雖然這篇病理切片報告英文鄉民發文沒有被收入到精華區:在病理切片報告英文這個話題中,我們另外找到其它相關的精選爆讚文章
在 病理切片報告英文產品中有3篇Facebook貼文,粉絲數超過44萬的網紅李開復 Kai-Fu Lee,也在其Facebook貼文中提到, 近幾個月,在AI賦能未來醫療的思考特別多,受美國「WIRED連線」雜誌邀請撰寫了一篇專欄文章。我相信十幾年後,不少國家和地區的醫療體驗在AI賦能的作用下將發生根本性改變。 原文刊於「WIRED連線」雜誌英文官網: Covid-19 Will Accelerate the AI Health Ca...
病理切片報告英文 在 狼晶晶 Instagram 的最佳解答
2020-05-03 01:10:13
約莫是十天前吧 男子看著手裡牽著的女人被推進了手術房 那道門將裡外分隔成了兩個世界 時間分秒滴答過去 門內的女人和醫護人員們奮戰著 門外的男人只能焦急等候 / 一段時間過去,醫師來到恢復室對等待的男子說 剛剛開進去看起來的狀況不太楽觀 你的妻子身體手腳好冰冷 我們幫她加台暖被機讓她暖暖身體,等待醒...
病理切片報告英文 在 李開復 Kai-Fu Lee Facebook 的最佳解答
近幾個月,在AI賦能未來醫療的思考特別多,受美國「WIRED連線」雜誌邀請撰寫了一篇專欄文章。我相信十幾年後,不少國家和地區的醫療體驗在AI賦能的作用下將發生根本性改變。
原文刊於「WIRED連線」雜誌英文官網:
Covid-19 Will Accelerate the AI Health Care Revolution
https://www.wired.com/story/covid-19-will-accelerate-ai-health-care-revolution/
中文翻譯來自創新工場微信公眾號 2020-5-22
新冠大流行將加速醫療AI革新
—————————————
2020年元旦前夜,一家位於加拿大多倫多市的人工智能(AI)企業BlueDot捕捉到一些異常:中國武漢市海鮮市場周邊出現多起罕見肺炎病例,BlueDot迅即反應,運用自然語言處理、機器學習等技術,結合大數據和定位追踪,迅速向合作的政府部門和公共衛生機構客戶傳送警報並報告擴散狀況。BlueDot所監測到的異狀,正是數月後撼動全球的新型冠狀病毒肺炎(Covid-19),這比世界衛生組織首度公開警示新冠病毒的時間還要早上9天。
BlueDot的AI平台示範了人工智能技術對重大疫情能起到早期預警的功用,過去幾個月裡,AI在這場全球抗疫戰的許多方面發揮了獨特作用:從疫情預測到篩檢,從接觸警示到快速診斷,從前線無人配送到實驗室藥物研發,人工智能助力防疫派上了不少用場,為特定場景應用賦能。
隨著疫情在全球蔓延,AI技術的創新應用也在各地相繼落地。在韓國,基於地理位置的信息傳遞已經成為控制病毒傳播的重要工具,當人們靠近確診病例時,就會收到基於位置的緊急信息提醒。在中國大陸,阿里巴巴推出的AI算法能夠在20秒內診斷出疑似病例(比人類檢測快了近60倍),準確率高達96%。無人配送車輛很快被投入到人類難以承受的場景,代替人類執行高傳染風險的運輸任務。湖北、廣東等省份的多家醫院相繼使用機器人為病人或被隔離家庭運送食物、藥品和物資。而在美國加州,電腦科學家正在研發能遠程檢測獨居老人健康情況的系統,一旦老人出現身體異常症狀,系統就會發出即時警報。
不過,目前人工智能在公共衛生體系的應用仍顯零散也未成體系。坦率說,過去四個月內,AI在抗疫之戰中的表現並不十分突出,我最多只能給它打分“B-”。新冠大流行暴露了我們的醫療系統的脆弱性:預警響應不充份、通報信息不精確、醫療物資分配不均、醫務人員超負疲憊、醫院病床緊繃、疫苗研發週期長等諸多痛點。當然,AI的零散表現也有客觀原因:醫療體系可說是現代社會各類運轉體系中最為複雜、陳舊不堪且難以變通的一種;且在新冠疫情襲來之前,我們並沒有真正意識到醫療體系問題的緊迫性,沒有提前採取相應的技術預防措施;最為關鍵的是,我們缺少建構AI解決方案所需的大數據。
