[爆卦]specificity中文是什麼?優點缺點精華區懶人包

雖然這篇specificity中文鄉民發文沒有被收入到精華區:在specificity中文這個話題中,我們另外找到其它相關的精選爆讚文章

在 specificity中文產品中有6篇Facebook貼文,粉絲數超過13萬的網紅蔡依橙的閱讀筆記,也在其Facebook貼文中提到, 💥 20 個 #常見的統計錯誤,你犯過,或是犯了卻不知道嗎?⠀ ⠀ MedCalc 的作者 Frank,在 Facebook 分享了一篇跟統計相關的文章,叫做「生物醫學研究文章中,連你都可以發現的 20 個統計錯誤」,很有意思。(連結請見原始貼文) ⠀ 我(蔡依橙)認真看完後,覺得蠻不錯的,於是把這...

 同時也有10000部Youtube影片,追蹤數超過2,910的網紅コバにゃんチャンネル,也在其Youtube影片中提到,...

  • specificity中文 在 蔡依橙的閱讀筆記 Facebook 的最佳解答

    2021-09-02 14:40:59
    有 438 人按讚

    💥 20 個 #常見的統計錯誤,你犯過,或是犯了卻不知道嗎?⠀

    MedCalc 的作者 Frank,在 Facebook 分享了一篇跟統計相關的文章,叫做「生物醫學研究文章中,連你都可以發現的 20 個統計錯誤」,很有意思。(連結請見原始貼文)

    我(蔡依橙)認真看完後,覺得蠻不錯的,於是把這 20 個統計錯誤的標題翻成中文,協助大家節省時間,如果剛好有興趣的,可再針對該部分去閱讀原文。接著,分享一些我看完之後的想法。


    1. 數值報告時,提供了不必要的精確。例如 60 公斤體重,硬要寫成 60.18 公斤。

    2. 將連續變項分組,變成次序變項,但沒有說明為什麼這樣分。像是 CRP 不以數值去統計,而分成低、中、高三組,卻沒說明為什麼這樣分。

    3. 配對資料,只報告各組平均,卻沒報告其改變。也就是只報告治療前血壓、治療後血壓,卻沒報告有多少人上升、多少人下降、平均下降多少。

    4. 描述性統計的誤用,尤其該用 median (interquartile range) 的,硬是用成 mean +- SD。

    5. 使用 standard error of the mean (SEM) 描述量測的精確度,而非 95% CI。

    6. 只報告 p 值,卻沒提到差值以及臨床意義。

    7. 誤用統計方式。尤其常見的是混淆有母數跟無母數統計方法。

    8. 使用線性迴歸,卻沒有先確定資料之間是真的有線性關係。

    9. 沒有使用全部的資料,然後又沒把去掉的資料「為什麼被去掉」說清楚。

    10. 多組比較的 p 值校正問題。

    11. 在隨機分組研究時,過於詳盡地比較了兩組受試者的基本資料,像是性別比例、年齡、體重、血壓等等,而且資料好得太奇怪。

    12. 報告檢驗數值時,沒有定義 normal 與 abnormal。

    13. 計算 sensitivity 與 specificity 時,沒有說明一些介在灰色地帶的檢查結果,如何呈現與去除。

    14. 使用圖片與表格,只是為了儲存數據,而非以協助讀者理解為出發點。

    15. 畫出來的數據圖,視覺主觀上給人的印象,竟然跟數據本身不同。

    16. 在報告數據與解讀時,搞不清楚 units of observation 是什麼,例如心臟病的觀察研究,在 1000 個患者中有 18 位心臟病發,那 units of observation 就是 18。但如果這個研究是以診斷正確率為主,那 sample size 就是 1000。

    17. 把不顯著的統計,或 low power,解讀成 negative,而非 inconclusive。

    18. 分不清楚解釋性研究與實務性研究,前者為 explanatory / efficacy / laboratory,後者為 pragmatic / effectiveness / real world。嘗試兩種混著做,結果兩邊都做不好。

    19. 沒有用臨床能理解的方式來報告最終結果。

    20. 把統計的顯著性,當成臨床的重要性。例如:癌症用新藥治療,統計上很顯著的好,但追蹤了五年,患者只延長了七天的壽命。這就是統計有顯著,但臨床意義不大的例子。


    🗨 我(蔡依橙)的一些想法

    由統計專業人的角度,來看生物醫學發表,是很有警惕意義的,能讓準備發表的朋友,仔細看看自己是不是也犯了相關的錯誤。

    但另一個角度看,作者也提到,這些錯誤在幾乎一半的生物醫學論文上反覆出現!這就代表,其實生物醫學論文要刊登,並不代表我們什麼錯都不能犯,相反地,這 20 個錯誤裡頭,有些就算犯了,也還是能被刊登。

