雖然這篇log基本公式鄉民發文沒有被收入到精華區:在log基本公式這個話題中,我們另外找到其它相關的精選爆讚文章
在 log基本公式產品中有2篇Facebook貼文,粉絲數超過4,514的網紅數學老師張旭,也在其Facebook貼文中提到, 【專欄】高中微積分和大學微積分的 6 個差別‼ 各位晚安 今天來寫一篇很久之前就想寫的文章 只是一直遲遲沒有動筆 「高中微積分和大學微積分有什麼差別?」 這個主題一定有其他老師寫過 但一樣地 我從來都不會因為別人做過了自己就不做 因為每個老師的歷練不同 所以講出來的就算有些地方是一樣的 ...
同時也有11部Youtube影片,追蹤數超過3萬的網紅李祥數學,堪稱一絕,也在其Youtube影片中提到,線上課程賣場:https://myship.7-11.com.tw/general/detail/GM2103314830237 成為這個頻道的會員並獲得獎勵:https://www.youtube.com/channel/UCU2axN3MDyvq01LOK1umZGQ/join 追蹤我的ig...
-
log基本公式 在 李祥數學,堪稱一絕 Youtube 的最佳貼文
2021-06-04 20:00:27線上課程賣場:https://myship.7-11.com.tw/general/detail/GM2103314830237
成為這個頻道的會員並獲得獎勵:https://www.youtube.com/channel/UCU2axN3MDyvq01LOK1umZGQ/join
追蹤我的ig:https://www.instagram.com/garylee0617/
加入我的粉絲專頁:https://www.facebook.com/pg/garylee0617/
有問題來這裡發問:https://www.facebook.com/groups/577900652853942/
喜歡這支影片,記得按個"喜歡",並且分享
訂閱就可以看到最新的影片
你最棒,記得按鈴鐺^^
高中數學重要觀念解析:https://www.youtube.com/playlist?list=PLOAKxvSm6LGkzAh5k3h-CI0-clwS7xsWm
數學思考題型:https://www.youtube.com/playlist?list=PLOAKxvSm6LGmx__4F2KucNWpEvr1rawkw
關於數學的兩三事:https://www.youtube.com/playlist?list=PLOAKxvSm6LGlD5ABfGtLkOhNIRfWxIRc5
真的祥知道:https://www.youtube.com/playlist?list=PLOAKxvSm6LGmQC77bAQPdl_Bw5VK8KQc-
YouTube合作影片:https://www.youtube.com/playlist?list=PLOAKxvSm6LGlQk7b-jDmCaUjJ57UMSXsf
高中數學講座:https://www.youtube.com/playlist?list=PLOAKxvSm6LGmgafYQliX1Ewh2Ajun9NNn
學測考前猜題:https://www.youtube.com/playlist?list=PLOAKxvSm6LGko-fghK4k3eZJ23pmWqN_k
指考數甲數乙總複習https://www.youtube.com/playlist?list=PLOAKxvSm6LGlrdoVFRflK46Cm25CGvLBr
統測考前猜題:https://www.youtube.com/playlist?list=PLOAKxvSm6LGkP_Nvl8iToZUWNfOHT42Pg
抖音精選:https://www.youtube.com/playlist?list=PLOAKxvSm6LGmoWuzdrsxoeKQBR_GgZyIk
國中會考總複習:https://www.youtube.com/playlist?list=PLOAKxvSm6LGlbMqjF4W6ElHM_lrFZijkg -
log基本公式 在 限りなく透明に近いMIYUUちゃんねる Youtube 的最讚貼文
2020-09-23 17:30:01神戸の洋菓子屋さんケーニヒスクローネのホテルにある
『くまポチ邸』でランチをしてきました
神戸の観光情報については
こちらの動画をご覧下さい
⇒https://youtu.be/0f4Aetxuq_s
基本的にセルフサービスですが、
パン食べ放題、ドリンク飲み放題と
女子会に嬉しい使用になっています
ホテルもGO TO トラベルキャンペーン対象と
なっているので是非宿泊してみてください^^
▼インスタ https://www.instagram.com/miufafa_official/
▼集英社MORE公式ブログ https://more.hpplus.jp/influencers/blg/miufafa
camera miyuu sony zv-1
動画がよかったらgoodボタンと
チャンネル登録していただけると
励みになります~^^
チャンネル登録はこちら
→ https://www.youtube.com/channel/UCPRqRMsv-EBo0D2CO67BsBg?sub_confirmation=1 -
log基本公式 在 予備校のノリで学ぶ「大学の数学・物理」 Youtube 的最佳貼文
2019-12-20 17:00:03誘導なしで入試に出るもの、通常は誘導付きで入試にでるものを含め、受験数学としてのあらゆる漸化式の解法を解説しました。入試問題のほとんどがこの形のいずれかでそのまま出題されますが、もちろん中には一見異なる形で出題されることもあります。しかし、その場合は小問が誘導となり、結局のところ今回解説したどれかのパターンに99.9%帰着します。
え?0.1%はどうするかって?そのときは出題者を恨む、のではなく、「数学って奥が深いなぁ」と感動してください。他の受験生にないその冷静さこそが合格に繋がります。そしてそのときはごめん
----------------------------------------------------------------------------------------------------------
【ヨビノリたくみの書籍一覧】
「難しい数式はまったくわかりませんが、微分積分を教えてください!」
https://amzn.to/33UvrRa
→一般向けの微分積分の入門書です
「難しい数式はまったくわかりませんが、相対性理論を教えてください!
