雖然這篇Faltings theorem鄉民發文沒有被收入到精華區:在Faltings theorem這個話題中,我們另外找到其它相關的精選爆讚文章
[爆卦]Faltings theorem是什麼?優點缺點精華區懶人包
你可能也想看看
搜尋相關網站
-
//=++$i?>//="/exit/".urlencode($keyword)."/".base64url_encode($si['_source']['url'])."/".$_pttarticleid?>//=htmlentities($si['_source']['title'])?>
#1Faltings's theorem - Wikipedia
In arithmetic geometry, the Mordell conjecture is the conjecture made by Louis Mordell that a curve of genus greater than 1 over the field Q of rational ...
//="/exit/".urlencode($keyword)."/".base64url_encode($si['_source']['url'])."/".$_pttarticleid?>//=htmlentities($si['_source']['domain'])?> -
//=++$i?>//="/exit/".urlencode($keyword)."/".base64url_encode($si['_source']['url'])."/".$_pttarticleid?>//=htmlentities($si['_source']['title'])?>
#2Understanding Faltings's Theorem - MathOverflow
(Faltings) Let A/K be an abelian variety defined over a number field. Theorem 1: Let X⊂A be a subvariety. If X contains no translates of abelian ...
//="/exit/".urlencode($keyword)."/".base64url_encode($si['_source']['url'])."/".$_pttarticleid?>//=htmlentities($si['_source']['domain'])?> -
//=++$i?>//="/exit/".urlencode($keyword)."/".base64url_encode($si['_source']['url'])."/".$_pttarticleid?>//=htmlentities($si['_source']['title'])?>
#3Faltings's Proof of the Mordell Conjecture - Princeton Math
Faltings's isogeny theorem. If A and B are two abelian varieties, then the natural map. HomK(A, B) ⊗Z Zl −→ HomGK (Tl( ...
//="/exit/".urlencode($keyword)."/".base64url_encode($si['_source']['url'])."/".$_pttarticleid?>//=htmlentities($si['_source']['domain'])?> -
//=++$i?>//="/exit/".urlencode($keyword)."/".base64url_encode($si['_source']['url'])."/".$_pttarticleid?>//=htmlentities($si['_source']['title'])?>
#4Faltings' Theorem - ProofWiki
Let C be a curve over Q of genus g>1.
//="/exit/".urlencode($keyword)."/".base64url_encode($si['_source']['url'])."/".$_pttarticleid?>//=htmlentities($si['_source']['domain'])?> -
//=++$i?>//="/exit/".urlencode($keyword)."/".base64url_encode($si['_source']['url'])."/".$_pttarticleid?>//=htmlentities($si['_source']['title'])?>
#5Faltings's Theorem and the Mordell Conjecture - Cantor's ...
This is why Faltings's Theorem is usually stated as a fact about curves and not equations. It says that if you have any smooth projective curve ...
//="/exit/".urlencode($keyword)."/".base64url_encode($si['_source']['url'])."/".$_pttarticleid?>//=htmlentities($si['_source']['domain'])?> -
//=++$i?>//="/exit/".urlencode($keyword)."/".base64url_encode($si['_source']['url'])."/".$_pttarticleid?>//=htmlentities($si['_source']['title'])?>
#6Faltings' theorem - Institut für Mathematik
Faltings ' theorem ... to understand some aspects of Faltings' proofs of some far--reaching finiteness theorems about abelian varieties over number fields, ...
//="/exit/".urlencode($keyword)."/".base64url_encode($si['_source']['url'])."/".$_pttarticleid?>//=htmlentities($si['_source']['domain'])?> -
//=++$i?>//="/exit/".urlencode($keyword)."/".base64url_encode($si['_source']['url'])."/".$_pttarticleid?>//=htmlentities($si['_source']['title'])?>
#7nLab Mordell conjecture - Amazon AWS
The Mordell conjecture or Falting's theorem is a statement about the finiteness of rational points on an algebraic curve over a number field of genus g>1.
//="/exit/".urlencode($keyword)."/".base64url_encode($si['_source']['url'])."/".$_pttarticleid?>//=htmlentities($si['_source']['domain'])?> -
//=++$i?>//="/exit/".urlencode($keyword)."/".base64url_encode($si['_source']['url'])."/".$_pttarticleid?>//=htmlentities($si['_source']['title'])?>
#8A Shafarevich-Faltings Theorem For Rational Functions - arXiv
由 L Szpiro 著作 · 2006 · 被引用 23 次 — Using an alternative notion of good reduction, an analog of the Shafarevich theorem for elliptic curves is proved for morphisms of the ...
//="/exit/".urlencode($keyword)."/".base64url_encode($si['_source']['url'])."/".$_pttarticleid?>//=htmlentities($si['_source']['domain'])?> -
//=++$i?>//="/exit/".urlencode($keyword)."/".base64url_encode($si['_source']['url'])."/".$_pttarticleid?>//=htmlentities($si['_source']['title'])?>
#9About: Faltings's theorem - DBpedia
About: Faltings's theorem ... In arithmetic geometry, the Mordell conjecture is the conjecture made by Louis Mordell that a curve of genus greater than 1 over the ...
//="/exit/".urlencode($keyword)."/".base64url_encode($si['_source']['url'])."/".$_pttarticleid?>//=htmlentities($si['_source']['domain'])?> -
//=++$i?>//="/exit/".urlencode($keyword)."/".base64url_encode($si['_source']['url'])."/".$_pttarticleid?>//=htmlentities($si['_source']['title'])?>
#10Seminar on Faltings's Theorem - Harvard Math
Seminar on Faltings's Theorem. Spring 2016. Mondays 9:30am-11:00am at SC 232. Feb 19:30-11am SC 232Harvard Chi-Yun Hsu Tate's conjecture over finite fields ...
//="/exit/".urlencode($keyword)."/".base64url_encode($si['_source']['url'])."/".$_pttarticleid?>//=htmlentities($si['_source']['domain'])?> -
//=++$i?>//="/exit/".urlencode($keyword)."/".base64url_encode($si['_source']['url'])."/".$_pttarticleid?>//=htmlentities($si['_source']['title'])?>
#11What is the significance of Faltings' theorem? - Quora
Two notable examples of theorems describing the rational points on elliptic curves are the Mordell-Weil theorem and Mazur's torsion theorem. It is worth noting ...