    以我們自己發表,以及過去協助同學的經驗來說,我會認為 2、7、10、14、15,是初學者也 #必須理解並避開的,其他的則是發表起步了之後,陸陸續續去注意,在往更高分期刊挑戰時,逐漸進步就行。

    實務上,3 分以下的醫學期刊,幾乎沒有專門的統計查核,你只要能通過「一般同行」的統計知識審查就行。也就是說,我是一個放射科醫師,剛開始起步,投稿到放射科 3 分以下期刊,文章中的統計,只要「#一般有在做研究的放射科醫師」覺得可以就行,不見得要到「統計專家看過並挑不出毛病」。

    對於初學者如何起步,實務的協助,新思惟規劃了各種類型的研究課程,歡迎有興趣的朋友可以參考。目前正在開放報名中的,有以下三場工作坊,歡迎您瞭解各課程的課綱後,評估挑選最符合您需求的內容,前來上課,讓我們協助您成功起步。

    🟠 2021 / 11 / 7(日)統合分析工作坊
    無經費、資源少也能發表,不用 IRB 且免收案的好選擇。
    https://meta-analysis.innovarad.tw/event/

    🔵 2021 / 10 / 17(日)臨床研究與發表工作坊
    全新改款!跟著國際學者走,讓你寫作投稿都上手。
    https://clip2014.innovarad.tw/event/

    🟢 2021 / 10 / 16(六)個案報告、技術發表與文獻回顧工作坊
    把臨床上的各種想法,在 PubMed 化作專業生涯上的里程碑。
    https://casereport.innovarad.tw/event/
    ⠀ ⠀
    不只是說說而已,我們會舉實例,說明其意義、如何避開,在互動實作過程,實際由各位在自己的電腦上操作,從數據到軟體,從統計到繪圖,一次搞定,並避開常見錯誤,是真正以 #初學者起步 為核心的規劃。


    二十個常見的統計錯誤,與實務寫作時的考量。
    🔗 原始貼文 │ https://bit.ly/2WESphu

  • specificity中文 在 新思惟國際 Facebook 的最佳解答

    2021-09-01 11:01:16
    有 143 人按讚

    💥 20 個 #常見的統計錯誤,你犯過,或是犯了卻不知道嗎?⠀

    MedCalc 的作者 Frank,在 Facebook 分享了一篇跟統計相關的文章,叫做「生物醫學研究文章中,連你都可以發現的 20 個統計錯誤」,很有意思。(連結請見原始貼文)

    我(蔡依橙)認真看完後,覺得蠻不錯的,於是把這 20 個統計錯誤的標題翻成中文,協助大家節省時間,如果剛好有興趣的,可再針對該部分去閱讀原文。接著,分享一些我看完之後的想法。


    1. 數值報告時,提供了不必要的精確。例如 60 公斤體重,硬要寫成 60.18 公斤。

    2. 將連續變項分組,變成次序變項,但沒有說明為什麼這樣分。像是 CRP 不以數值去統計,而分成低、中、高三組,卻沒說明為什麼這樣分。

    3. 配對資料,只報告各組平均,卻沒報告其改變。也就是只報告治療前血壓、治療後血壓,卻沒報告有多少人上升、多少人下降、平均下降多少。

    4. 描述性統計的誤用,尤其該用 median (interquartile range) 的,硬是用成 mean +- SD。

    5. 使用 standard error of the mean (SEM) 描述量測的精確度,而非 95% CI。

    6. 只報告 p 值,卻沒提到差值以及臨床意義。

    7. 誤用統計方式。尤其常見的是混淆有母數跟無母數統計方法。

    8. 使用線性迴歸,卻沒有先確定資料之間是真的有線性關係。

    9. 沒有使用全部的資料,然後又沒把去掉的資料「為什麼被去掉」說清楚。

    10. 多組比較的 p 值校正問題。

    11. 在隨機分組研究時,過於詳盡地比較了兩組受試者的基本資料,像是性別比例、年齡、體重、血壓等等,而且資料好得太奇怪。

    12. 報告檢驗數值時,沒有定義 normal 與 abnormal。

    13. 計算 sensitivity 與 specificity 時,沒有說明一些介在灰色地帶的檢查結果,如何呈現與去除。

    14. 使用圖片與表格,只是為了儲存數據,而非以協助讀者理解為出發點。

    15. 畫出來的數據圖,視覺主觀上給人的印象,竟然跟數據本身不同。

    16. 在報告數據與解讀時,搞不清楚 units of observation 是什麼,例如心臟病的觀察研究,在 1000 個患者中有 18 位心臟病發,那 units of observation 就是 18。但如果這個研究是以診斷正確率為主,那 sample size 就是 1000。

    17. 把不顯著的統計,或 low power,解讀成 negative,而非 inconclusive。

    18. 分不清楚解釋性研究與實務性研究,前者為 explanatory / efficacy / laboratory,後者為 pragmatic / effectiveness / real world。嘗試兩種混著做,結果兩邊都做不好。