https://amzn.to/33Uh9Ae
→中学の易しい数学しか使わない相対性理論の解説本です
「予備校のノリで学ぶ大学数学 ~ツマるポイントを徹底解説」
https://amzn.to/36cHj2N
→数学の動画で人気の単元を書籍にしてまとめたものです
----------------------------------------------------------------------------------------------------------
予備校のノリで学ぶ「大学の数学・物理」のチャンネルでは
①大学講座:大学レベルの理系科目
② 高校講座:受験レベルの理系科目
の授業動画をアップしており、他にも理系の高校生・大学生に向けた様々な情報提供を行っています
【お仕事のご依頼】はHPのContactからお願いします
【コラボのご依頼】はHPのContactからお願いします
【講義リクエスト】は任意の動画のコメント欄にて!
【チャンネル登録】はこちらから(今後も楽しく授業を受けよう!) https://www.youtube.com/channel/UCqmWJJolqAgjIdLqK3zD1QQ?sub_confirmation=1
【公式HP】はこちらから(探している講義が見つけやすい!) http://yobinori.jp/
【Twitter】はこちらから(精力的に活動中!!)
たくみ(講師)→http://twitter.com/Yobinori
やす(編集)→https://twitter.com/yasu_yobinori
【Instagram】はこちらから(大喜利やってます)
たくみ(講師)→https://www.instagram.com/yobinori
やす(編集)→https://www.instagram.com/yobinoriyasu
【note】はこちらから(まじめな記事を書いてます)
たくみ(講師)→https://note.mu/yobinori
やす(編集)→https://note.mu/yasu_yobinori
----------------------------------------------------------------------------------------------------------
【スペシャルスポンサーの方々】(敬称略)
このチャンネルはスポンサーの方々の支援により成り立っています
[3000円/月]
鈴木貫太郎/CASTDICE TV/holdwine/ごんちゃん/toshiro/F.Map!e/0990いきなりTOEIC【ワイルドなTOEIC講座】/starting/eddy_breakup/★memoたん★/琥珀@のベルズ/いたっち/日々めも/N. Chiba/19masaru/sakamotoki/lysmet/セブ島IT×英語留学の「Kredo」/nakanot /迫佑樹/げんげん/verdeviento/磯田重晴/データサイエンス VTuber アイシア=ソリッド/安部哲哉/カズレーザー(※5000円)/マサの高校化学/Kohei Arai/koshiba.jp /oldboystudy30(※3500円)/瀧千尋/oda_kyo/やすたろう(※4000円)/あんこきなこ/矢田朋之(※4000円)/世良英之/伊東謙介/鷺谷なるみ(※5000円)/神崎正哉/動画を販売するならFilmuy/さもはん/Y. Hirai/よっしー(※5000円)
[1000円/月]