//="/exit/".urlencode($keyword)."/".base64url_encode($si['_source']['url'])."/".$_pttarticleid?>//=htmlentities($si['_source']['domain'])?> -
//=++$i?>//="/exit/".urlencode($keyword)."/".base64url_encode($si['_source']['url'])."/".$_pttarticleid?>//=htmlentities($si['_source']['title'])?>
#121 - What Is the Mordell Conjecture (Faltings's Theorem)?
2022年1月15日 — The Mordell conjecture (Faltings's theorem) is one of the most important achievements in Diophantine geometry, stating that an algebraic ...
//="/exit/".urlencode($keyword)."/".base64url_encode($si['_source']['url'])."/".$_pttarticleid?>//=htmlentities($si['_source']['domain'])?> -
//=++$i?>//="/exit/".urlencode($keyword)."/".base64url_encode($si['_source']['url'])."/".$_pttarticleid?>//=htmlentities($si['_source']['title'])?>
#13The Mordell conjecture revisited - Numdam
known theorem of Faltings states that if C has genus at least 2 then C has ... proof by Faltings avoids the use of the difficult arithmetic Riemann- Roch.
//="/exit/".urlencode($keyword)."/".base64url_encode($si['_source']['url'])."/".$_pttarticleid?>//=htmlentities($si['_source']['domain'])?> -
//=++$i?>//="/exit/".urlencode($keyword)."/".base64url_encode($si['_source']['url'])."/".$_pttarticleid?>//=htmlentities($si['_source']['title'])?>
#14Gerd Faltings (1954 - ) - Biography
Summary: Gerd Faltings is a German mathematician whose work in algebraic geometry led to ... including helping with the proof of Fermat's Last Theorem.
//="/exit/".urlencode($keyword)."/".base64url_encode($si['_source']['url'])."/".$_pttarticleid?>//=htmlentities($si['_source']['domain'])?> -
//=++$i?>//="/exit/".urlencode($keyword)."/".base64url_encode($si['_source']['url'])."/".$_pttarticleid?>//=htmlentities($si['_source']['title'])?>
#15Notes on the niteness theorem of Faltings for abelian varieties
Abstract. These are informal notes prepared for the seminar on Faltings' proof of the Mordell conjecture organized by Xinyi Yuan and ...
//="/exit/".urlencode($keyword)."/".base64url_encode($si['_source']['url'])."/".$_pttarticleid?>//=htmlentities($si['_source']['domain'])?> -
//=++$i?>//="/exit/".urlencode($keyword)."/".base64url_encode($si['_source']['url'])."/".$_pttarticleid?>//=htmlentities($si['_source']['title'])?>
#16Faltings theorem | What's new - Terry Tao
Posts about Faltings theorem written by Terence Tao. ... and other maths-related topics. By Terence Tao. Tagged with Faltings theorem ...
//="/exit/".urlencode($keyword)."/".base64url_encode($si['_source']['url'])."/".$_pttarticleid?>//=htmlentities($si['_source']['domain'])?> -
//=++$i?>//="/exit/".urlencode($keyword)."/".base64url_encode($si['_source']['url'])."/".$_pttarticleid?>//=htmlentities($si['_source']['title'])?>
#17Proof of weak form of Mazur's theorem by Faltings' theorem
1) Your argument in essence is correct but let me point out that "finitely many elliptic curves over Q" can be misleading.
//="/exit/".urlencode($keyword)."/".base64url_encode($si['_source']['url'])."/".$_pttarticleid?>//=htmlentities($si['_source']['domain'])?> -
//=++$i?>//="/exit/".urlencode($keyword)."/".base64url_encode($si['_source']['url'])."/".$_pttarticleid?>//=htmlentities($si['_source']['title'])?>
#18A Generalization of Theorems of Faltings and Thue-Siegel ...
A GENERALIZATION OF THEOREMS OF FALTINGS. AND THUE-SIEGEL-ROTH-WIRSING. PAUL VOJTA. In 1929 Siegel proved a celebrated theorem on finiteness for integral ...
//="/exit/".urlencode($keyword)."/".base64url_encode($si['_source']['url'])."/".$_pttarticleid?>//=htmlentities($si['_source']['domain'])?> -
//=++$i?>//="/exit/".urlencode($keyword)."/".base64url_encode($si['_source']['url'])."/".$_pttarticleid?>//=htmlentities($si['_source']['title'])?>
#19Faltings's theorem - YouTube
//="/exit/".urlencode($keyword)."/".base64url_encode($si['_source']['url'])."/".$_pttarticleid?>//=htmlentities($si['_source']['domain'])?> -
//=++$i?>//="/exit/".urlencode($keyword)."/".base64url_encode($si['_source']['url'])."/".$_pttarticleid?>//=htmlentities($si['_source']['title'])?>
#20An effective Version of Faltings' Product Theorem - De Gruyter
An effective Version of Faltings' Product Theorem. Roberto Ferretti. From the journal. https://doi.org/10.1515/form.1996.8.401. Cite this.
//="/exit/".urlencode($keyword)."/".base64url_encode($si['_source']['url'])."/".$_pttarticleid?>//=htmlentities($si['_source']['domain'])?> -
//=++$i?>//="/exit/".urlencode($keyword)."/".base64url_encode($si['_source']['url'])."/".$_pttarticleid?>//=htmlentities($si['_source']['title'])?>
#21When Rational Points Are Few and Far Between - Scientific ...
Mordell's theorem describes an algebraic structure for rational points on curves that come from genus one curves, while Faltings' theorem states ...
//="/exit/".urlencode($keyword)."/".base64url_encode($si['_source']['url'])."/".$_pttarticleid?>//=htmlentities($si['_source']['domain'])?> -
//=++$i?>//="/exit/".urlencode($keyword)."/".base64url_encode($si['_source']['url'])."/".$_pttarticleid?>//=htmlentities($si['_source']['title'])?>
#22FALTINGS' THEOREM FOR THE ANNIHILATION OF LOCAL ...
Faltings ' Annihilator Theorem [5] states that if A is a homomorphic ... Local cohomology modules, Gorenstein rings, annihilator theorem.
//="/exit/".urlencode($keyword)."/".base64url_encode($si['_source']['url'])."/".$_pttarticleid?>//=htmlentities($si['_source']['domain'])?> -
//=++$i?>//="/exit/".urlencode($keyword)."/".base64url_encode($si['_source']['url'])."/".$_pttarticleid?>//=htmlentities($si['_source']['title'])?>
#23View of On a theorem of Faltings on formal functions - Le ...
