[爆卦]餘集合是什麼?優點缺點精華區懶人包

為什麼這篇餘集合鄉民發文收入到精華區:因為在餘集合這個討論話題中,有許多相關的文章在討論,這篇最有參考價值!作者annboy (BlueGun)看板Math標題Re: [代數] 證明空集合是任意集合的子集合時...

餘集合 在 ?????? 梅 Instagram 的最佳貼文

2021-09-24 16:23:39

☀️🌊🚣🏻‍♀️ 『如果你一直面向著光,那陰影就永遠只能在背後。』— 宮崎駿的夢想之城 2021 被偷走的夏天 第二年的象鼻岩SUP日出🌅 集合時間一樣是凌晨4:30am 在黑暗中聽完教練的指示 每個人扛著自己的板子 向著光的地方滑行 早晨的海特別寧靜 日出場的好處 除了不曬、不熱之外 就是能...


※ 引述《LandLawrence (Lawrence)》之銘言:
: 坊間常看到若要證明空集合{}是任意集合S的子集合,出發點是驗證空集合{}裡的所
: 有元素x都是集合S的元素
: If x屬於{}, then x屬於S
: 然而因為前提x屬於{}為假,所以這整個推論為真。
: 但是我認為同樣
: If x屬於{}, then x不屬於S
: 這個邏輯推論亦可為真。請問數學及邏輯高手的大大們,是我有誤解了什麼嗎?空集合怎
: 麼可以是任意集合的子集合也可以不是任意集合的子集合呢?

https://reurl.cc/Rda9Mz

做些整理,然後用完整的邏輯符號敘述

Φ代表空集合("the" empty set)



敘述一: (每一列都是邏輯等價)

Φ is a subset of every set.

∀S(Φ⊆S)

∀S∀x(x∈Φ→x∈S)



敘述二:

∀S∀x(x∈Φ→﹁(x∈S))

∀S∀x(﹁(x∈Φ)V﹁(x∈S))



敘述三:(每一列都是邏輯等價)

Φ is not a subset of any set.

∀S﹁(Φ⊆S)

∀S﹁(∀x(x∈Φ→x∈S))

∀S∃x﹁(x∈Φ→x∈S))

∀S∃x﹁(﹁(x∈Φ)V(x∈S)))

∀S∃x((x∈Φ)Λ﹁(x∈S))


說明:

因為

x∈Φ→x∈S

是vacuously true,所以

x∈Φ→﹁(x∈S)

也是vacuously true。故,敘述一是true,敘述二也是true。

但是敘述二不等價於這句話"Φ is not a subset of any set.",

理由請比較敘述二和敘述三。

至於敘述二要怎麼用英文(或其他自然語言)敘述,我沒想出來,可能沒辦法簡單敘述。


另外,敘述三是false理由是因為

∃x((x∈Φ)Λ﹁(x∈S))

implies "Φ is not empty"。這樣就矛盾了,因為我們已經假設Φ是空集合。

這部分是參考網址裡的一樓

--
※ 發信站: 批踢踢實業坊(ptt.cc), 來自: 122.121.87.229 (臺灣)
※ 文章網址: https://www.ptt.cc/bbs/Math/M.1582391848.A.7C9.html
※ 編輯: annboy (122.121.87.229 臺灣), 02/23/2020 01:33:43
ERT312 : 敘述3 要改 ∃x(x∈Φ&﹁(x∈S)才會是false 02/23 02:19
ERT312 : 要改為 02/23 02:21
ERT312 : ∃x(x∈Φ→﹁(x∈S) 是true喔 02/23 02:22
LPH66 : ﹁(A→B) <=> ﹁(﹁AVB) <=> (A︿﹁B) 應該要這樣 02/23 08:14
感謝樓上2位,已修正內文
LandLawrence: 在前一篇ERT312有提到敘述二可以解讀為空集合是S' 02/23 14:06
LandLawrence: 的子集合。 02/23 14:06
LandLawrence: 所以敘述一跟敘述二可以合併為:1.空集合是任意集合 02/23 14:08
LandLawrence: 的子集合+2.空集合是任意集合的餘集合的子集合嗎 02/23 14:08
Ricestone : 1已經包含2了,餘集合也是一個集合 不用特地分開 02/23 14:10
的確,敘述二似乎可以寫成"Φ is a subset of the complement of every set"。
LandLawrence: 是,我想表達的就是敘述一及敘述二這兩個是完全等 02/23 14:46
LandLawrence: 價的推論 02/23 14:46
※ 編輯: annboy (122.121.86.13 臺灣), 02/23/2020 15:12:18
Ricestone : 它等價的原因是來自前面的∀S,不是直接右邊部份邏 02/23 21:39
Ricestone : 輯推演的結果,所以也不用特地合併 02/23 21:39

你可能也想看看

搜尋相關網站