[爆卦]deta矩陣是什麼?優點缺點精華區懶人包

為什麼這篇deta矩陣鄉民發文收入到精華區:因為在deta矩陣這個討論話題中,有許多相關的文章在討論,這篇最有參考價值!作者alwaysapie (派)看板Math標題[中學] 矩陣的線性變換 det=0時時間Mon J...


在看高中課本時,

會講到當A矩陣的det(A)不為0時,

會把一條直線轉到另一條直線。

可是沒有特別討論到det(A)=0時的狀況。

看了一下參考書中有稍微提到,

如果det(A)=0,

那除了直線以外還有可能變成一個點。



我好奇的是

det(A)=0,

總共會出現哪些種狀況,

要怎麼一般性地討論呢?

(比方什麼狀況是直線、什麼狀況是一個點)

請教各位前輩了!



--
※ 發信站: 批踢踢實業坊(ptt.cc)
◆ From: 118.169.164.169
turboho :這就是線性代數裡eigenspace, eigenvector的觀念 01/27 10:06
turboho :想深入了解的話去找本基礎的線性代數來念吧 01/27 10:06
yhliu :如果是平面向量問題, 線性變換矩陣可逆時, 直線變換 01/27 10:07
yhliu :後仍是直線. 該矩陣不可逆時, 除了 0 矩陣之外, 直線 01/27 10:09
yhliu :經變換後仍是直線的情形是該直線某個特定方向. 例如 01/27 10:10
yhliu :A = [ 2 3 ; 4 6 ] (第一列 2, 3; 第二列 4, 6), 則 01/27 10:13
yhliu :所有 t(3i-2j) 形的向量變換後仍是 s(3i-2j) 形, 只 01/27 10:14
yhliu :是乘數 t 變成 s (事實上 s = 8t). 這直線也就是 1F 01/27 10:15
yhliu :說的, 對應非零 eigenvalue (本例為8) 的 eigenspace 01/27 10:16
yhliu :我似乎錯了! 01/27 10:21
yhliu :設 A 的 eigenvectors 是 u 對應 0, v 對應非 λ≠0 01/27 10:24
yhliu :直線是通過 au+bv 與 cu+dv 兩點, 上面的點一般式是 01/27 10:25
yhliu :p = t(au+bv)+(1-t)(cu+dv). 則變換後是 01/27 10:25
yhliu :Ap = tb(Av)+(1-t)d(Av) = [d+t(b-d)]λv. 01/27 10:28
yhliu :當 b≠d 時, 結果仍是一直線; 當 b=d 時,結果是一點. 01/27 10:28
alwaysapie :那可以這樣說嗎? 01/27 11:33
alwaysapie :當det不為零時,則直線經線性變換後仍為直線。 01/27 11:34
alwaysapie :det=0時,則直線經線性變換後為一個點 01/27 11:34
ma4wanderer :前面對 後面不見得 01/27 12:03
alwaysapie :怎麼說呢? 01/27 12:14
BLUEBL00D :det(A)=0 => A^(-1)不存在 => 變換不可逆 01/27 13:08
BLUEBL00D :多點對一點時不可逆 01/27 13:09
BLUEBL00D :只要是多點對一點的情況 都可能是A變換的可能性 01/27 13:09
alwaysapie :那有沒有高中程度可以聽得懂得推導呢? 01/27 13:12
BLUEBL00D :補充:因為一對多不算是函數 01/27 13:12
alwaysapie :謝謝y大 可是有沒有高中可以看得懂的說法呢 01/27 13:13
harveyhs :其實可以想說 detA = 0的時候就是前後兩個空間 01/27 18:52
harveyhs :"不一樣大",所以維度會少 01/27 18:52
harveyhs :啊XD那個"所以"只是講話習慣,沒有要代表因果關係 01/27 18:53
alwaysapie :謝謝各位大大指教!! 01/28 03:37
yhliu :從 R^2 到 R^2 的線性變換, 如果變換矩陣 A 的行列式 01/29 01:12
yhliu :是 0, 則整個平面是映到一條通過原點的直線. 01/29 01:13
yhliu :修正: A 是 0 矩陣時除外, 此時所有點都映至原點. 01/29 01:15
yhliu :平面上一直線經變換後或者是一點(如果此直線垂直上述 01/29 01:16
yhliu :變換後的值域), 或者與值域重疊, 也就是仍為一直線. 01/29 01:16
sneak : 直線是通過 au+bv https://noxiv.com 01/02 15:40
muxiv : 謝謝各位大大指教!! https://moxox.com 07/07 11:50

你可能也想看看

搜尋相關網站