Presentation Mode Open Print Download Current View. Go to First Page Go to Last Page. Rotate Clockwise Rotate Counterclockwise. Text Selection Tool
//="/exit/".urlencode($keyword)."/".base64url_encode($si['_source']['url'])."/".$_pttarticleid?>//=htmlentities($si['_source']['domain'])?> -
//=++$i?>//="/exit/".urlencode($keyword)."/".base64url_encode($si['_source']['url'])."/".$_pttarticleid?>//=htmlentities($si['_source']['title'])?>
#24A logical approach to uniformity in Diophantine geometry
Theorem (Faltings). Let F(X,Y ) ∈ Q[X,Y ] be an irreducible polynomial in two variables with rational coëfficients of total degree at least ...
//="/exit/".urlencode($keyword)."/".base64url_encode($si['_source']['url'])."/".$_pttarticleid?>//=htmlentities($si['_source']['domain'])?> -
//=++$i?>//="/exit/".urlencode($keyword)."/".base64url_encode($si['_source']['url'])."/".$_pttarticleid?>//=htmlentities($si['_source']['title'])?>
#25Academia Sinica and NCTS 2005 Winter School on Number ...
Mordell-Faltings' Theorem 2. L-adic representations and abelian varieties 3. Reductive algebraic groups 4. Artin's L-functions. 主講人. 于 靖 教授(清華大學)
//="/exit/".urlencode($keyword)."/".base64url_encode($si['_source']['url'])."/".$_pttarticleid?>//=htmlentities($si['_source']['domain'])?> -
//=++$i?>//="/exit/".urlencode($keyword)."/".base64url_encode($si['_source']['url'])."/".$_pttarticleid?>//=htmlentities($si['_source']['title'])?>
#26Topic Proposal: Faltings ' Theorem - CiteSeerX
CiteSeerX - Document Details (Isaac Councill, Lee Giles, Pradeep Teregowda): A “diophantine equation ” is a system of polynomial equations where we restrict ...
//="/exit/".urlencode($keyword)."/".base64url_encode($si['_source']['url'])."/".$_pttarticleid?>//=htmlentities($si['_source']['domain'])?> -
//=++$i?>//="/exit/".urlencode($keyword)."/".base64url_encode($si['_source']['url'])."/".$_pttarticleid?>//=htmlentities($si['_source']['title'])?>
#27Faltings' local–global principle and annihilator theorem for the ...
Let R be a commutative Noetherian ring, M be a finitely generated R-module and n be a non-negative integer. In this article, it is shown that for a positive ...
//="/exit/".urlencode($keyword)."/".base64url_encode($si['_source']['url'])."/".$_pttarticleid?>//=htmlentities($si['_source']['domain'])?> -
//=++$i?>//="/exit/".urlencode($keyword)."/".base64url_encode($si['_source']['url'])."/".$_pttarticleid?>//=htmlentities($si['_source']['title'])?>
#28Faltings' theorem - Academic Dictionaries and Encyclopedias
Case g > 1: according to the Mordell conjecture, now Faltings' Theorem, C has only a finite number of rational points. Proofs. Faltings' original proof used the ...
//="/exit/".urlencode($keyword)."/".base64url_encode($si['_source']['url'])."/".$_pttarticleid?>//=htmlentities($si['_source']['domain'])?> -
//=++$i?>//="/exit/".urlencode($keyword)."/".base64url_encode($si['_source']['url'])."/".$_pttarticleid?>//=htmlentities($si['_source']['title'])?>
#29Gerd Faltings Proves Mordell's Conjecture (1983)
His method of altering a familiar geometric theorem into algebraic terms led him to solve the complex geometric theorem proposed by Louis Mordell in 1922. His ...
//="/exit/".urlencode($keyword)."/".base64url_encode($si['_source']['url'])."/".$_pttarticleid?>//=htmlentities($si['_source']['domain'])?> -
//=++$i?>//="/exit/".urlencode($keyword)."/".base64url_encode($si['_source']['url'])."/".$_pttarticleid?>//=htmlentities($si['_source']['title'])?>
#30Faltings' Finiteness Theorems Introduction
This note outlines Faltings' proof of the finiteness theorems for abelian varieties and curves. Let K be a number field and S a finite set of places of K.
//="/exit/".urlencode($keyword)."/".base64url_encode($si['_source']['url'])."/".$_pttarticleid?>//=htmlentities($si['_source']['domain'])?> -
//=++$i?>//="/exit/".urlencode($keyword)."/".base64url_encode($si['_source']['url'])."/".$_pttarticleid?>//=htmlentities($si['_source']['title'])?>
#31Faltings' theorem - Wikidata
theorem. Faltings's theorem. In more languages. Spanish. teorema de Faltings. una curva de género mayor que 1 sobre el campo Q de los números racionales ...
//="/exit/".urlencode($keyword)."/".base64url_encode($si['_source']['url'])."/".$_pttarticleid?>//=htmlentities($si['_source']['domain'])?> -
//=++$i?>//="/exit/".urlencode($keyword)."/".base64url_encode($si['_source']['url'])."/".$_pttarticleid?>//=htmlentities($si['_source']['title'])?>
#32Lectures on the Arithmetic Riemann-Roch Theorem. (AM-127)
Buy Lectures on the Arithmetic Riemann-Roch Theorem. (AM-127) on Amazon.com ✓ FREE SHIPPING on ... Gerd Faltings (Author). 4.0 out of 5 stars 1 rating.
//="/exit/".urlencode($keyword)."/".base64url_encode($si['_source']['url'])."/".$_pttarticleid?>//=htmlentities($si['_source']['domain'])?> -
//=++$i?>//="/exit/".urlencode($keyword)."/".base64url_encode($si['_source']['url'])."/".$_pttarticleid?>//=htmlentities($si['_source']['title'])?>
#33Finiteness Theorems for Abelian Varieties over Number Fields
Finiteness Theorems for Abelian Varieties over Number Fields. GERD FALTINGS. §l. Introduction. Let K be a finite extension of 10, A an abelian variety ...
//="/exit/".urlencode($keyword)."/".base64url_encode($si['_source']['url'])."/".$_pttarticleid?>//=htmlentities($si['_source']['domain'])?> -
//=++$i?>//="/exit/".urlencode($keyword)."/".base64url_encode($si['_source']['url'])."/".$_pttarticleid?>//=htmlentities($si['_source']['title'])?>
#34Faltings's theorem explained
Faltings's theorem explained ... In arithmetic geometry, the Mordell conjecture is the conjecture made by Louis Mordell that a curve of genus greater than 1 over ...