raxman/こめぎ/キハム/固体量子/クラウド塾生管理システムShaple/の(※2000円)/ふくつう/鏡達人/kogorou/おのつよし/okaji/ぴろしき/CavitationVortex/Takayuki/yuyuwalker/和久田修右/log-1/ksawaura/よこのいと/mitunoir/sshirai/吹田啓介/しゅが/KzF/たくのろじぃ/ぐっさん/りょーと/Jumpei Mitsui/myai/坂上 勇太/Harahara745/KBOYのエンジニアTV /まなか/hnokx/もりけんた from ひめじ/おかだりく/anohitoooo/てつはいく/pajipaji/シュン/もろ/び(..◜ᴗ◝..)び/くまぱわー/ろうき祭り/katz uz/まさひろ@情報処理安全確保支援士/博士/KenTag/おでこ/matpiano/クラフトビール(※1500円)/STUDY PLACE 翔智塾/Kazu615/重吉比呂/takataka/国立大学法人弘前大学-数学クラブ-/okinakosan/渡辺/HorigomeDaisuke/fumaiinga/太田税理士事務所(青森市)/hyzksnj/etrlud/haruomaru/jeanjune/yottan [DIVE INTO CODE]/sn3y.com/岡本プロデュース
いつもご支援ありがとうございます。
ヨビノリのスポンサーをこちらで募集しています(500円から可)↓
https://camp-fire.jp/projects/view/130136
※上記リンクURLはAmazonアソシエイトのリンクを使用しています
log基本公式 在 數學老師張旭 Facebook 的最佳貼文
【專欄】高中微積分和大學微積分的 6 個差別‼
各位晚安
今天來寫一篇很久之前就想寫的文章
只是一直遲遲沒有動筆
「高中微積分和大學微積分有什麼差別?」
這個主題一定有其他老師寫過
但一樣地
我從來都不會因為別人做過了自己就不做
因為每個老師的歷練不同
所以講出來的就算有些地方是一樣的
但還是多多少少會有差異之處
1⃣
首先,絕對會被提到的
就是高中微積分只教多項式函數的微積分
也就是說
高中三年級數甲就算認真學完以後
還是不會算 2^x 的微分或 log(x) 的積分
(以上是指普遍的應屆畢業生)
當然有些物理老師可能會偷教三角函數的微積分啦
所以我上面故意不提三角函數😅
所以有些同學如果覺得高中微積分讀的好
大學微積分就會躺著過的話
那可能就想的太美好了
因為大學微積分並不是只有多項式函數的微積分
所以要補足所有基本函數的微積分
還是需要花時間努力一下
而各種基本函數的微分我的頻道目前都已經拍好了
想看的同學可以透過這個連結:https://reurl.cc/Kknmln
2⃣
上面提到唸完高中微積分還是不會 log(x) 的積分
這個除了因為高中的微積分只有多項式的微積分以外
還有一個重點
那就是高中微積分並沒有分部積分
大學微積分中的積分技巧有很多種
變數變換、三角置換、分部積分、部分分式...
以上這些高中微積分頂多只會教變數變換
但其實多項式的積分也用不太到
所以事實上是沒有教什麼積分技巧的
普遍都是逐項積分
因此到了大學以後還是要花很多時間熟練這些技巧
而關於各種積分技巧
剛好我們丈哥有整理
有興趣的話可以參考這部影片:https://reurl.cc/1xadXW
如果你是高三應屆畢業生
建議先看過所有基本函數的微分
然後了解微積分基本定理
再來看這個影片
不然可能會看得有些吃力
3⃣
高中教過許多關於基本函數的公式
對了,忘記說明什麼是基本函數
基本函數就是形如常數函數、多項式函數
指對數函數、三角函數、反三角函數
以及以上這些函數在四則運算以下所產生出來的函數
對於這些基本函數的公式
到了大學,其實很多都用不到
當然現在因為教改的關係
用不到的公式已經越來越少了
但到底最後在微積分裡面絕對要記起來的公式到底有哪些呢?