把目光看向未來,我看到以下兩個AI賦能醫療的樂觀因素。
首先,作為AI燃料的醫療大數據已被激活。舉例來說,機器學習數據科學平台Kaggle組建了新冠病毒開放研究數據庫,名為CORD-19。它將相關數據進行彙編,並把最新研究集中收錄,匯總的格式可被機器讀取和解析,以便於AI進行機器學習。至今這個數據庫收錄了12.8萬篇包含Covid-19、冠狀病毒、SARS(非典型肺炎)、MERS(中東呼吸綜合症)等關聯術語的醫學專業學術文章。
其次,眼下全世界的醫學專家和電腦科學家都將精力集中在解決疫情問題。 X大獎基金會創始人彼得·戴曼迪斯(Peter Diamandis)估計,全球現在有多達兩億名的醫師、科學家、護士、技術專家和工程師投入防治冠狀病毒的相關研發中,他們正在進行數以萬計的實驗,並以「前所未有的透明度和速度」共享信息。
3月16日Kaggle發起「新冠病毒研究挑戰」,匯集與疫情相關的大量信息,包括病毒的自然歷史、傳播和診斷方法、以及從過往流行病學研究中汲取的經驗教訓,幫助全球各地衛生機構及時掌握最新情況,以做出基於數據的分析決策。該項目發布後的五天內被瀏覽超過50萬次,下載量逾1.8萬次。在大陸疫情爆發後不到一個月,阿里巴巴便推出了一種AI算法,該算法基於5000多個新冠肺炎確診病例進行訓練,並關聯到治療後續諸如肺部白色陰影縮小等的成效追踪。隨後,阿里巴巴將其云端AI平台向全球醫療專業人員開源,與合作夥伴聯手部署更大批量的匿名數據,推出包括疫情預測、CT影像分析、冠狀病毒基因組測序等模組。
據估計,現今全球醫療數據的規模每隔幾個月就翻一倍。 2019年一份覆蓋19個國家AI醫療市場的研究估計,AI醫療市場的年複合增長率為41.7%,從2018年的13億美元將增長至2025年的130億美元,主要分佈在六大領域:醫院工作流程、可穿戴設備、醫學影像和診斷、診療計劃、虛擬助手、以及最重要的藥物研發,新冠疫情期間浮現的種種需求,將加速AI賦能醫療的場景落地。
在後疫情時代,我期待AI將加速融入醫療體系,賦能並推動醫療改革。其中深度學習(Deep Learning),即以一種高效方法運算海量、多維數據的能力,是AI結合醫療最為可期的機遇之一。深度神經網絡(Deep Neural Networks)作為AI的一個子領域,已經被用於醫學掃描、病理切片、眼科檢查甚至結腸鏡檢查,以得出準確而快速的算法判讀。十幾年後,不少國家和地區的醫療體驗在AI賦能的作用下將發生根本性改變。
AI賦能醫療,首先能簡化及優化現有的醫療流程,例如醫院的作業流程,保險履約的繁複流程。將AI與RPA(Robotic Process Automation 機器人流程自動化)結合,可對某項工作流程進行智能拆解及優化,進而大大提高醫療系統的運營效率,預約看診、保險理賠及其他流程性工作都會得到效率提升。AI還能加快早期診斷信息的收錄並實現自動化,AI技術所能處理的文本、語言、數字的體量,無論在數量上還是精度上都是機器級別,遠非人類所及。
有了充份的醫療大數據作為基礎,AI還能為每個人或者每個群體建立健康數據基準量表。當我們掌握個體健康數據,就可以根據跟踪動態數據的波動變化,進行數據驅動的診斷,並對潛在大流行疾病的徵兆進行早期追踪研判。然而,再先進的技術系統要做到真正有效,勢必需要與既存的公共衛生警示和匯報機制形成高效鏈接,此類信息斷層即是新冠疫情在早期爆發期間存在的具體缺失。
再上一個層次的AI賦能體現在助力新藥研發、基因組測序、幹細胞、CRISPR(基因編輯)等醫學突破方面,AI模型和算法應用都有其用武之地。在製藥行業,研發一種新藥往往需要付出高昂的投入,某次成功前必有多次付諸流水的失敗試驗,也連帶消耗巨大的時間和金錢成本。現在,科學家們可使用AI機器學習來模擬上千個變量,測試它們的複合效應會對人類細胞反應產生何種影響,這類AI新藥研發的技術已被用於新冠病毒疫苗和其他療法。創新工場所投資總部位於香港的AI藥物研發公司Insilico Medicine是首批對新冠病毒快速響應的企業之一,這家公司利用生成式化學AI平台設計出新藥物小分子,以複製主要病毒蛋白為靶標,早在2月5日便公佈了這些小分子結構。 AI為新藥發明開闢了一個新時代,用人工智能技術來換取藥品研發週期的時間和成本,整個製藥行業勢將迎來翻天覆地的變革。
