩子來學習,就像是讓胃拼命塞進東西,孩子跟胃一樣,都需要時間來消化和吸收。
在競爭激烈的現代,面對爆炸的資訊量,家長總害怕自己沒有給孩子更多、更好的協助和幫忙,這種焦慮我懂。
在五月剛進入居家防疫時期,我看著國二的幼子沒有任何的安排,聯絡簿都因為被抽查而沒有發回,但因為他們剛在一天之內考完七科的月考考試,我決定還是先觀察。觀察一周後,各科老師慢慢有系統性的課程出來。但我不確定這樣的學習方式會持續多久?而一年後孩子就要參加高中會考了!我決定跟之前推薦的線上課程詢問相關課程。
家長沒有辦法幫孩子讀書考試,但是可以提供孩子必要的協助和幫忙。
每一個孩子的特質都不同,有人性急,有人個性溫吞,但總是有孩子可以自己調適的學習方式。家長要協助孩子找到自己最適合的學習方式,而不是整天無所事事,或是一整天都排滿了課程,這兩種極端都會讓珍貴的時間被耗損。
現在為了居家防疫,有很多免費的線上學習平台,像是均一學習網,未來兒童、未來少年的線上閱讀等,都是很好的媒材。
學習是一件有趣的事,但有時也充滿了困難和挑戰,要記得不要把孩子的學習時間排滿。給孩子一些反芻和消化吸收的時間,甚至可以跟孩子聊天討論,當孩子可以把學習到的內容用口語化說出來,用文字化寫出來,或是變成他解決問題的想法,這些學習就會變成孩子真正帶得走的能力了!
畢氏定理數學 在 Facebook 的精選貼文
[HUSH]見到我咁耐唔出Facebook Post,當然係有啲嘢啦。趕時間嘅不如跳落去15。你選擇ignorant咋,唔關我事。
==============
月頭訂最抵!2021比別人知得多。subscribe now(https://bityl.co/4Y0h)。Ivan Patreon,港美市場評點,專題號外,每日一圖,好文推介。每星期6篇,月費80,半年已1600人訂! 畀年費仲有85折
==============
TLDR:Andrew Wiles 1993年證明咗 400年嘅懸案「費馬最後定理」,「其實呢部份唔難」。佢個證明搞足10年都唔係最難。最難係:嗰10年佢完全唔同任何人講,仲要一路出啲其他paper,唔係為保住份工,係為等其他人唔知佢另外有嘢研究緊。個個仲以為佢回晒塘只係識交行貨。
1. 講個悶悶地嘅故事,1993年6月,數學家Andrew Wiles證明咗「費馬最後定理」。呢個應該係近幾百年數學界最偉大嘅時刻。
2. 「費馬最後定理」呢,其實都唔係好難,中學甚至小學數學程度都會明,但留返remark先解(*)。呢個定理證明咗又點?「係冇乜點的」。數學嘅嘢就係咁。至於個證明?我都睇唔明,我估你都睇唔明架啦。實情當日有份見證嘅行家,聽講都冇三份一人睇得明。
3. 但呢個定理足足等咗差不多400年先有人證明到(最初費馬提出嗰時係個猜想,佢話自己有證明,不過本書唔夠位寫,嘻)
4. 「費馬最後定理」,我實在諗唔到點樣用其他領域嘅嘢去相比。比起咩拎歐聯呀大滿貫呀拎諾貝爾獎呀都仲要堅。你諗下,400年嘅謎題,幾多天才窮一生之力,都解決唔到。卒之有人證明到。只可惜當年冇咩Youtube之類(但已有email)
5. 事實上,每一個曾經熱愛數學嘅小朋友,都會被「費馬最後定理」吸引。因為個定理本身唔難明,真係小學生都可以明。任何一個熱愛數學嘅小朋友,都會幻想或夢想可以證明到呢個定理。我當然都不例外,正如個個小學雞踢波都想變戴志偉或者美斯,球員總係想捧歐聯或世界盃,打籃球想變米高佐敦咁。Andrew Wiles亦都不例外。
6. 咁所以,Andrew Wiles應該真係百年甚至幾百年一遇嘅偉人了。然後有人可能知道,並冇「諾貝爾數學奬」呢樣嘢,但有個類似嘅東西,最高榮譽,Fields Medal.但Andrew Wiles甚至冇拎到Fields Medal。原因?唔係死咗(而家仲在生),而係Fields Medal只頒畀40歲以下嘅數學家,Andrew Wiles剛剛超齡
7. 呢個背景係重要的,當年Andrew Wiles已經超過40歲。有啲情況係過份被戲劇化或浪漫化,但的確,數學係年輕人嘅玩意。好多都好早成名,十幾廿歲最旺盛。30歲都唔出名嗰啲,基本上已經收得工見晒頂。咁又冇話冇用嘅,但會變成係教書,指導後輩咁咯。
8. 當時Andrew Wiles就係咁嘅情況,實情佢最初教Princeton 時都幾耀眼,但在1983-1993年間,基本上人人都以為佢回晒塘,研討會又唔見佢,只係出啲冇乜料到嘅文。
9. 事實係點?事實係佢嗰10年,就只係專心研究點證明「費馬最後定理」!完全冇同任何人講(除咗佢婆),冇任何先兆,所有同事學生都唔知。
