為什麼這篇三角函數教材鄉民發文收入到精華區:因為在三角函數教材這個討論話題中,有許多相關的文章在討論,這篇最有參考價值!作者Intercome (今天的我小帥)看板Math標題Re: [中學] 中一中補充教材 三角函數時...
三角函數教材 在 Chris English 多益檢定|文法核心力|生活英文 Instagram 的最讚貼文
2021-09-17 16:48:33
㊙️三角函數的cosine你真的有唸對嗎? #下次就要唸對系列 🔊登登登登~讓我們隆重歡迎新系列的第一集,其實是因為以前歸類在單字原來如此系列覺得沒有那麼精準,所以今後特別針對某個單字的發音而不是用法的主題就會放到 #下次就要唸對系列 今天第一個字要來教大家求學時代都遇過的老朋友-三角函數(其...
※ 引述《hero010188 (咖啡乾了啦)》之銘言:
: https://i.imgur.com/oGIlNAc.jpg
: 求解@@"
設∠ACP = θ,則弧AP= 2θ,弧BP= 120° - 2θ
=> ∠BAP = 60° - θ, ∠CAP = 120° -θ
因為∠APB = 120°, ∠APC = 60°
利用正弦定理:
PC/sin(∠CAP) = 6/sin 60 => PC = (12/√3)sin(120° - θ)
BP/sin(∠BAP) = 6/sin 120 => BP = (12/√3)sin(60° - θ)
三角形APC與三角形APB面積和
= (1/2)(AC)(PC)sinθ + (1/2)(PA)(AB)sinθ
=(1/2)(6)(12/√3) sinθ[sin(120° - θ) +sin(60° - θ) ]
= (36/√3) sinθ(√3 cosθ)=18 sin(2θ)≦18
面積和的最大值為 18
--
│ ███ ▂▄▃ ││││
│ ˋ ◤Mooncat~◥││││ 「為什麼,
│ ‵ ◤ ◥▏*_▂▁ ▋ │││ 為什麼教授這麼雞掰
│ ′ 、▌█ ▊▉▏ │ 沒天理啊………」
◢ ◤◢ ◣▋◢ █ ▋▊ ▕▅▇ ◥◥*Mooncat~
◢ ▂▇ˋ█▆◤ ▂_ ▁▄▆▇▃
--
※ 發信站: 批踢踢實業坊(ptt.cc), 來自: 211.21.93.157
※ 文章網址: https://www.ptt.cc/bbs/Math/M.1538476928.A.EBA.html
※ 編輯: Intercome (211.21.93.157), 10/02/2018 18:45:14