我這邊簡單條列幾個
例如:
x^n ± y^n 的因式分解公式
x = a^(log_a (x))
log_a (x_1 + x_2) = (log_a (x_1)).(log_a (x_2))
log_a (x_1 - x_2) = (log_a (x_1)) / (log_a (x_2))
三角函數的和角公式
cos^2 (x) = (1 + cos(2x)) / 2
sin^2 (x) = (1 - cos(2x)) / 2
以上這些都是在學習大學微積分時必備的
當然還有其他的
以後有機會在專門拍一部影片來統整
至於其他如同 sin(x/2) 的公式
或是 a^(log_b (x)) = b^(log_a (x)) 這種比較炫技的公式
其實在大學微積分裡面都用不太到
所以大概都可以忘掉沒有關係
4⃣
提到函數的公式
就不得不提大學微積分多了哪些函數是高中沒講的
首先,高斯函數 [x]
這個在高中數學的正規教材裡面並沒有提到
但有些補習班會在寒暑假時拿來當做一個專題
另外是反三角函數
這個在以前台灣的高中數學是有講的
(大概民國 100 年以前都有講)
但現在已經刪掉了
所以這對現在的台灣高中生來說
無疑是增添了一份學習上不可避免的負擔
最後是形如 sinh(x) 和 cosh(x) 這類型的超越函數
(所謂超越函數就是無法滿足任何多項式方程的函數)
這些看起來跟 sin(x) 還有 cos(x) 的函數
常常會讓本來就快忘光高中數學的大一學生搞得更混亂
當然可能還有一些函數
但我目前最有印象的就是這三個
5⃣
上面提到超越函數
那接下來講講一個特別的超越函數:指對數函數
在台灣的高中數學裡面
早就透過描點和指對數運算律建立指對數函數的世界觀
但到了大學
大概會有一半的學校重來一次
在大學微積分裡面
會先透過極限定義 e 這個數字
然後再用指數運算律建立 e^x 這個函數
嚴格說起來應該是 exp(x) 這個函數
最後再用反函數的概念定義 log(x) 這個函數
講到這邊,不得不強調一點
高中的 log(x) 是以 10 為底數
而大學的 log(x) 則是以 e 為底數
並且常常會把 log(x) 縮寫成 ln(x)
所以在定義上的不同
這也是在初學大學微積分時一定要注意的
如果想知道 e 這個自然底數如何產生的話
可以參考這個影片:https://reurl.cc/g7jORL
6⃣
以上講的都是大多數台灣的學生初學大學微積分時所會遭遇到的
和高中微積分不同之處
最後我想講一個只有理工學院的同學會遇到的差異之處
那就是「極限的嚴格定義」
高中微積分在教極限的時候
通常只教直觀的極限
也就是透過計算和觀察函數的左右極限來求極限
但到了大學微積分
特別是理工學院的學生
就絕對逃不掉極限的嚴格定義
這邊列一下定義內容:
「lim_(x→a) f(x) = L」若且唯若
「對任意 ε > 0 存在 δ > 0 使得凡 0 < |x - a| < δ 均有 |f(x) - L| < ε」
噁心吧?
這個是絕大數理工學院的學生不可避免的主題
而且會出現在第一次小考或期中考裡面
然後很多學生就送分了
送還給教授分數
雖然說就算整個大學微積分都學完了但極限的嚴格定義從未真正了解過也沒差
但如果大學微積分一開始就考差
那是不是表示期末考就得更努力才能把及格分數追回來呢?
很多人都講反正十年後也用不到微積分
現在這麼努力幹嘛
其實我從來都沒有要所有人都要努力
我只要求想跟我學微積分的學生要努力
但說真的
就算十年以後用不到
但如果在學微積分時不努力
導致隔一年又要在重來一次
那不是把自己的人生拖延住了嗎?
學生階段的學習老實說很多都不是為了未來是否實用
而是為了當下
為了證明自己是一個能夠安裝任何知識的頭腦
證明自己是能夠撐過各種無聊和困難習題考試的人
然後透過這一次又一次的證明
去證明自己是一個可以理解問題並解決問題的人
如此而已
至於講未來會不會用到的那些人
我認為都只是想為自己當下的逃避找一個藉口而已
不然我也可以這樣想
反正我總有一天會死
我的教學影片總有一天會因為沒有人推廣而再也沒人看
那我幹嘛拍?
有時做一件事情或是學習
真的只是為了解決當下的其他問題而已
不用為每一件事情都去思考他的未來
特別是在學生時期
既然到了這間學校這個科系
就好好學習,累積漂亮的 GPA
當然不只學業要顧
如果行有餘力,也應該找公司實習累積經驗
不過這都是在大三大四以後才要思考的事
在面對「極限的嚴格定義」的當下
我強烈建議學生就是一個想法
不要想太多
試著盡自己最大的努力,在進入下一個章節以前
能把這個學的多透澈就多透澈
當然也要考量目前手上所有科目的重量
不能顧此失彼
但就盡最大努力
顧好所有科目
以後如果有機會
我會再拍影片或寫文章講講大學生如何取捨目前手上的學科還有大學如何選課比較聰明
嗯... 我又離題了
總之「極限的嚴格定義」對剛上大學的理工學院學生來說
絕對是大學生涯第一次試煉
如果想趁著開學前先偷念一點的同學
可以反覆觀看這部影片:https://reurl.cc/oLonv5
///
好啦,講了這麼多
不知道認真看完的有幾個
但就如同我上面講的一樣
很多事情做下去是不太會去想太多未來會不會怎樣的
當然這是建立在這件事不會傷害到自己且對他人有幫助的情況之下
這次大概就分享到這邊
如果迴響還不錯的話應該很快就會有下一篇
所以如果有認真看完的朋友們
覺得認同的話幫我按個讚或分享
覺得有話想對我說的話就在下面留言
有認真看完不知道要講什麼但想表示一下支持的
可以在下面留言「我有看完!」
其實我都蠻佩服關注我粉專的朋友們
也佩服有在看我頻道的同學們
因為我的貼文大多都很長
影片也都是超硬核教學影片
感謝支持我們的人們
因為有這些支持
我們才能繼續走下去😀
▋歡迎用訂閱行動支持數學老師張旭 YT 頻道‼
▋連結:https://reurl.cc/KkL3Vy
▋張旭老師大一微積分先修線上直播課程開課了🔥
▋連結:https://reurl.cc/Njol7x
▋歡迎參加許願池活動,留下你想聽我們講解的主題!