//="/exit/".urlencode($keyword)."/".base64url_encode($si['_source']['url'])."/".$_pttarticleid?>//=htmlentities($si['_source']['domain'])?> -
//=++$i?>//="/exit/".urlencode($keyword)."/".base64url_encode($si['_source']['url'])."/".$_pttarticleid?>//=htmlentities($si['_source']['title'])?>
#35An explicit version of Faltings' Product Theorem and ... - EuDML
Jan-Hendrik Evertse. "An explicit version of Faltings' Product Theorem and an improvement of Roth's lemma." Acta Arithmetica 73.3 (1995): 215-248. <http://eudml ...
//="/exit/".urlencode($keyword)."/".base64url_encode($si['_source']['url'])."/".$_pttarticleid?>//=htmlentities($si['_source']['domain'])?> -
//=++$i?>//="/exit/".urlencode($keyword)."/".base64url_encode($si['_source']['url'])."/".$_pttarticleid?>//=htmlentities($si['_source']['title'])?>
#36Faltings' theorem - PlanetMath
Faltings ' theorem ... (in particular, C(K) C ( K ) may be finite or infinite). However, if g≥2 g ≥ 2 , Mordell conjectured in 1922 1922 that C ...
//="/exit/".urlencode($keyword)."/".base64url_encode($si['_source']['url'])."/".$_pttarticleid?>//=htmlentities($si['_source']['domain'])?> -
//=++$i?>//="/exit/".urlencode($keyword)."/".base64url_encode($si['_source']['url'])."/".$_pttarticleid?>//=htmlentities($si['_source']['title'])?>
#37[PDF] Remark on Faltings theorem | Semantic Scholar
We prove Faltings Finiteness Theorem using Rieffel's classification of the noncommutative tori.
//="/exit/".urlencode($keyword)."/".base64url_encode($si['_source']['url'])."/".$_pttarticleid?>//=htmlentities($si['_source']['domain'])?> -
//=++$i?>//="/exit/".urlencode($keyword)."/".base64url_encode($si['_source']['url'])."/".$_pttarticleid?>//=htmlentities($si['_source']['title'])?>
#38Faltings theorem-2-elliptic curve case - 知乎专栏
Faltings theorem -2-elliptic curve case. 10 个月前. This article talks about basic facts relevant with elliptic curves, which lie at the ...
//="/exit/".urlencode($keyword)."/".base64url_encode($si['_source']['url'])."/".$_pttarticleid?>//=htmlentities($si['_source']['domain'])?> -
//=++$i?>//="/exit/".urlencode($keyword)."/".base64url_encode($si['_source']['url'])."/".$_pttarticleid?>//=htmlentities($si['_source']['title'])?>
#39Student Number Theory Seminar (Spring 2017)
Apr 6, Dmitrii Pirozhkov, Faltings isogeny theorem, [M] 8, [S] 20. Apr 20, Dan Gulotta, Shafarevich and Mordell conjectures, [CS] 2.6, [H] 10.
//="/exit/".urlencode($keyword)."/".base64url_encode($si['_source']['url'])."/".$_pttarticleid?>//=htmlentities($si['_source']['domain'])?> -
//=++$i?>//="/exit/".urlencode($keyword)."/".base64url_encode($si['_source']['url'])."/".$_pttarticleid?>//=htmlentities($si['_source']['title'])?>
#40Effectivity in Faltings' Theorem. - Will Sawin
of the present theorem. — Chortasmenos, ∼1400. Theorem (Faltings). Let K/Q be a number field. Let C/K be a smooth projective hyperbolic.
//="/exit/".urlencode($keyword)."/".base64url_encode($si['_source']['url'])."/".$_pttarticleid?>//=htmlentities($si['_source']['domain'])?> -
//=++$i?>//="/exit/".urlencode($keyword)."/".base64url_encode($si['_source']['url'])."/".$_pttarticleid?>//=htmlentities($si['_source']['title'])?>
#41Faltings's theorem (Chapter 11) - Heights in Diophantine ...
11 - Faltings's theorem. Published online by Cambridge University Press: 14 August 2009. Enrico Bombieri and. Walter Gubler. Show author details ...
//="/exit/".urlencode($keyword)."/".base64url_encode($si['_source']['url'])."/".$_pttarticleid?>//=htmlentities($si['_source']['domain'])?> -
//=++$i?>//="/exit/".urlencode($keyword)."/".base64url_encode($si['_source']['url'])."/".$_pttarticleid?>//=htmlentities($si['_source']['title'])?>
#42An explicit version of Faltings' Product Theorem and an ...
Faltings ' Product Theorem is not only very powerful for deriving new ... lemma was used by Roth in his theorem on the approximation of algebraic.
//="/exit/".urlencode($keyword)."/".base64url_encode($si['_source']['url'])."/".$_pttarticleid?>//=htmlentities($si['_source']['domain'])?> -
//=++$i?>//="/exit/".urlencode($keyword)."/".base64url_encode($si['_source']['url'])."/".$_pttarticleid?>//=htmlentities($si['_source']['title'])?>
#43An effective version of Faltings' product theorem - Research ...
BÉZOUT-THEOREM (ALGEBRAISCHE GEOMETRIE); ABELSCHE VARIETÄTEN + ABELSCHE SCHEMATA (ALGEBRAISCHE GEOMETRIE); DIOPHANTISCHE APPROXIMATIONEN (ZAHLENTHEORIE); ...
//="/exit/".urlencode($keyword)."/".base64url_encode($si['_source']['url'])."/".$_pttarticleid?>//=htmlentities($si['_source']['domain'])?> -
//=++$i?>//="/exit/".urlencode($keyword)."/".base64url_encode($si['_source']['url'])."/".$_pttarticleid?>//=htmlentities($si['_source']['title'])?>
#44Buy Articles on Diophantine Geometry, Including: Faltings ...
Buy Articles on Diophantine Geometry, Including: Faltings' Theorem, Principal Homogeneous Space, Arithmetic of Abelian Varieties, Local Zeta-Function, ...
//="/exit/".urlencode($keyword)."/".base64url_encode($si['_source']['url'])."/".$_pttarticleid?>//=htmlentities($si['_source']['domain'])?> -
//=++$i?>//="/exit/".urlencode($keyword)."/".base64url_encode($si['_source']['url'])."/".$_pttarticleid?>//=htmlentities($si['_source']['title'])?>
#45A New Proof of Mordell Conjecture - Freie Universität Berlin
20, Proof of Faltings's Theorem-II, Marco. 11, Jan. 10, Rational points on the base of an abelian by-finite family-I, Shuddhodan.