不久的將來,隨著醫療科學和電腦科學進一步融合,我們將進入一個全面自動化的AI時代,到時人們可以通過可穿戴設備、生物傳感器、智能家居檢測設備等來確保自身和家人的健康。可穿戴設備和其他物聯網設備的數據質量和多樣性大幅提高,將能產生一個有效的良性循環。穿越到未來,下一場疫情在大範圍蔓延之前就應該能夠被跟踪、追溯、攔截並消滅無踪。
或許再過15年,許多人的家裡都會有AI個人助理照料我們,幫著解決全家人的日常健康所需。機器人或者無人機負責把我們的藥品送上門,如果需要進行手術或者外科治療,通常會由機器人操作,或由機器人輔助人類外科醫師完成。在未來,醫生和護士將把更多的精力放在機器無法勝任的任務上,醫療專業人員及富有同情心的護理人員,將同時具備護士、醫療技師、社會工作者、甚至心理諮詢師的技能。他們會使用經AI強化的診斷工具和系統,但更多的時間會與患者溝通,安撫他們的傷痛,為他們提供情感扶持。在我的想像裡,15年後的醫療健康場景可能是這個樣子的:
***
2035年一個冬季早晨,我醒來後就覺得有點喉嚨痛。我起身去洗手間,刷牙的時候,洗手間的鏡子通過紅外傳感器測量了我的體溫。刷完牙後一分鐘,我的私人AI醫師助理發出了警報,顯示我的唾液樣本部分指數異常,並在輕微低燒。 AI醫師助理建議我在家進行指尖探針採血。我在泡咖啡時,醫師助理返回了分析結果,判斷我可能是得了這個季節正在流行的兩型流感其中一種。之後,我的AI醫師助理建議,如果我覺得有必要聯繫家庭醫生的話,有兩個時間空檔可以跟她視頻通話。通話之前,家庭醫生已經收到我所有症狀的詳細信息,她給我開了一種減充血劑和撲熱息痛,一會兒無人機就把藥品送到我家門口。
***
當然,凡涉及到患者的醫療記錄,就得談談隱私和數據保護的關鍵問題。我認為,任憑有用的數據各自孤島式的存在、不善加利用、不從中提煉有價值的信息、不用以推動社會進步,是相當不負責任的做法。技術產生的問題應該由技術解決。隨著AI技術浪潮而出現的諸如數據保護等問題,應該有更為創新的技術方法來應對。
好消息是,近年聯邦學習(也被稱為分佈式學習)已經在數據保護上取得了顯著的進展。基於聯邦學習技術,患者的數據將永遠不會離開所在的醫療機構、醫院或個人設備伺服器等原始存儲設備,機器學習模型將在獨立的數據庫基礎上進行訓練處理,再進行後續整合。聯邦學習、同態加密,結合可信硬體執行環境等技術,將進一步確保數據的計算、傳輸、存儲過程能夠適配不同的隱私偏好,以因應不同國家與文化對於隱私保護的需求差異。
這次新冠肺炎疫情還驗證了一個事實:整體人類命運是共同體,人們對未來運用AI等先進技術共度難關寄予一致的期盼。歷史上,國際合作曾消滅了全球延燒的天花,也幾乎根除了小兒麻痺症。公共衛生無國界,控制及消除流行病是個毋庸置疑的共同目標。在醫學領域,每個國家都能從他國的研究基礎上學習受益並攜手並進,全球化的數據科學,將進一步幫助人類獲取對健康和疾病最為深刻、最為全面的洞悉。
AI有潛力協助我們為下一次疾病大流行做更充份的準備。這需要醫學專家、AI科學家、投資者和決策者傾力協作,也需要關注醫療保健領域的投資人為聰明的創業者和科學家注入新一波動能。
經歷這次疫情,我們應清醒地意識到,要將人類醫療體系推往新的高度,著實需要傾盡全球之力。
創新工場董事長兼首席執行官
李開復博士
病理切片報告英文 在 Dr 文科生 Facebook 的最讚貼文
輕輕評論一下 (以下全屬個人意見)
我不清楚土耳其的醫療系統是怎樣運作
但我難以想像淋巴癌在西方醫學下會被誤診。
首先要確診淋巴癌,病人通常會出現淋巴腫脹、發燒、夜汗、體重下降等徵狀。
