雖然這篇Medscape鄉民發文沒有被收入到精華區:在Medscape這個話題中,我們另外找到其它相關的精選爆讚文章
在 medscape產品中有42篇Facebook貼文,粉絲數超過3,992的網紅台灣物聯網實驗室 IOT Labs,也在其Facebook貼文中提到, IBM 大名鼎鼎的 Watson 也要被賣了,人類的 AI 夢該醒了? 作者 品玩 | 發布日期 2021 年 02 月 22 日 8:45 | 人類豐滿的 AI 夢,正撞上冰冷的現實。1 月 19 日,據《華爾街日報》引用知情人士報導,IBM 考慮出售 Watson Health 業務,可能...
同時也有10000部Youtube影片,追蹤數超過2,910的網紅コバにゃんチャンネル,也在其Youtube影片中提到,...
medscape 在 台灣物聯網實驗室 IOT Labs Facebook 的最讚貼文
IBM 大名鼎鼎的 Watson 也要被賣了,人類的 AI 夢該醒了?
作者 品玩 | 發布日期 2021 年 02 月 22 日 8:45 |
人類豐滿的 AI 夢,正撞上冰冷的現實。1 月 19 日,據《華爾街日報》引用知情人士報導,IBM 考慮出售 Watson Health 業務,可能的方案包括賣給私募股權公司、醫療企業或與特殊目的收購公司(SPAC)合併。
Watson Health 部門主要負責使用 AI 幫助醫院、保險公司和製藥企業處理數據。《華爾街日報》援引知情人士報導,年收入約 10 億美元,但目前未盈利。
IBM 在 2020 年 4 月迎接新 CEO 阿爾溫德‧克里希納(Arvind Krishna)。上任後,克里希納著手簡化公司業務線,使雲端計算更有競爭力。如 Watson Health 真的出售,對 IBM 的 AI 業務來說,無疑是不小的挫折。
曾想替人類解決腫瘤治療
長久以來,Watson 都是 IBM AI 業務的招牌,也是人類最初充滿野心的 AI 夢代表。
2011 年,深度學習方法剛重新定義,仍未掀起 AI 浪潮。但此時 IBM 的 Watson 就在美國最受歡迎的智力競答節目《危險邊緣》,擊敗節目史上最成功的兩位人類選手。
Watson 展現出強大的自然語音理解能力。要贏得比賽,必須分析大量文字找到線索,然後搜尋大量資料庫,檢索可能的答案。擊敗兩位人類冠軍後第二天,IBM 宣布 Watson 的新職業目標:AI 醫生。
從邏輯看,Watson 在節目展現的能力,似乎可移植到醫學領域──都是先理解自然語言(患者的電子病歷),然後檢索資料庫(治療方案和最新醫學文獻),最終得出答案。此方案的價值在於,每天有近 8 千篇醫療文章發表,醫生一篇篇讀不可能,AI 能幫助醫生閱讀最新醫學成果。
2013 年,IBM 更將研究重心聚焦於腫瘤治療,人類還無法攻克的醫學挑戰。2015 年,IBM 成立專部門:Watson Health,可見當時決心。IBM 前 CEO 羅睿蘭(Virginia Rometty)曾把 Watson Health 稱為公司的「登月計畫」。
眾所周知,AI 的基礎是大量訓練資料。為了獲得數據,IBM 花費約 40 億美元收購 4 家醫療領域數據驅動型公司,分別是 Phytel、Explorys、Merge Healthcare 和 Truven Health Analytics。2016 年,成立僅兩年的 Watson Health,員工規模達 1 萬多人。
發展重點的腫瘤治療領域,Watson Health 吸引許多著名合作機構,包括安德森癌症中心、紀念斯隆─凱特琳癌症中心、梅奧診所、奎斯特診斷公司。2016 年 8 月,Watson Health 還進軍中國,推出「健康中國」生態圈共贏計畫。
聲勢壯大的宣傳、數額龐大的併購、權威機構合作,IBM 透過一系列動作讓外界對 Watson Health 的期待非常高。畢竟,用最尖端的 AI 技術解決最困難的醫療問題,聽起來就非常性感。
不過,後來發展事與願違。安德森腫瘤中心曾與 IBM 合作,為腫瘤學家創建諮詢工具,是利用自然語言處理技術彙整患者的電子健康紀錄,然後匹配資料庫提供治療建議。安德森癌症中心投入 6,200 萬美元,但最終結局卻是雙方 2017 年 2 月終止合作。
業界開始對 Watson Health 產生懷疑,問題也接踵而至。2018 年 5 月,美國媒體 The Register 報導,Watson Health 部門要解僱約 50%~70% 員工,引發巨大震動。不過後來科技媒體 IEEE Spectrum 報導,被裁員工主要來自收購的三家公司 Phytel、Explorys 和 Truven。大量收購使公司面臨人力過多問題,為裁員埋下了伏筆。
但這些都是表面現象,歸根究柢,Watson Health 的致命點在於,診斷結果不準確。
2018 年 8 月《華爾街日報》報導,沒有任何發表的研究表明,Watson 提升患者的治癒率。有十幾位使用過系統的機構和醫生回饋,癌症應用收效甚微,某些情況下還會出錯。且由於缺乏罕見病例數據,Watson 的更新速度跟不上癌症治療的發展速度。
丹麥某醫院研究指出,Watson 的診斷方案,與專家僅 30% 重疊,因此拒絕採購 Watson 系統。德國媒體也曾報導,德國兩家機構實際應用後發現,Watson 對症狀特殊的病人會開給致命藥物。2018 年 10 月,IBM Watson Health 當時 CEO Deborah DiSanzo 宣布離職。
一切都不可逆轉指向最終結局,如今終於傳出 IBM 尋求出售 Watson Health 的消息。失去業界信心,再丟掉雄厚資金後援,人類最早的 AI 明星前景,不再明朗。
AI 夢該醒了?