//="/exit/".urlencode($keyword)."/".base64url_encode($si['_source']['url'])."/".$_pttarticleid?>//=htmlentities($si['_source']['domain'])?> -
//=++$i?>//="/exit/".urlencode($keyword)."/".base64url_encode($si['_source']['url'])."/".$_pttarticleid?>//=htmlentities($si['_source']['title'])?>
#46A Shafarevich-Faltings Theorem for Rational Functions
A Shafarevich-Faltings Theorem for Rational. Functions. Lucien Szpiro and Thomas J. Tucker. This paper is dedicated to Fedya Bogomolov.
//="/exit/".urlencode($keyword)."/".base64url_encode($si['_source']['url'])."/".$_pttarticleid?>//=htmlentities($si['_source']['domain'])?> -
//=++$i?>//="/exit/".urlencode($keyword)."/".base64url_encode($si['_source']['url'])."/".$_pttarticleid?>//=htmlentities($si['_source']['title'])?>
#47p - -adic Period Mappings (after Lawrence and Venkatesh ...
Schedule. Sept 24: Caleb Ji: Faltings's theorem: comparison of approaches. I will give an overview of both Faltings's original proof of the Mordell conjecture ...
//="/exit/".urlencode($keyword)."/".base64url_encode($si['_source']['url'])."/".$_pttarticleid?>//=htmlentities($si['_source']['domain'])?> -
//=++$i?>//="/exit/".urlencode($keyword)."/".base64url_encode($si['_source']['url'])."/".$_pttarticleid?>//=htmlentities($si['_source']['title'])?>
#48(Faltings's theorem) - wikide.wiki
Related tags : (Faltings's theorem). Home · Article · arithmetic geometry · Louis Mordell · genus · rational numbers · rational points · Gerd Faltings ...
//="/exit/".urlencode($keyword)."/".base64url_encode($si['_source']['url'])."/".$_pttarticleid?>//=htmlentities($si['_source']['domain'])?> -
//=++$i?>//="/exit/".urlencode($keyword)."/".base64url_encode($si['_source']['url'])."/".$_pttarticleid?>//=htmlentities($si['_source']['title'])?>
#49Mordell Conjecture -- from Wolfram MathWorld
, the Fermat equation has at most a finite number of solutions. This conjecture was proved by Faltings (1984) and hence is now also known as Falting's theorem.
//="/exit/".urlencode($keyword)."/".base64url_encode($si['_source']['url'])."/".$_pttarticleid?>//=htmlentities($si['_source']['domain'])?> -
//=++$i?>//="/exit/".urlencode($keyword)."/".base64url_encode($si['_source']['url'])."/".$_pttarticleid?>//=htmlentities($si['_source']['title'])?>
#50Faltings'' Theorem - MoreBooks!
Faltings '' Theorem, 978-613-1-31274-8, High Quality Content by WIKIPEDIA articles! In number theory, the Mordell conjecture stated a basic ...
//="/exit/".urlencode($keyword)."/".base64url_encode($si['_source']['url'])."/".$_pttarticleid?>//=htmlentities($si['_source']['domain'])?> -
//=++$i?>//="/exit/".urlencode($keyword)."/".base64url_encode($si['_source']['url'])."/".$_pttarticleid?>//=htmlentities($si['_source']['title'])?>
#51Uniform Mordell - Amos Turchet
Reading Seminar on Dimitrov-Gao-Habegger Theorem. The series of seminars focuses on the ... 1, Introduction: Faltings' Theorem, proofs, Uniformity results.
//="/exit/".urlencode($keyword)."/".base64url_encode($si['_source']['url'])."/".$_pttarticleid?>//=htmlentities($si['_source']['domain'])?> -
//=++$i?>//="/exit/".urlencode($keyword)."/".base64url_encode($si['_source']['url'])."/".$_pttarticleid?>//=htmlentities($si['_source']['title'])?>
#52Power-integral points on elliptic curves | PIP Project | Fact Sheet
In the 21st century much work has already been done to resolve extensions of Hilbert's 10th problem and to make Faltings' theorem effective.
//="/exit/".urlencode($keyword)."/".base64url_encode($si['_source']['url'])."/".$_pttarticleid?>//=htmlentities($si['_source']['domain'])?> -
//=++$i?>//="/exit/".urlencode($keyword)."/".base64url_encode($si['_source']['url'])."/".$_pttarticleid?>//=htmlentities($si['_source']['title'])?>
#53Abelian Varieties and the Mordell–Lang Conjecture
“Absolute” Mordell–Lang in Characteristic Zero: Theorems of Faltings ... Faltings' theorem, these analogues being expressed in terms of abelian varieties.
//="/exit/".urlencode($keyword)."/".base64url_encode($si['_source']['url'])."/".$_pttarticleid?>//=htmlentities($si['_source']['domain'])?> -
//=++$i?>//="/exit/".urlencode($keyword)."/".base64url_encode($si['_source']['url'])."/".$_pttarticleid?>//=htmlentities($si['_source']['title'])?>
#54(annals Of Mathematics Studies) By Gerd Faltings (paperback)
Read reviews and buy Lectures on the Arithmetic Riemann-Roch Theorem - (Annals of Mathematics Studies) by Gerd Faltings (Paperback) at Target.
//="/exit/".urlencode($keyword)."/".base64url_encode($si['_source']['url'])."/".$_pttarticleid?>//=htmlentities($si['_source']['domain'])?> -
//=++$i?>//="/exit/".urlencode($keyword)."/".base64url_encode($si['_source']['url'])."/".$_pttarticleid?>//=htmlentities($si['_source']['title'])?>
#55(Faltings's theorem) 2021 - Artigos.wiki
Related Article Titles. Main Page Main Page Faltings's theorem Arithmetic geometry Louis Mordell Genus (mathematics) Rational number ...
//="/exit/".urlencode($keyword)."/".base64url_encode($si['_source']['url'])."/".$_pttarticleid?>//=htmlentities($si['_source']['domain'])?> -
//=++$i?>//="/exit/".urlencode($keyword)."/".base64url_encode($si['_source']['url'])."/".$_pttarticleid?>//=htmlentities($si['_source']['title'])?>
#56Non-trivial examples of Faltings Theorem : r/math - Reddit
We do this again nontrivially using Falting's theorem. Langlands-Tunnel says that if a (semistable) elliptic curve is irreducible mod 3, then ...
