[爆卦]產品內涵的五個層次是什麼?優點缺點精華區懶人包

雖然這篇產品內涵的五個層次鄉民發文沒有被收入到精華區:在產品內涵的五個層次這個話題中,我們另外找到其它相關的精選爆讚文章

在 產品內涵的五個層次產品中有14篇Facebook貼文,粉絲數超過3,992的網紅台灣物聯網實驗室 IOT Labs,也在其Facebook貼文中提到, 摩爾定律放緩 靠啥提升AI晶片運算力? 作者 : 黃燁鋒,EE Times China 2021-07-26 對於電子科技革命的即將終結的說法,一般認為即是指摩爾定律的終結——摩爾定律一旦無法延續,也就意味著資訊技術的整棟大樓建造都將出現停滯,那麼第三次科技革命也就正式結束了。這種聲音似乎...

 同時也有1部Youtube影片,追蹤數超過60萬的網紅飲食男女,也在其Youtube影片中提到,有沒有想過採用北海道道產食材都可以一嘗高級法菜滋味?吃法國菜不一定要去歐洲,去就近的日本就可以了!以下就為大家介紹兩間法菜餐廳。 [米芝蓮一星法國餐廳 Asperges] 早於十年前,美瑛農業協會已經希望推廣當地農業,他們邀請了札幌法菜的元祖級人馬中道博來經營餐廳。中道博是北海道首批從外國餐廳學藝...

產品內涵的五個層次 在 ?????? ??? ????? Instagram 的精選貼文

2021-07-16 19:56:27

@bobbibrowntaiwan BOBBI BROWN #一抹完美遮瑕筆 #ivory 我買這支遮瑕應該有一年多了 對他的印象就是很遮,而且覆蓋力很強 持妝度也很好,用量要控制好,一點點就給你全世界 @kanebotaiwan KANEBO #清爽持妝蜜粉 最喜歡的蜜粉之一,各方面全都可以...

產品內涵的五個層次 在 SWAG HAIR SHOP Instagram 的最佳貼文

2020-05-09 04:00:21

Thank you Scott!!!😆 如果你都係同Scott一樣係Quiff髮型,可以一試呢set bundle ,幫你Double up 你髮型的層次感,望落無咁悶😎Scott 真· 一試就愛上~ #跳舞都要型住跳 #五一黃金週 👊🏼 . #Repost @s.chyz with @make_...

  • 產品內涵的五個層次 在 台灣物聯網實驗室 IOT Labs Facebook 的最佳解答

    2021-07-27 11:56:34
    有 1 人按讚

    摩爾定律放緩 靠啥提升AI晶片運算力?

    作者 : 黃燁鋒,EE Times China
    2021-07-26

    對於電子科技革命的即將終結的說法,一般認為即是指摩爾定律的終結——摩爾定律一旦無法延續,也就意味著資訊技術的整棟大樓建造都將出現停滯,那麼第三次科技革命也就正式結束了。這種聲音似乎是從十多年前就有的,但這波革命始終也沒有結束。AI技術本質上仍然是第三次科技革命的延續……

    人工智慧(AI)的技術發展,被很多人形容為第四次科技革命。前三次科技革命,分別是蒸汽、電氣、資訊技術(電子科技)革命。彷彿這“第四次”有很多種說辭,比如有人說第四次科技革命是生物技術革命,還有人說是量子技術革命。但既然AI也是第四次科技革命之一的候選技術,而且作為資訊技術的組成部分,卻又獨立於資訊技術,即表示它有獨到之處。

    電子科技革命的即將終結,一般認為即是指摩爾定律的終結——摩爾定律一旦無法延續,也就意味著資訊技術的整棟大樓建造都將出現停滯,那麼第三次科技革命也就正式結束了。這種聲音似乎是從十多年前就有,但這波革命始終也沒有結束。

    AI技術本質上仍然是第三次科技革命的延續,它的發展也依託於幾十年來半導體科技的進步。這些年出現了不少專門的AI晶片——而且市場參與者相眾多。當某一個類別的技術發展到出現一種專門的處理器為之服務的程度,那麼這個領域自然就不可小覷,就像當年GPU出現專門為圖形運算服務一樣。

    所以AI晶片被形容為CPU、GPU之後的第三大類電腦處理器。AI專用處理器的出現,很大程度上也是因為摩爾定律的發展進入緩慢期:電晶體的尺寸縮減速度,已經無法滿足需求,所以就必須有某種專用架構(DSA)出現,以快速提升晶片效率,也才有了專門的AI晶片。

    另一方面,摩爾定律的延緩也成為AI晶片發展的桎梏。在摩爾定律和登納德縮放比例定律(Dennard Scaling)發展的前期,電晶體製程進步為晶片帶來了相當大的助益,那是「happy scaling down」的時代——CPU、GPU都是這個時代受益,不過Dennard Scaling早在45nm時期就失效了。

    AI晶片作為第三大類處理器,在這波發展中沒有趕上happy scaling down的好時機。與此同時,AI應用對運算力的需求越來越貪婪。今年WAIC晶片論壇圓桌討論環節,燧原科技創始人暨CEO趙立東說:「現在訓練的GPT-3模型有1750億參數,接近人腦神經元數量,我以為這是最大的模型了,要千張Nvidia的GPU卡才能做。談到AI運算力需求、模型大小的問題,說最大模型超過萬億參數,又是10倍。」