    19. 沒有用臨床能理解的方式來報告最終結果。

    20. 把統計的顯著性,當成臨床的重要性。例如:癌症用新藥治療,統計上很顯著的好,但追蹤了五年,患者只延長了七天的壽命。這就是統計有顯著,但臨床意義不大的例子。


    🗨 我(蔡依橙)的一些想法

    由統計專業人的角度,來看生物醫學發表,是很有警惕意義的,能讓準備發表的朋友,仔細看看自己是不是也犯了相關的錯誤。

    但另一個角度看,作者也提到,這些錯誤在幾乎一半的生物醫學論文上反覆出現!這就代表,其實生物醫學論文要刊登,並不代表我們什麼錯都不能犯,相反地,這 20 個錯誤裡頭,有些就算犯了,也還是能被刊登。

    以我們自己發表,以及過去協助同學的經驗來說,我會認為 2、7、10、14、15,是初學者也 #必須理解並避開的,其他的則是發表起步了之後,陸陸續續去注意,在往更高分期刊挑戰時,逐漸進步就行。

    實務上,3 分以下的醫學期刊,幾乎沒有專門的統計查核,你只要能通過「一般同行」的統計知識審查就行。也就是說,我是一個放射科醫師,剛開始起步,投稿到放射科 3 分以下期刊,文章中的統計,只要「#一般有在做研究的放射科醫師」覺得可以就行,不見得要到「統計專家看過並挑不出毛病」。

    對於初學者如何起步,實務的協助,新思惟規劃了各種類型的研究課程,歡迎有興趣的朋友可以參考。目前正在開放報名中的,有以下三場工作坊,歡迎您瞭解各課程的課綱後,評估挑選最符合您需求的內容,前來上課,讓我們協助您成功起步。

    🟠 2021 / 11 / 7(日)統合分析工作坊
    無經費、資源少也能發表,不用 IRB 且免收案的好選擇。
    https://meta-analysis.innovarad.tw/event/

    🔵 2021 / 10 / 17(日)臨床研究與發表工作坊
    全新改款!跟著國際學者走,讓你寫作投稿都上手。
    https://clip2014.innovarad.tw/event/

    🟢 2021 / 10 / 16(六)個案報告、技術發表與文獻回顧工作坊
    把臨床上的各種想法,在 PubMed 化作專業生涯上的里程碑。
    https://casereport.innovarad.tw/event/
    ⠀ ⠀
    不只是說說而已,我們會舉實例,說明其意義、如何避開,在互動實作過程,實際由各位在自己的電腦上操作,從數據到軟體,從統計到繪圖,一次搞定,並避開常見錯誤,是真正以 #初學者起步 為核心的規劃。


    二十個常見的統計錯誤,與實務寫作時的考量。
    🔗 原始貼文 │ https://bit.ly/2WESphu

  • specificity中文 在 國家衛生研究院-論壇 Facebook 的精選貼文

    2020-06-08 13:30:00
    有 39 人按讚

    ➥目前新冠肺炎檢測方法分兩大類:一類是核酸檢測(RT-PCR)方法,另一類是抗原抗體檢測(Antigen-Antibody)方法。


    ■目前核酸檢測方法特異性(specificity)大多可達100%,但靈敏性(sensitivity)有待改進
    ■而抗原抗體檢測方法,特異性和靈敏性均須提升


    目前已知發病前後一周可偵測到病毒量,發病一周後病毒量會減低,但抗體量會提高,因此使用何種方法檢測時間因素很重要;然而目前感染新冠肺炎後免疫力能持續多久仍屬未知,需更多研究結果來釐清。(「財團法人國家衛生研究院」蔡慧如博士 摘要整理 ➥https://forum.nhri.org.tw/covid19/virus/j891/ )


    📋 Interpreting Diagnostic Tests for SARS-CoV-2 (2020/05/06)+中文摘要轉譯
    ■ Author:
    Nandini Sethuraman, Sundararaj Stanleyraj Jeremiah, Akihide Ryo, et al.
    ■ Link:
    (JAMA) https://jamanetwork.com/journals/jama/fullarticle/2765837?resultClick=1


    🔔豐富的學術文獻資料都在【論壇COVID-19學術專區】
    http://forum.nhri.org.tw/covid19/


    #2019COVID19Academic
    衛生福利部
    疾病管制署 - 1922防疫達人
    疾病管制署
    國家衛生研究院-論壇

  • specificity中文 在 コバにゃんチャンネル Youtube 的最佳解答

    2021-10-01 13:19:08

  • specificity中文 在 大象中醫 Youtube 的最佳解答

    2021-10-01 13:10:45

  • specificity中文 在 大象中醫 Youtube 的最佳解答

    2021-10-01 13:09:56

你可能也想看看

搜尋相關網站