醫生會替病人進行抽活組織檢驗(biopsy)再由病理科醫生在顯微鏡下作病理學診斷,去確定是那一種類的淋巴癌(Hodgkin or non Hodgkin lymphoma)。
之後病人會再做正電子電腦掃描(PET-CT scan)去作staging 以決定治療方案。而影像掃描亦由放射科醫生去做。
我難以想像血科醫生、病理科醫生和放射科醫生一齊犯錯誤診淋巴癌。
再者我亦想不透到底個second opinion醫生怎樣去確診病人患的是傷風而不是淋巴癌。傷風在病理科來說是很難確診的一個感染啊。
*另,一般來就化療引起的脫髮隨著療程的完結會長回來
**並不是每種化療藥也會導致脫髮
***如對癌症的診斷有懷疑,請在治療前找second opinion (但記住要盡快,別令病情惡化)
是咁的。
新聞報道話土耳其有一個男人只是患上傷風, 卻被醫院診斷為淋巴癌 (lymphoma), 病人三年來接受四個化療療程, 最後發現誤診, 話要告醫院云云。
我上 Google 翻查病人姓名 Yilmaz Kiziloglu, 英文新聞網站報道唔多, 只係認得 MSN news, 其內容都係冇乜 details.
作為醫生, 我有少少回應:
拿, 首先, 發燒/體弱/淋巴腫起真係可以係淋巴癌症狀。當然, 其他病 (例如病毒感染) 都可以有咁嘅徵狀, 這些症狀不是淋巴癌特有 (non-specific symptoms)。
第二, 香港報道話病人兄弟對報告有懷疑, 去另一間醫院複查結果, 結果「證實」病人只是患上傷風??
疑點一: 去複查結果, presumably 係三年後嘅事 (病人做咗三年化療)。 嗰個係咩報告結果? 當年如果係做淋巴活組織切片化驗 - 難道醫院會keep住組織樣本三年?? 如果你話個顯微鏡 slide 有影相, 有 photographic record? 病毒咁細, 要用電子顯微鏡先見到嫁喎...
疑點二: 就算醫院真係keep住組織樣本三年, 個傷風病毒真係仲 intact and detectable? 一般病毒要靠感染細胞來「生存」, 咁個樣本要點樣保存才可以在三年後 test positive for common cold virus, 我真係唔知...
結論:
我唔係話間土耳其醫院冇診斷錯淋巴癌, 更加唔係話醫院唔會出錯。We are humans, we all make mistakes. Even planes crash once in a while and kill hundreds. It doesn't stop us flying everywhere.
不過我估另一間醫院複查結果, 可能只係基於症狀的臨床診斷, 才認為當年係傷風病毒感染 - 好難想像有咩 test 可以驗返三年前病毒感染。
其實篇報導帶出嘅問題係, 傳媒好鍾意以訛傳訛地報導醫療新聞, 個個翻譯下又可以出街。 明眼人一睇就會覺得相當有嫌疑, 一般人睇完就會對西醫存疑, 甚至覺得西醫醫生冇料到, 唔可信, 「傷風都可以當 cancer」。
至於一些別有用心的人, 當然就最鐘意尼 d 新聞。After all, 如果你個賣點係自然療法, 精油等等, 而收入係網上賣書, 講衰你嘅「競爭對手」 can only be good for your business, right?
究竟 screenshot 中寫嘅「激素」 係咩, 我也放棄揣測了。
#利申我冇野賣
#聽就聽唔聽就罷
#係咪突破了盲腸
#咁咪會導致peritonitis
病理切片報告英文 在 邦妮&蓋瑞小夫妻 Facebook 的最佳解答
#蓋瑞【假病人】
.
現在的考試越來越多元,在醫院裡也是如此,除了萬惡的筆試外,我們大約每幾個月就會面臨一次假病人問診。
.
考試方式如下,我們會依序進入一間間小教室,每間裡面都有分配假病人和考官,並且會有相對應的場景和病情設定,要根據病人的症狀來進行問診、病情解釋和處置建議,而一旁的考官則會依據醫學生的表現來給分。
.