目前 AI 應用於醫療最普遍的場景是辨識醫療影像,如視網膜眼底影像。而 Watson 挑戰的是診斷,且還是醫學難度最大的腫瘤治療領域,Watson Health 面臨資料和 AI 智慧的雙重挑戰。
資料層面,大部分醫療資料是非結構化資訊,如醫生撰寫病歷和出院總結。雖然 AI 的自然語言理解能力進步飛快,但比人類依然差很多。圖靈獎得主約書亞‧本希奧(Yoshua Bengio)曾表示,AI 無法理解醫學文本歧義,也無法找到人類醫生會注意到的細微線索。
另一方面,有些罕見病例的數據往往難以取得。《中國工業和資訊化》雜誌 2020 年篇文章指出,分析 Watson 數據發現,罕見病例研究中,本來應該餵給 Watson 大量真實數據找到新治療方法,但罕見病例本就缺乏,Watson 被灌入一堆沒什麼用的假設數據,並不是真正的病人數據。這種透過假設數據學習的 AI,準確性可想而知,更出現罕見病例 Watson 誤診。
全球領先的醫學資訊平台 Medscape 2018 年報導指出,Watson 學習根源有問題──並沒有使用足夠真實病例學習,負責訓練它的人,僅是紀念斯隆‧凱特琳癌症中心的腫瘤學家和 IBM 工程師。Watson 大量訓練時間用於掌握上述腫瘤學家設計的理想化病例和治療方案。訓練用真實病例數量很少,最多的肺癌也僅 635 例,最少的卵巢癌更只 106 例。
IBM 曾努力取得資料,花 40 億美元收購 4 家公司,但融合面 IBM 低估了複雜程度。《中國工業和資訊化》雜誌文章指出,IBM 前員工和前客戶的醫院管理人員說,雖然收購大量資料,但融合時發現需要花費難以想像的人力物力,還沒開始訓練就讓人筋疲力盡。巨大的經濟壓力和暗淡前景之前,各合作夥伴只能選擇終止合作,留個爛尾。
AI 目前的智慧程度,難以配合腫瘤治療的複雜性。AI 的本質是統計學,得出的結論局限於人類訓練員提供的數據,無法像專業醫生,獨立生成新的見解。
也就是說,Watson 只能比人類專家更快得出相同結果,無法治療人類醫生治不了的病。
巨大的風險面前,醫生只會將 Watson 的診斷結果當參考,依然要進行大量臨床研究。IBM 的宣傳說,Watson 能憑著強大的計算能力發現人類看不到的地方。但事實證明,AI 的智慧遠未到這程度。Watson 對醫生的意義,也就大打折扣。
Watson Health 的挫折反映出 AI 用於醫學診斷的困難重重,但並不意味 AI 醫療領域沒有前景。圖像分析、基因分析和製藥領域,都有不少公司探索 AI 的應用場景。即使是診斷領域,IBM 的 Watson 沒做好,也不意味其他人做不好。至少,後來者可在 Watson 基礎上學到一些經驗。
資料來源:https://technews.tw/2021/02/22/ibm-watson-ai/?fbclid=IwAR0Z-nVQb96jnhAFWuGGXNyUMt2sdgmyum8VVp8eD_aDOYrn2qCr7nxxn6I
medscape 在 Facebook 的最讚貼文
整理國際上染疫醫師的心聲後,我正要寫護理師的部分
很不幸,台灣案852就發生了,是護理師
護理師其實才是真正醫療體系中,#最第一線 照護病人的專業人員,也代表疫情時承擔最大風險
在美國目前,大部分的醫療院所護理師都已經照顧過新冠病人
截至2020年12月23日,因新冠肺炎造成醫療相關人員死亡數共2,921例,其中有職業登記資料者為1,394例。
其中,護理師者共420例,約佔了整體的三分之一。
