[爆卦]區間微積分是什麼?優點缺點精華區懶人包

雖然這篇區間微積分鄉民發文沒有被收入到精華區:在區間微積分這個話題中,我們另外找到其它相關的精選爆讚文章

在 區間微積分產品中有28篇Facebook貼文,粉絲數超過4,514的網紅數學老師張旭,也在其Facebook貼文中提到, 【處處極限不存在的函數】 . 我記得自己剛升大一在學習微積分的時候,教授問了一個問題,「有沒有哪一種實變數實值函數是任何一點的極限都不存在的」,那時候我想了很久,總是想不出來到底要怎麼設計,才有辦法完成教授的要求。那時候我一直想不透的癥結點是,如果要在任意點的極限都不存在的話,那可能要先解決一個...

 同時也有7部Youtube影片,追蹤數超過2萬的網紅數學老師張旭,也在其Youtube影片中提到,這是萊恩老師「基礎數學 - 集合論」線上課程的第二集, 這部影片將接續第一集,介紹集合的基本性質與常見的集合。 這系列的課程是作為讀數學相當重要的基礎知識, 也可以讓讀高中的學生作為進階的課程之用! - 如果有任何問題或者想看的主題,歡迎在下方留言讓我知道! - 🦁萊恩老師的基礎數學系列影片: ht...