//="/exit/".urlencode($keyword)."/".base64url_encode($si['_source']['url'])."/".$_pttarticleid?>//=htmlentities($si['_source']['domain'])?> -
//=++$i?>//="/exit/".urlencode($keyword)."/".base64url_encode($si['_source']['url'])."/".$_pttarticleid?>//=htmlentities($si['_source']['title'])?>
#57LECTURES ON THE ARITHMETIC RIEMANN-ROCH ... - eBay
LECTURES ON THE ARITHMETIC RIEMANN-ROCH THEOREM. (AM-127) By Gerd Faltings **Mint Condition**.
//="/exit/".urlencode($keyword)."/".base64url_encode($si['_source']['url'])."/".$_pttarticleid?>//=htmlentities($si['_source']['domain'])?> -
//=++$i?>//="/exit/".urlencode($keyword)."/".base64url_encode($si['_source']['url'])."/".$_pttarticleid?>//=htmlentities($si['_source']['title'])?>
#58Lectures Arithmetic Riemann Roch Theorem by Faltings Gerd
Lectures on the Arithmetic Riemann-Roch Theorem. (AM-127) by Faltings, Gerd and a great selection of related books, art and collectibles available now at ...
//="/exit/".urlencode($keyword)."/".base64url_encode($si['_source']['url'])."/".$_pttarticleid?>//=htmlentities($si['_source']['domain'])?> -
//=++$i?>//="/exit/".urlencode($keyword)."/".base64url_encode($si['_source']['url'])."/".$_pttarticleid?>//=htmlentities($si['_source']['title'])?>
#59Isolated points on curves
Faltings's Theorem ('83). Let be a nice algebraic curve over . The curve has infinitely many -points only if genus . C. ℚ. C. ℚ. (C) ≤ 1. Page 5 ...
//="/exit/".urlencode($keyword)."/".base64url_encode($si['_source']['url'])."/".$_pttarticleid?>//=htmlentities($si['_source']['domain'])?> -
//=++$i?>//="/exit/".urlencode($keyword)."/".base64url_encode($si['_source']['url'])."/".$_pttarticleid?>//=htmlentities($si['_source']['title'])?>
#60Lectures on the Arithmetic Riemann-Roch Theorem - Goodreads
Lectures on the Arithmetic Riemann-Roch Theorem book. Read reviews from world's largest community for ... by. Gerd Faltings,. Shouwu Zhang (Noted by).
//="/exit/".urlencode($keyword)."/".base64url_encode($si['_source']['url'])."/".$_pttarticleid?>//=htmlentities($si['_source']['domain'])?> -
//=++$i?>//="/exit/".urlencode($keyword)."/".base64url_encode($si['_source']['url'])."/".$_pttarticleid?>//=htmlentities($si['_source']['title'])?>
#61Buy Lectures on the Arithmetic Riemann-Roch Theorem. (AM ...
Lectures on the Arithmetic Riemann-Roch Theorem. (AM-127), Volume 127 by Faltings Gerd from Flipkart.com. Only Genuine Products.
//="/exit/".urlencode($keyword)."/".base64url_encode($si['_source']['url'])."/".$_pttarticleid?>//=htmlentities($si['_source']['domain'])?> -
//=++$i?>//="/exit/".urlencode($keyword)."/".base64url_encode($si['_source']['url'])."/".$_pttarticleid?>//=htmlentities($si['_source']['title'])?>
#62The Tate Conjecture from Finiteness
The Tate conjecture (2) implies the isogeny theorem (3). ... This is not quite the strategy Faltings used in his 1983 paper [1] to prove ...
//="/exit/".urlencode($keyword)."/".base64url_encode($si['_source']['url'])."/".$_pttarticleid?>//=htmlentities($si['_source']['domain'])?> -
//=++$i?>//="/exit/".urlencode($keyword)."/".base64url_encode($si['_source']['url'])."/".$_pttarticleid?>//=htmlentities($si['_source']['title'])?>
#63Lectures on the Arithmetic Riemann-Roch ... - Booktopia
Booktopia has Lectures on the Arithmetic Riemann-Roch Theorem. (AM-127), Volume 127, Annals of Mathematics Studies by Gerd Faltings.
//="/exit/".urlencode($keyword)."/".base64url_encode($si['_source']['url'])."/".$_pttarticleid?>//=htmlentities($si['_source']['domain'])?> -
//=++$i?>//="/exit/".urlencode($keyword)."/".base64url_encode($si['_source']['url'])."/".$_pttarticleid?>//=htmlentities($si['_source']['title'])?>
#64Jan-Hendrik Evertse's homepage, page 2 - math.leidenuniv.nl
Faltings and Wüstholz pointed out that their method to attack the Subspace Theorem can be used also to handle inequalities of the shape (*) in which the Li are ...
//="/exit/".urlencode($keyword)."/".base64url_encode($si['_source']['url'])."/".$_pttarticleid?>//=htmlentities($si['_source']['domain'])?> -
//=++$i?>//="/exit/".urlencode($keyword)."/".base64url_encode($si['_source']['url'])."/".$_pttarticleid?>//=htmlentities($si['_source']['title'])?>
#65Lectures on the Arithmetic Riemann-Roch ... - Barnes & Noble
Lectures on the Arithmetic Riemann-Roch Theorem. (AM-127), Volume 127. by Gerd FaltingsGerd Faltings.
//="/exit/".urlencode($keyword)."/".base64url_encode($si['_source']['url'])."/".$_pttarticleid?>//=htmlentities($si['_source']['domain'])?> -
//=++$i?>//="/exit/".urlencode($keyword)."/".base64url_encode($si['_source']['url'])."/".$_pttarticleid?>//=htmlentities($si['_source']['title'])?>
#66On Faltings' annihilator theorem - arXiv Vanity
In the present article, the author shows that Faltings' annihilator theorem holds for any Noetherian ring A if A is universally catenary; all the formal ...
//="/exit/".urlencode($keyword)."/".base64url_encode($si['_source']['url'])."/".$_pttarticleid?>//=htmlentities($si['_source']['domain'])?> -
//=++$i?>//="/exit/".urlencode($keyword)."/".base64url_encode($si['_source']['url'])."/".$_pttarticleid?>//=htmlentities($si['_source']['title'])?>
#67Faltings's theorem | owlapps
Case g > 1: according to the Mordell conjecture, now Faltings's theorem, C has only a finite number of rational points.