10. 呢個係相當反常嘅,首先現代學術嘅嘢,已經好多都集體創作,唔係以前咩牛頓自己在家隔離就發現好嘢咁。況且,數學系係最冇秘密嘅。點解?好簡單,因為唔會拎到專利,又唔會搵到錢,證明咗呀?哦,恭喜你。
11. 咁你可以話,Andrew Wiles想獨攬呢個榮譽(佢亦做到咗)。我估都可以理解嘅,400年嚟最大嘅難題喎。
12. 但,證明本身已經難。更加難係,唔可以同人講。呢度都未係最難。最難係,佢專心呢個世紀難題之餘,仲要係不停咁有啲「行貨」論文出街!咁人地先唔會懷疑佢係咪做緊啲咩大件事!(**)
13. 當年Andrew Wiles個證明,甚至冇走去事先宣佈。唔係「本人證明咗費馬最後定理,你問我答」,而係用咗個好悶蛋嘅題目 "Modular Forms, Elliptic Curves and Galois Representations"。不過畢竟行家一出手就知,加上聽聞嗰排Andrew Wiles成個人都變晒(如釋重負吧),所以已經有人傳,「喂,條友可能會講證明費馬最後定理」,甚至有人去落注(你以為數學家唔賭錢?),但莊家都封盤。當日已經好多行家覺得係見證歷史時刻
14. 然後,Andrew Wiles講咗一大輪嘅證明後。只係好輕描淡寫咁講咗句:「所以,費馬最後定理成立」「我想我就在這裡結束」(***)。然後就係歡呼聲,相機快門嘅聲,仲有開香檳嘅聲(都話有行家知道有大件事)。冇錯就係呢個Post張相
15. 好啦,我打咁大段嘢,都係話你知。「發唔發現我呢排冇乜出Facebook Post?」咁我唔係證明緊哥德巴赫猜想(****),但,都係搞緊啲勁嘢。否則點會Facebook Post都唔出?
16. 而呢排,我就唯有學Andrew Wiles咁,出住啲「行貨」。例如呢篇。不過人地啲行貨都係頂級期刊喎。唔好忘記我仲要日日寫Patreon喎,仲搞埋錄音,仲搞埋勞蘇基金。
17. 至於有乜勁嘢嘛,之後話你知,當然唔止係勞蘇基金。
18. 但真係咁的,你地以為我教一世書時,我考緊CFA,轉咗做銀行(雖然當中有啲曲折,請睇舊文《安雅會談》)。你以為我做分析員一路睇中資金融股時,我變咗做策略師兼財演(whatever).你以為我係日日上電視嗰時,我已經搞緊 Patreon.正如你以為我日日R你訂Patreon嗰時,我已經搞緊勞蘇基金。
19. 然後呢?跟住去邊度?又係畀你估嘅再多一步。I think I’ll stop here
(*)OK,都係解兩句。希望你仲記得「畢氏定理」,唔記得唔緊要。咁知道9+16 = 25啦,咁啱三個都係平方數喎!即係3^2+4^2 = 5^2 (希望大家識得呢個^係乜,唔係法文crêpe上面頂帽)。咁好啦,會唔會有三個組正整數(唔計零呀仆街)a,b,c,,可以做到a^3+b^3=c^3?即係會唔會有兩個數,分別3次方之後,加出嚟可以係第二個數嘅3次方?費馬先生話冇咁嘅三個數。唔止,就連4次方,5次方,12次方,任何正整數次方都冇(除咗1同2)。費馬先生當年(差不多400年前)在佢本書度寫咗呢個猜想,仲話佢有個絶妙證明,「不過本書空白位唔夠,唔夠位寫」。個命題聽落唔係好難,一般有中學甚至小學程度都明講乜。但,呢個堪稱係數學史上最大嘅難題。結果1993年被證明了。
(**)同朋友講起,《戰雲密報》The Post一片之,名記者又係幾個月冇新嘢出,就畀行家估佢整緊單好堅嘅堅料。正係越戰嘅Pentagon Papers
(***)呢句「我想我就在這裡結束」(I think I’ll stop here)亦係《費馬最後定理》一書第一章嘅標題。作者係Simon Singh.本書非常好睇,係我睇過最精采嘅書之一。有中譯版。
(****)哥德巴赫猜想嘛。基本上而家取代咗費馬最後定理,成為數學史上最大難題。不過哥德巴赫本人就冇話自己證明咗但本書唔夠位。呢個猜想仲間單過費馬最後定理,所以我順手講埋。個猜想就係:任何一個大過2嘅雙數,都可以寫做兩個質數之和(和即係加埋!)。例如4=2+2(呀大佬,你知2係質數呀可?),6=3+3,8=3+5(不能4+4,4唔係質數呀!),10=3+7。聽落有趣又簡單,但,點證明?又,《遇見哥德巴赫猜想》亦係一本書,真係講哥德巴赫猜想的,亦都好睇。暫時去到 4 × 10^18 嘅所有雙數,都成立。但大家應該知道,「數學嘅嘢唔係咁運作的」。就算你用電腦check 幾多個數,都係冇用的。「你點知再下一個都得?」
==============
月頭訂最抵!2021比別人知得多。subscribe now(https://bityl.co/4Y0h)。Ivan Patreon,港美市場評點,專題號外,每日一圖,好文推介。每星期6篇,月費80,半年已1600人訂! 畀年費仲有85折
==============