「38歲男性,發燒三天,請進行病史詢問與理學檢查。」
「11個月大女性,媽媽覺得她臉色蒼白,請解釋抽血報告並給予衛教。」
「路邊發現年齡不詳男,心跳停止,請進行後續處置。」
.
考試題目不外乎一些常見的各科疾病,總之題目對一般醫學生來講,如果能「保持冷靜」,並不至於太難。
.
.
--
為什麼要特別提到「保持冷靜」呢?因為在考場裡,總是會有讓人抓狂的事,讓人無所適從。
.
首先,假病人顧名思義的,並不是真的身體不舒服的病人,他們是上過一些相關課程的正常人,在看過劇本後來扮演假病人的角色。
.
不難想像,大多時候假病人都是兼差的,他們有自己的正職和生涯規劃,也因為如此,並不是每一次辦假病人考試時,都能徵招到足夠的假病人。
.
當假病人的招募開天窗時怎麼辦?醫院也不是省油的燈,他們會從擁有的資源中盡可能的找出人來扮演假病人,而正是這樣的東拼西湊,讓假病人面試充滿了變數....
.
.
--
在我大六還是大七時的假病人考試,給出的情境如下:「55歲男性,健檢發現大腸惡性腫瘤,請解釋病理報告並向病患和家屬告知壞消息。」
.
很生活化的一題,看完題目後,我思索了一下以前教過的醫病溝通技巧,敲敲門走進考場。
.
一走進去,一位黝黑的阿伯神情不安的坐在椅子上,想必這就是得大腸癌的假病人吧?
.
考官微笑的看著我,示意我可以開始。正當我清完喉嚨,準備開始講話時,我瞥到了站在考官旁邊的兩個假家屬.....
.
馬的,那不是鐵甲詠和本班另一位搞笑咖JAY嗎?
.
.
他們兩人得意的向我笑了笑,挑了一下眉毛,讓我內心方寸大亂,本來想皺眉嚴肅的同理病患,現在只想偷笑。
.
那次的假病人考試,我講得超級爛,每當我面色凝重的向阿伯提到他的腫瘤檢查,JAY就會激動的搖頭吶喊,跳針詢問並質疑我。
.
「大哥您好,關於您的大腸腫瘤切片報告,目前病理切片看來是惡性腫瘤。」
「什麼?!那是什麼?!惡性腫瘤?!」JAY飾演的是阿伯歇斯底里的大兒子。
.
「呃...對,大哥,我真的很遺憾....」
「醫....醫...醫生,那個惡性腫瘤.....會....會好嗎?」
.
「目前還需要更進一步的做檢查,根據轉移情形來做相對應的處置。」
「那個醫醫....醫...醫生,我爸是不是要死了?!」
.
JAY實在是演得太激動,不僅害鐵甲詠微微笑場,還讓我每次都很難接話,十分夭壽,到底為什麼要安排同學來演假病人啦!系辦如果真的這麼缺人,那還把情境設計得這麼豪華幹嘛?跟病患一個人解釋不就好了?
.
.
--
是說,我後來發現缺假病人好像是個常態,下海的不只醫學生,甚至還有主治醫師,並且能力越大,責任越大,主治醫師的業務範圍遠遠出乎想像。
.
我曾經走進考場,發現主治醫師學長李哥面色痛苦的跪坐在地。
.
「醫...醫師,快....我胸口好痛....」
「呃?學長....」
「不...我不是學長....我是病患......醫師快幫幫忙....喘不過氣了....」
「喔喔好!我馬上幫你做張心電圖!」
.
李哥不只是胸痛的假病患,他同時還飾演著實習醫師的角色。
.
「學長你好,我是實習醫師,心電圖做好了,請看。」李哥一秒轉換語氣,爬了起來,從抽屜拿出一張心電圖給我判讀。
.
在我判讀完病解釋病情時,李哥還得時不時的哀嚎一下,十分敬業。
.
但說實在,這樣的場景實在很不適合考試,一來是先入為主的知道假病人是主治醫師,解釋起病情來壓力倍增,大概就像家教美國人英文一樣恐怖;二來是李哥的獨角戲實在是太鬧,讓人不笑場都難。
.
.
--
在十分鐘的考試過去後,李哥終於不再演戲,這次,他從抽屜再拿出了一張評分單,開始向我講評。
.
「那個,蓋瑞學弟齁,這次表現得還不錯,不過要注意齁....」
.
李哥不只一人分飾兩角,他還得當考官,看來工讀生又招不好了啊....
.
.
#鬧劇
#業餘演員