//="/exit/".urlencode($keyword)."/".base64url_encode($si['_source']['url'])."/".$_pttarticleid?>//=htmlentities($si['_source']['domain'])?> -
//=++$i?>//="/exit/".urlencode($keyword)."/".base64url_encode($si['_source']['url'])."/".$_pttarticleid?>//=htmlentities($si['_source']['title'])?>
#68Roth's Theorem: an introduction to diophantine approximation
points: Roth's lemma and the arithmetic product theorem. ... the Mordell conjecture, and Faltings' theorem on rational points of ...
//="/exit/".urlencode($keyword)."/".base64url_encode($si['_source']['url'])."/".$_pttarticleid?>//=htmlentities($si['_source']['domain'])?> -
//=++$i?>//="/exit/".urlencode($keyword)."/".base64url_encode($si['_source']['url'])."/".$_pttarticleid?>//=htmlentities($si['_source']['title'])?>
#69Faltings Serre method
ρ1 ∼ ρ2 ⇔ tr(ρ1)|Σ = tr(ρ2)|Σ where Σ = {Frobp|p ∈ T}. 2. Page 3. Proof. By the Hermite-Minkowski theorem, there are finitely many Galois extensions L/K un-.
//="/exit/".urlencode($keyword)."/".base64url_encode($si['_source']['url'])."/".$_pttarticleid?>//=htmlentities($si['_source']['domain'])?> -
//=++$i?>//="/exit/".urlencode($keyword)."/".base64url_encode($si['_source']['url'])."/".$_pttarticleid?>//=htmlentities($si['_source']['title'])?>
#70The product theorem in Diophantine approximation by ...
On 9th May 2018 at 9.00 am Professor Gerd Faltings (Max Planck Institute for Mathematics of Bonn) holds a lesson on "The product theorem in ...
//="/exit/".urlencode($keyword)."/".base64url_encode($si['_source']['url'])."/".$_pttarticleid?>//=htmlentities($si['_source']['domain'])?> -
//=++$i?>//="/exit/".urlencode($keyword)."/".base64url_encode($si['_source']['url'])."/".$_pttarticleid?>//=htmlentities($si['_source']['title'])?>
#71AV -- J.S. Milne
It includes a discussion of the theorems of Honda and Tate concerning abelian varieties over finite fields and the paper of Faltings in which he proves ...
//="/exit/".urlencode($keyword)."/".base64url_encode($si['_source']['url'])."/".$_pttarticleid?>//=htmlentities($si['_source']['domain'])?> -
//=++$i?>//="/exit/".urlencode($keyword)."/".base64url_encode($si['_source']['url'])."/".$_pttarticleid?>//=htmlentities($si['_source']['title'])?>
#72a toric extension of faltings' 'diophantine approximation on ...
For divisors on abelian varieties, Faltings established an optimal bound on ... The machinery in place, an analytic version of Faltings' Theorem is.
//="/exit/".urlencode($keyword)."/".base64url_encode($si['_source']['url'])."/".$_pttarticleid?>//=htmlentities($si['_source']['domain'])?> -
//=++$i?>//="/exit/".urlencode($keyword)."/".base64url_encode($si['_source']['url'])."/".$_pttarticleid?>//=htmlentities($si['_source']['title'])?>
#73On Faltings' main comparison theorem in p-adic Hodge theory
On Faltings' main comparison theorem in p-adic Hodge theory: the relative case. 主讲人Speaker:Ahmed Abbes. 时间Time: 周五16:30-17:30,2018-11-9.
//="/exit/".urlencode($keyword)."/".base64url_encode($si['_source']['url'])."/".$_pttarticleid?>//=htmlentities($si['_source']['domain'])?> -
//=++$i?>//="/exit/".urlencode($keyword)."/".base64url_encode($si['_source']['url'])."/".$_pttarticleid?>//=htmlentities($si['_source']['title'])?>
#74A proof of the Uniform Mordell–Lang Conjecture - IMJ-PRG
In 1983, Faltings proved the Mordell Conjecture. Theorem (Faltings 1983). When g 2, the set C(K) is finite. Faltings's 1983 proof does not ...
//="/exit/".urlencode($keyword)."/".base64url_encode($si['_source']['url'])."/".$_pttarticleid?>//=htmlentities($si['_source']['domain'])?> -
//=++$i?>//="/exit/".urlencode($keyword)."/".base64url_encode($si['_source']['url'])."/".$_pttarticleid?>//=htmlentities($si['_source']['title'])?>
#75Faltings' theoremの意味・使い方・読み方 | Weblio英和辞書
Faltings ' theoremの意味や使い方 ファルティングスの定理数論では、モーデル予想(Mordell conjecture)は、Mordell (1922) で提出された予想で、有理数体 Q 上に定義 ...
//="/exit/".urlencode($keyword)."/".base64url_encode($si['_source']['url'])."/".$_pttarticleid?>//=htmlentities($si['_source']['domain'])?> -
//=++$i?>//="/exit/".urlencode($keyword)."/".base64url_encode($si['_source']['url'])."/".$_pttarticleid?>//=htmlentities($si['_source']['title'])?>
#76finiteness theorems for potentially equivalent galois ...
FINITENESS THEOREMS FOR POTENTIALLY EQUIVALENT GALOIS. REPRESENTATIONS: EXTENSION OF FALTINGS' FINITENESS CRITERIA. PLAWAN DAS AND C. S. RAJAN. Abstract.
//="/exit/".urlencode($keyword)."/".base64url_encode($si['_source']['url'])."/".$_pttarticleid?>//=htmlentities($si['_source']['domain'])?> -
//=++$i?>//="/exit/".urlencode($keyword)."/".base64url_encode($si['_source']['url'])."/".$_pttarticleid?>//=htmlentities($si['_source']['title'])?>
#77Faltings's theorem - Wikipedia @ WordDisk
In 1983 it was proved by Gerd Faltings,[2] and is now known as Faltings's theorem. The conjecture was later generalized by replacing Q by any number field.
//="/exit/".urlencode($keyword)."/".base64url_encode($si['_source']['url'])."/".$_pttarticleid?>//=htmlentities($si['_source']['domain'])?> -
//=++$i?>//="/exit/".urlencode($keyword)."/".base64url_encode($si['_source']['url'])."/".$_pttarticleid?>//=htmlentities($si['_source']['title'])?>
#78Faltings'proof of Siegel's Theorem
This short note aims to illustrate how to deduce Siegel's theorem from Sha- fareich conjecture via Parshin's trick, mentioned in Faltings's ...