  • 區間微積分 在 數學老師張旭 Facebook 的最佳貼文

    2021-08-03 04:07:07
    有 41 人按讚

    【處處極限不存在的函數】
    .
      我記得自己剛升大一在學習微積分的時候,教授問了一個問題,「有沒有哪一種實變數實值函數是任何一點的極限都不存在的」,那時候我想了很久,總是想不出來到底要怎麼設計,才有辦法完成教授的要求。那時候我一直想不透的癥結點是,如果要在任意點的極限都不存在的話,那可能要先解決一個問題,那就是在設計了一個在某一點,例如說 a 點,極限不存在的函數以後,要如何改造這個函數,才有辦法讓 a 點「旁邊」的點其極限也不存在。
    .
      (接下來的內容,建議同學們可以拿支筆在紙上按照說明把函數畫出來)
    .
      舉例來說,如果我們設計了一個在 x = 0 這個點極限不存在的函數(例如設定這個函數在 x 小於 0 時其函數值均為 0;而當 x 大於 0 時其函數值均為 1),那麼要如何改造或調整這個函數,才有辦法讓這個函數在 x = 0 的「旁邊」的點其極限也不存在呢?針對這個例子而言,或許可以這樣做:先將這個函數在 x 大於 1 以後的函數值改成 0.5,那麼這個函數就會變成在 x = 0 和 x = 1 的時候極限都不存在,但因為 1 並非 0「旁邊」的數字,所以顯然還要再調整,於是我們再將 x 大於 0.5 以後的函數值都改成 0.5,那麼這個函數就會變成在 x = 0 和 x = 0.5 處其極限不存在,但同樣地,因為 0.5 並非 0「旁邊」的數字,所以我們繼續調整這個函數,下一步當然是將 x 大於 0.25 以後的函數值都改成 0.5,依此類推,再下一步就是將 x 大於 0.125 以後的函數值都改成 0.5,持續這樣的步驟,最終我們會得到一個當 x 小於 0 時其函數值為 0 而當 x 大於 0 其函數值為 0.5 的函數。這個函數當然仍然在 x = 0 的時候其極限不存在,但是原本在調整時的兩點極限不存在,卻因無限持續這樣的步驟,而變回了僅在 x = 0 極限不存在的狀態。這結果實在令人沮喪。
    .
      之所以會產生這樣的狀況,是因為持續了無限次將新增的極限不存在的點向 x = 0 處靠近的緣故。既然如此,那如果不要持續上面的步驟無限次呢?如果僅持續有限次的步驟,那麼在該次步驟的下一次,一定可以把 x = 0 右邊新增的極限不存在的點向 x = 0 再靠近一些,這個推論的結果就是,如果僅持續有限次上述的步驟,那麼就無法達成創造一個在 x = 0 的「旁邊」的極限不存在的點。結果,無論是有限次或無限次操作上述的步驟,最終都無法達成我們的目標。這真的真的非常令人沮喪,因為這意味著從一個點的極限不存在出發,去逐步改造出一個處處極限不存在的函數,方向很可能是錯誤的。
    .
      那麼,該怎麼辦呢?
    .
      面對這個問題,當時的我最終並沒有自己解出來,而是一個比過奧數的朋友在老師公布答案之前成功地解了出來,並告訴我他的想法。
    .
      他告訴我,既然從一個點的極限不存在開始是行不通的,那就一次就創造一大堆極限不存在的點吧!例如一開始的函數乾脆設定成這樣:當 x 介在 n 和 n + 1 之間且 n 為偶數時,將其函數值設定為 0,而其他地方則設定為 1。例如,當 x 介在 0 和 1 之間或介在 2 和 3 之間時,其函數值就是 0,而當 x 介在 1 和 2 之間或介在 99 和 100 之間時,其函數值就是 1。如此一來,我們就獲得了一個在每一個整數點其極限都不存在的函數。
    .
      以此為起點,比起我想的那個例子最初的樣子一次新增了無限多個極限不存在的點,似乎好像有了長遠的進步,但到此階段實際上並沒有解決我最一開始講的問題的癥結點,那就是如何在一個極限不存在的點的「旁邊」創造一個極限也不存在的點。
    .
      為了解決這個問題,我的朋友告訴我,下一步是在每一個「區間」裡進行調整。用例子來說明而剩下類推的話,大概是這樣操作:例如,在 0 和 1 之間,函數值原本都是 0,但接下來把這個區間切割成 10 等分,然後第 1、3、5、7、9 個區間(也就是在 x 介在 0 和 0.1、介在 0.2 和 0.3、介在 0.4 和 0.5、介在 0.6 和 0.7、介在 0.8 和 0.9 之間的這幾個區間),我們把函數值調整成 1,其餘的不動,那麼我們就可以得到一個,除了在所有整數點極限都不存在的函數以外,這個函數在 0.1、0.2、0.3、0.4、0.5、0.6、0.7、0.8、0.9 的極限也不存在。那如果是在原本函數值為 1 的區間,則在等分割成 10 個區間以後,將第 2、4、6、8、10 個區間的函數值調整成 0。若將上面這些動複製到其他區間的話,那麼在每一個整數區間(就是 n 到 n + 1 的區間)裡面,其十分位數的位置其極限都不存在。
    .
      接下來,再將函數值為 1 的區間等分割為 10 個區間,然後第 2、4、6、8、10 個區間其函數值都調整成 0,而函數值為 0 的區間一樣等分割為 10 個區間,但是是將第 1、3、5、7、9 個區間的函數值調整成 1,那麼,這個函數就變成了一個除了在所有整數點極限都不存在以外,但在每一個整數區間裡面其百分位數的位置極限都不存在的函數。
    .
      再接下來,繼續進行上面的動作,不斷地十等分分割之前產生的區間,並且適當地調整其函數值,使其在任一階段裡面都是前一個區間裡面的函數值是 0 且後一個區間裡面的函數值是 1 ,或前一個區間的函數值是 1 而後一個區間裡的函數值是 0 的狀態,持續無限次,最終就會得到一個在任一點其極限值都不存在的函數了。
    .
      要證明這個函數處處極限不存在有分簡單版和嚴格版,這邊我們先講簡單版,以後有機會再談嚴格版。對於這個函數而言,固定任何一點 a,其左極限只有兩種可能,0 或 1,但因為這個函數被分割地非常地密,而且連續幾個區間在任一階段裡面都是一下子 0 一下子 1 這樣變動,所以這個函數在 a 點的左極限不存在,因此這個函數在 a 點的極限並不存在。最後,因為 a 這個點是任意取的,所以我們可以說這個函數的極限值在任意點都不存在。
    .
      這個答案真的很猛,因為當時在班上只有我那位奧數的朋友給出了教授點頭的答案。
    .
      雖然當初他並沒有辦法清楚地講出左極限不存在的原因,也因為我們還沒學到極限的嚴格定義,所以沒辦法用嚴謹的敘述來證明這樣的函數確實處處極限不存在,但現在回想起來,那位奧數朋友還是很猛!因為他就好像那種天生的小說家一樣,信手拈來就寫出了一本傑出的小說,而我們凡人卻連寫一篇普通的文章都很成問題。
    .
      講到這裡,今天的故事似乎已經講完,但其實還沒,因為這樣聰明的人,並不會只出現我們班上甚至是這個時代而已。
    .
      關於「是否存在一個處處極限都不存在的函數」這個問題,其實在 19 世紀時,就有一位叫做 Dirichlet 的德國數學家,他所創造出來的一種函數(後來稱為 Dirichlet 函數),就是處處極限不存在的函數。這個函數的定義如下:當 x 為有理數時,其函數值是 1;當 x 不為有理數時,其函數值是 0。這樣的函數確實也處處極限不存在,也是我教授當時給同學們預設的答案。
    .
      在這邊我就不文字解釋為何 Dirichlet 函數處處極限不存在了,但我有拍一部影片來說明,如果你想繼續看下去,可以點開我貼在本篇文章留言處的這部影片,我有盡量簡單地解釋為何 Dirichlet 函數處處極限不存在。
    .
      雖然 Dirichlet 函數處處極限不存在,但其實當初 Dirichlet 所面對的問題,並非「是否存在處處極限不存在的函數」,而是「是否存在無法圖像化的函數」。在經過可能類似這篇文章最一開始的那些推敲以後,Dirichlet 創造了 Dirichlet 函數,而這個 Dirichlet 函數就是一個「客觀存在」但「無法圖像化」的函數。並且,除了無法圖像化以外,Dirichlet 函數在數學上也有著很重要的地位,因為他常常是一些直覺上無法察覺的現象的重要例子。例如我們直覺上都會認為只要函數有週期,那麼就會存在最小週期,但 Dirichlet 函數就是一個不具有最小週期的週期函數,因為任意有理數都是它的週期。
    .
      關於 Dirichlet 函數的性質我們就講到這邊,或許以後有機會可以專門寫一篇跟 Dirichlet 函數有關的文章,不過有很多性質都是需要具備更多數學知識以後才能介紹的,所以如果真的要寫的話,那可能就還要再等一陣子了。
    .
      最後,跟大家介紹一下我上面所提到的影片,那是我在 2020 年時所拍攝的一系列微積分教學影片的其中一集。該系列影片基本上有觀念講解、精選範例和補充教材,近期我會開始陸續上傳到這裡,但不是每一部影片都會寫文章來搭配,所以如果你想跟著我上傳的速度一部一部看,而且不漏掉系列裡每一部影片的話,可以關注我在西瓜視頻、騰訊視頻和優酷視頻的頻道;如果你想一次看完我全系列的影片的話,可以關注我在 YouTube、bilibili 或 Pornhub 上的頻道,上面已經上傳了張旭微積分全系列影片。另外這系列影片都有講義電子檔可以搭配使用,如果你想要取得該電子檔的話,請幫我按讚這篇文章和這個粉專、分享這篇文章,並幫我到我的臉書粉專評論處寫個評論,然後私訊我的臉書粉專,我的夥伴就會回覆你講義電子檔的連結。
    .
      感謝你的觀看,希望這篇文章對你有所幫助,有任何問題或想法也歡迎在下面留言告訴我。另外,本文章同步發佈於數學老師張旭的 YouTube 頻道社群、微博、今日頭條、Medium 和 HackMD,若你也有上面提到的那些帳號,歡迎按讚、分享和關注!