在美國,每10位護理師就有一人陽性,在安養機構服務(11%)比醫療單位(10%)更稍高一些
由於防護資源短缺,最基層的護理師就是直接受害者
大約三分之一的護理師工作滿意度下滑
--
幾個想法
護理師的受威脅感永遠最重,可以說是夾心型。
我有聽過護理長對整體護理團隊說:"我們在風波上"
提高警覺是對的,但是因為高層壓力
你有沒有想過,把職場因素算下去
在風波上,一旦有症狀
醫院內給同儕採檢,也是有很大的壓力
同時,別說該護理人員戒心不夠
根據上面報告,護理師面對疫情的各種恐懼排名
第一名是擔心將病毒攜帶回感染家人,同意者佔高達近七成(66%)。
其餘是擔心自身受感染(47%)、防護裝備造成相關不適(38%)、缺乏足夠的個人防護裝備(37%)
根據Medscape回顧2020報告,護理師在疫情下極度疲倦的比例驟升
美國下半年六個月下來因為病人數無法控制,統計10,424名護理師
不管是基層註冊護理師 (RN)、執業護理師 (LPN)、或專科護理師 (NP) 將自己評為“非常疲倦”的比例,都約莫是六個月前的三倍。
--
以上是數字,說明護理人員的重要與承受的心理壓力
社會目前也覺醒支持還在崗位服務的護理人員
不過上次是因為說要開除的前署長原本就跟醫界有嫌隙
醫界才得以團結,染疫醫師、護理師也得到社會的支持
據傳聞,其實去年更早之前的疑似院內感染案例
受感染的人員,還是有被上級責備
希望這不是真的,是我聽錯了看到誤傳了
畢竟自己人對自己人,永遠、永遠是最傷、最心寒的...
我希望,這個社會能走向更一致互相友善對待與支持
--
這次也印證醫療院所的風險
真的高出其他場所許多
逛賣場的那些可能接觸者都沒事
就是醫院,最容易接二連三
台灣醫療體系,需不需要檢討健保和長照社福的不足下
都在在鼓勵病人集中住院呢?
若有一天疫情過後,是著手該改進了吧,算是題外話
medscape 在 Facebook 的精選貼文
為什麼疫情時要支持醫療人員,而不是懲處?
因為,你即將失去她/他
"我在工作暴露下受感染,居家隔離又最後住院。我感到非常脆弱又尚未恢復。我的優先序變了,我辭掉工作、放棄職涯發展,以顧全我的健康。"
這是來自美國Medscape質性訪談,一個受感染神經科醫師的對話
Medscape有統計2020年COVID疫情之下
各個醫療職類的衝擊,我這邊拿出醫師的部分出來講
這份報告是特別針對美國的 #年輕醫師
需要提及的衝擊變化是,在量化問卷中:
1️⃣ 近1/4規劃提早退休,近1/2改跑道(改變工作內容14%、調換單位13%、不再照顧病人12%),甚至棄醫12%,不再從事醫療包含學術部分
2️⃣ 超過6成(64%)反映感到身心過勞
3️⃣ 將近一半(44%)與家庭關係變差,這是支持系統的危機
但是一個更為危險的指標
有64%首訪者認為 #求助,反而會加重自身 #被標籤化(Stigma,或說自身汙名)
在質化訪談中
多數醫師都描述他們經歷生涯上最糟糕的時候
並且也有醫師在防護裝備不夠之下照顧病人,讓他們感受到 #受到背叛
他們受的罪已經很夠了
這樣,你還要懲處醫護人員嗎?
要走,就應該不缺你這一腳吧
--
當然在別的國家,因為大量資源的消耗
還全面面臨減薪,也有圖表
但是錢的比較不是我這次的重點
想了解我可以貼連結給您,一起研究
--
Medscape這樣的報告在護理師的部分也有做
也有專門調查急診醫師、整合醫學專科醫師的部分
待日後再來分享
其實不只疫情,平時也應該要支持全體醫療人員,這樣才對啊