▋最新連結請到置頂文章:https://reurl.cc/WdZQDx
▋贊助支持我們
▋歐付寶:https://reurl.cc/vD401k (台灣境內請用這個)
▋綠界:https://reurl.cc/3Dp7Ll (台灣境外用這個)
▋flyingV:https://reurl.cc/g7p48N (2020/7/17 結束)
log基本公式 在 Herman Yeung Facebook 的最佳解答
(本來想拍埋 Tips class plan A, B, BLC, Capture 5** 及一天 的片,但因身體抱恙,臉青青以免嚇親大家,所以出文字版,先出 tips class plan A)
有報到 tips class plan A 的同學
首先你要了解第一頁的時間分佈,
實戰時要好好掌握自己的時間分佈,
要了解自己的大約實力,進行可行的戰略,
之後當然係要溫翻上堂講過 Annual report 提及的各大問題,
% 的翻譯你熟悉未?可參考 p.3
之後要了解翻不等式與三角學之間的 cross-over 考法
接著就係 p.7 的位置,條題目不是重點,重點係當日提過的扣分制度,
了解一下個扣分制度,
之後可以溫 Q004 以及 Q033,兩條都入係要你自己將一個9唔搭8 的情境變得可比較,呢個公平化的手段與 Q010 有相類近的地方,可以一併溫習。
而 Q010 亦要了解 data 經歷 加、減、乘、除後的各種變化。
之後可以從 Q008 中睇到 Box-and-whisker 的問題,
我堂上講過,佢有時又會倒轉俾你睇到邊個 mean 大。
其實 statistics 統計係充滿 misleading 誤導,
你亦可以搵下 Q14 (c) part 面對 yes, no question 的必殺技。
至於 normal distribution 正態分佈 的考法,可以參考翻 Q13,
了解 frequency 頻數 與 probability 概率的分別。
跟住你可以了解 make subject 主項的音你的手法 (Q18)
以及 Paper I 與 Paper II 於做法上要留意 Paper I 要多一點 step (Q19)
至於 log 的 應用有兩個,一個係 Q20,另一個於 TIPS Class Plan B Q013
至到 Factorize 因式分解方面,
記唔記得我地講過 DSE 係一個新的考法,可參考 Q21 (a),
如果你有報到 大檸樂,果邊的演譯會更深入,
講埋幾時會係佢幾時會係 completing square 配方法。
如果你得到一個頂點坐標,究竟點寫條公式呢?
兩個情況,一種係 Q023 的情況,另一種係 “一天衝” 的 Q014。
之後到賺蝕問題,要小心正負號 (Q26)
基本野都唔熟的可以睇下片︰
https://www.youtube.com/watch…
A.S. 及 G.S. 記住要實戰為主,好多時第一秒你係唔知考緊佢地,
可以通過 Q027, Q028, Q030 了解箇中的精髓。
不等式方面,要了解最終極的考法,
可參考 Q034, Q035。
Linear Programming 線性規劃 方面,
可以參考 Q036 及 一天衝 的 Q46
背熟我們的口訣,實際如果出 MC 都可以做得快 d。
至於 Probability 概率方面,
要搞清楚 prob 與 expected value 期望值的分別,
可參考 Q037 一次過溫埋 nCr 的用途。
nCr, nPr 的應用可參考 Q038, Q039, Q040, Q041,
同一時間可溫埋一天衝 的Q51, Q52 (當日我地講過 乘 同 加 的分別)
Mensuration 求積法 與 Coordinate Geometry 坐標 的關係可參考 Q42, Q43
圓形直線、圓形圓形的各種關係理解左的話,
可以溫下 奪保其星 的 G1 果條
至於 Factor theorem 因式定理、Reminder theorem 餘式定理 就一定係溫
奪保其星 的 M類題目,記得我上堂講過 “我唔識佢架,所以我要 ….”