  • 區間微積分 在 李傑老師 Facebook 的精選貼文

    2021-07-11 17:32:41
    有 81 人按讚

    110指考數學重點來嘍🙂

    ~~數甲部份~~

    1.極限的求法(重要)/無窮等比求和

    2.圖形/極值(重要)/根的個數/切線問題(重要)

    3.定積分的幾何意義/微積分基本定理(重要)/面積

    4三角函數圖形/疊合與極值(重要)

    5.複數乘除與旋轉(重要)/隸美佛定理(重要)/n次方根

    6.期望值(重要)/獨立事件(重要)/二項分配(重要)

    7.共線理論/內積與應用(夾角/面積)(重要)

    8.外積/面積/體積(重要)

    9.空間中平面與直線關係/夾角/平行/垂直/交點/距離(重要)

    10.三元一次方程組的解 與幾何意義

    11.二階變換(旋轉/鏡射/伸縮/推移)(重要)/馬可夫鏈

    12.指對數圖形/不等式/首尾數(重要)

    13.有理根檢定/插值多項式/勘根(重要)/虛根成双(重要)

    14.直線與圓的位置關係(重要)/圓的切線問題

    ~~數乙部分~~

    1.勘根(重要)/插值法/虛根成双(重要)/有理根檢定/餘式假設法(重要)

    2.指對數圖形(重要)/不等式/首尾數(重要)