//="/exit/".urlencode($keyword)."/".base64url_encode($si['_source']['url'])."/".$_pttarticleid?>//=htmlentities($si['_source']['domain'])?> -
//=++$i?>//="/exit/".urlencode($keyword)."/".base64url_encode($si['_source']['url'])."/".$_pttarticleid?>//=htmlentities($si['_source']['title'])?>
#79Faltings plus epsilon, Wiles plus epsilon, and the Generalized ...
Wiles' proof of Fermat's Last Theorem puts to rest one of the most famous unsolved problems in mathematics, a question that has been a ...
//="/exit/".urlencode($keyword)."/".base64url_encode($si['_source']['url'])."/".$_pttarticleid?>//=htmlentities($si['_source']['domain'])?> -
//=++$i?>//="/exit/".urlencode($keyword)."/".base64url_encode($si['_source']['url'])."/".$_pttarticleid?>//=htmlentities($si['_source']['title'])?>
#80Gerd Faltings - Scholars | Institute for Advanced Study
... Lang's conjecture on rational points of abelian varieties and to a far-reaching generalization of the subspace theorem. Professor Faltings has also made ...
//="/exit/".urlencode($keyword)."/".base64url_encode($si['_source']['url'])."/".$_pttarticleid?>//=htmlentities($si['_source']['domain'])?> -
//=++$i?>//="/exit/".urlencode($keyword)."/".base64url_encode($si['_source']['url'])."/".$_pttarticleid?>//=htmlentities($si['_source']['title'])?>
#81Vanishing of Ext-Functors and Faltings' Annihilator Theorem ...
Vanishing of Ext-Functors and Faltings' Annihilator Theorem for relative Cohen-Macaulay modules. Journal of New Researches in Mathematics.
//="/exit/".urlencode($keyword)."/".base64url_encode($si['_source']['url'])."/".$_pttarticleid?>//=htmlentities($si['_source']['domain'])?> -
//=++$i?>//="/exit/".urlencode($keyword)."/".base64url_encode($si['_source']['url'])."/".$_pttarticleid?>//=htmlentities($si['_source']['title'])?>
#82The cyclic case of the dynamical Mordell-Lang conjecture
Theorem (Mordell-Lang conjecture, Faltings-Vojta, 1991). Let A be an abelian variety over a field of characteristic 0, let G be.
//="/exit/".urlencode($keyword)."/".base64url_encode($si['_source']['url'])."/".$_pttarticleid?>//=htmlentities($si['_source']['domain'])?> -
//=++$i?>//="/exit/".urlencode($keyword)."/".base64url_encode($si['_source']['url'])."/".$_pttarticleid?>//=htmlentities($si['_source']['title'])?>
#83Geometry and Analysis on Manifolds: In Memory of Professor ...
1983a: G. Faltings took up the question of the Shafarevich Conjecture (the Parshin–Arakelov Theorem) for abelian varieties and showed that the moduli of ...
//="/exit/".urlencode($keyword)."/".base64url_encode($si['_source']['url'])."/".$_pttarticleid?>//=htmlentities($si['_source']['domain'])?> -
//=++$i?>//="/exit/".urlencode($keyword)."/".base64url_encode($si['_source']['url'])."/".$_pttarticleid?>//=htmlentities($si['_source']['title'])?>
#84Nevanlinna Theory And Its Relation To Diophantine ...
Theorem B4.5.1 (Faltings) Let X be an algebraic curve over Q whose genus of X ... This theorem is equivalent to the statement of Theorem B4.1.2 in the case ...
//="/exit/".urlencode($keyword)."/".base64url_encode($si['_source']['url'])."/".$_pttarticleid?>//=htmlentities($si['_source']['domain'])?> -
//=++$i?>//="/exit/".urlencode($keyword)."/".base64url_encode($si['_source']['url'])."/".$_pttarticleid?>//=htmlentities($si['_source']['title'])?>
#85Modular Forms and Fermat’s Last Theorem
Extensions , 108 , 288 Dual space , contragredient representation on , 74 Duality theory , 33 Eichler - Shimura - Igusa theorem , Faltings ' construction ...
//="/exit/".urlencode($keyword)."/".base64url_encode($si['_source']['url'])."/".$_pttarticleid?>//=htmlentities($si['_source']['domain'])?> -
//=++$i?>//="/exit/".urlencode($keyword)."/".base64url_encode($si['_source']['url'])."/".$_pttarticleid?>//=htmlentities($si['_source']['title'])?>
#86Diophantine Geometry: An Introduction - 第 431 頁 - Google 圖書結果
In this exercise you will show that Faltings ' theorem can also be used to deduce finiteness of integral points on curves of genus 0 and 1 with an ...
//="/exit/".urlencode($keyword)."/".base64url_encode($si['_source']['url'])."/".$_pttarticleid?>//=htmlentities($si['_source']['domain'])?> -
//=++$i?>//="/exit/".urlencode($keyword)."/".base64url_encode($si['_source']['url'])."/".$_pttarticleid?>//=htmlentities($si['_source']['title'])?>
#87Professor Gerd Faltings - King Faisal Prize
沒有這個頁面的資訊。
//="/exit/".urlencode($keyword)."/".base64url_encode($si['_source']['url'])."/".$_pttarticleid?>//=htmlentities($si['_source']['domain'])?> -
//=++$i?>//="/exit/".urlencode($keyword)."/".base64url_encode($si['_source']['url'])."/".$_pttarticleid?>//=htmlentities($si['_source']['title'])?>
#88ファルティングスの定理 (Faltings's theorem) 2021 - jpedia.wiki
Faltings の1983年の論文は、結果として、以前に推測されていた多くのステートメントを持っていました。同種のテイト加群を持つアーベル多様体(ガロア ...
//="/exit/".urlencode($keyword)."/".base64url_encode($si['_source']['url'])."/".$_pttarticleid?>//=htmlentities($si['_source']['domain'])?> -
//=++$i?>//="/exit/".urlencode($keyword)."/".base64url_encode($si['_source']['url'])."/".$_pttarticleid?>//=htmlentities($si['_source']['title'])?>
#89Enfin la solution ! | Pour la Science
Et en 1983, Faltings s'attaqua avec succès à la conjecture de ... intitulé Modular Elliptics Curves and Fermat's Last Theorem (Les courbes ...
//="/exit/".urlencode($keyword)."/".base64url_encode($si['_source']['url'])."/".$_pttarticleid?>//=htmlentities($si['_source']['domain'])?>
faltings 在 コバにゃんチャンネル Youtube 的最佳貼文
faltings 在 大象中醫 Youtube 的最佳解答
faltings 在 大象中醫 Youtube 的最佳解答