    3排容原理/同物排列/分組分堆(重要)/二項式定理

    4.硬幣/骰子/數字的古典機率問題 /條件機率(重要)/貝士定理(重要)

    5.期望值/獨立事件/二項分佈/信賴區間(本章重要)

    6.線性規劃(應用題)(重要)

    7.共線理論/內積(重要)/正射影/距離 /夾角/面積(重要)

    8.矩陣的乘法/反距陣(重要)/馬可夫鏈(重要)

    9.極限問題(分式/根式/指數)/無窮等比求和(重要)

    10.二次函數求極值(應用)/高次不等式

    採穩紥穩 打策略 慢慢來不要急

    要看清題意 避免粗心 一定要檢查

    如果不會有拉肚子困擾

    考前喝半杯可樂 有助解題噢

    祝大家 考試順利♥

    Gooooooood luuucccck!

    (本文歡迎分享 感恩🙏)

  • 區間微積分 在 數學老師張旭 Facebook 的最讚貼文

    2021-06-20 14:26:12
    有 22 人按讚

    【張旭微積分下學期課程影片限時特價即將結束】

    原價 4500 元
    內容包含:
    級數審斂法、泰勒展開式、收斂區間、
    偏微分、多變數函數求極值、拉格朗日乘數法、重積分、
    向量微積分、曲線分析、曲面分析、
    格林定理、散度定理、史托克定理

    總共 200 多部影片
    (含講義電子檔,實體書須另行購買)
    等於一部影片不到 23 元
    目前限時特價中更便宜

    限時特價只到 6 月底為止
    7 月起回漲 1000 元
    8 月起漲回原價

    轉學考、國考、暑修、自學適用
    影片無觀看次數限制
    如有需求,歡迎參考我們的方案
    👉 https://www.changhsumath.cc/calculus2nd

    有任何問題都可以留言
    或私訊數學老師張旭臉書粉專

  • 區間微積分 在 數學老師張旭 Youtube 的最佳貼文

    2021-04-30 20:33:54

    這是萊恩老師「基礎數學 - 集合論」線上課程的第二集,
    這部影片將接續第一集,介紹集合的基本性質與常見的集合。
    這系列的課程是作為讀數學相當重要的基礎知識,
    也可以讓讀高中的學生作為進階的課程之用!
    -
    如果有任何問題或者想看的主題,歡迎在下方留言讓我知道!
    -
    🦁萊恩老師的基礎數學系列影片:
    https://youtube.com/playlist?list=PLKJhYfqCgNXgVoeRl15pYrsy8Eawwc4sp
    -
    🙋‍♂️加入萊恩老師的Discord群組:
    https://discord.gg/6ZKqJX9kaM
    -
    🎬萊恩老師個人頻道:
    https://www.youtube.com/user/wwww34567
    -
    🚀本次影片主題:
    00:00 開場Intro
    00:48 [6]冪集合(Power Set)
    06:39 [7]集合的相等
    16:09 [8]笛摩根法則(De Morgan’s Laws)
    23:22 [9]集合的性質
    28:01 [10]區間記號
    32:51 [11]常見數系符號

  • 區間微積分 在 數學老師張旭 Youtube 的最佳貼文

    2021-03-05 01:13:38

    先解決上次台大 B 卷的類題
    然後再進入這次台聯大的考古題

    今天的重點是收斂半徑和區間的求法
    相當基本且常見的考題
    要把解題過程練成像呼吸一樣自然
    這就是轉考必勝的關鍵

    今年 7 月要轉考有微積分的同學們
    我們一起衝!

    這個系列會解台大、台綜大和台聯大的轉考微積分考古題
    每次影片都會講一個題型,而且會出一個類題讓大家練習
    這個類題會在下次的影片開頭講解

    要轉考的同學們跟著我一起衝吧!
    沒意外的話我每天都會上片

    薄積而厚發
    希望這樣的影片對同學們都能有所幫助
    一起加油!

    上一題 👉 https://youtu.be/kNM1eLzA7rM
    下一題 👉 https://youtu.be/TdpjbM-gTjs

    張旭的 FB:https://www.facebook.com/changhsumath
    張旭的 IG:https://www.instagram.com/changhsumath

    張旭無限教室線上教學平台
    👉 https://changhsumath.com

  • 區間微積分 在 呂聰賢 Youtube 的最佳解答

    2020-12-27 09:46:39

    呂聰賢

你可能也想看看

搜尋相關網站