    英特爾(Intel)研究院副總裁、中國研究院院長宋繼強說:「前兩年用GPU訓練一個大規模的深度學習模型,其碳排放量相當於5台美式車整個生命週期產生的碳排量。」這也說明了AI運算力需求的貪婪,以及提供運算力的AI晶片不夠高效。

    不過作為產業的底層驅動力,半導體製造技術仍源源不斷地為AI發展提供推力。本文將討論WAIC晶片論壇上聽到,針對這個問題的一些前瞻性解決方案——有些已經實現,有些則可能有待時代驗證。

    XPU、摩爾定律和異質整合

    「電腦產業中的貝爾定律,是說能效每提高1,000倍,就會衍生出一種新的運算形態。」中科院院士劉明在論壇上說,「若每瓦功耗只能支撐1KOPS的運算,當時的這種運算形態是超算;到了智慧型手機時代,能效就提高到每瓦1TOPS;未來的智慧終端我們要達到每瓦1POPS。 這對IC提出了非常高的要求,如果依然沿著CMOS這條路去走,當然可以,但會比較艱辛。」

    針對性能和效率提升,除了尺寸微縮,半導體產業比較常見的思路是電晶體結構、晶片結構、材料等方面的最佳化,以及處理架構的革新。

    (1)AI晶片本身其實就是對處理器架構的革新,從運算架構的層面來看,針對不同的應用方向造不同架構的處理器是常規,更專用的處理器能促成效率和性能的成倍增長,而不需要依賴於電晶體尺寸的微縮。比如GPU、神經網路處理器(NPU,即AI處理器),乃至更專用的ASIC出現,都是這類思路。

    CPU、GPU、NPU、FPGA等不同類型的晶片各司其職,Intel這兩年一直在推行所謂的「XPU」策略就是用不同類型的處理器去做不同的事情,「整合起來各取所需,用組合拳會好過用一種武器去解決所有問題。」宋繼強說。Intel的晶片產品就涵蓋了幾個大類,Core CPU、Xe GPU,以及透過收購獲得的AI晶片Habana等。

    另外針對不同類型的晶片,可能還有更具體的最佳化方案。如當代CPU普遍加入AVX512指令,本質上是特別針對深度學習做加強。「專用」的不一定是處理器,也可以是處理器內的某些特定單元,甚至固定功能單元,就好像GPU中加入專用的光線追蹤單元一樣,這是當代處理器普遍都在做的一件事。

    (2)從電晶體、晶片結構層面來看,電晶體的尺寸現在仍然在縮減過程中,只不過縮減幅度相比過去變小了——而且為緩解電晶體性能的下降,需要有各種不同的技術來輔助尺寸變小。比如說在22nm節點之後,電晶體變為FinFET結構,在3nm之後,電晶體即將演變為Gate All Around FET結構。最終會演化為互補FET (CFET),其本質都是電晶體本身充分利用Z軸,來實現微縮性能的提升。

    劉明認為,「除了基礎元件的變革,IC現在的發展還是比較多元化,包括新材料的引進、元件結構革新,也包括微影技術。長期賴以微縮的基本手段,現在也在發生巨大的變化,特別是未來3D的異質整合。這些多元技術的協同發展,都為晶片整體性能提升帶來了很好的增益。」

    他並指出,「從電晶體級、到晶圓級,再到晶片堆疊、引線接合(lead bonding),精準度從毫米向奈米演進,互連密度大大提升。」從晶圓/裸晶的層面來看,則是眾所周知的朝more than moore’s law這樣的路線發展,比如把兩片裸晶疊起來。現在很熱門的chiplet技術就是比較典型的並不依賴於傳統電晶體尺寸微縮,來彈性擴展性能的方案。

    台積電和Intel這兩年都在大推將不同類型的裸晶,異質整合的技術。2.5D封裝方案典型如台積電的CoWoS,Intel的EMIB,而在3D堆疊上,Intel的Core LakeField晶片就是用3D Foveros方案,將不同的裸晶疊在一起,甚至可以實現兩片運算裸晶的堆疊、互連。

    之前的文章也提到過AMD剛發佈的3D V-Cache,將CPU的L3 cache裸晶疊在運算裸晶上方,將處理器的L3 cache大小增大至192MB,對儲存敏感延遲應用的性能提升。相比Intel,台積電這項技術的獨特之處在於裸晶間是以混合接合(hybrid bonding)的方式互連,而不是micro-bump,做到更小的打線間距,以及晶片之間數十倍通訊性能和效率提升。

    這些方案也不直接依賴傳統的電晶體微縮方案。這裡實際上還有一個方面,即新材料的導入專家們沒有在論壇上多說,本文也略過不談。

    1,000倍的性能提升

    劉明談到,當電晶體微縮的空間沒有那麼大的時候,產業界傾向於採用新的策略來評價技術——「PPACt」——即Powe r(功耗)、Performance (性能)、Cost/Area-Time (成本/面積-時間)。t指的具體是time-to-market,理論上應該也屬於成本的一部分。

    電晶體微縮方案失效以後,「多元化的技術變革,依然會讓IC性能得到進一步的提升。」劉明說,「根據預測,這些技術即使不再做尺寸微縮,也會讓IC的晶片性能做到500~1,000倍的提升,到2035年實現Zetta Flops的系統性能水準。且超算的發展還可以一如既往地前進;單裸晶儲存容量變得越來越大,IC依然會為產業發展提供基礎。」

    500~1,000倍的預測來自DARPA,感覺有些過於樂觀。因為其中的不少技術存在比較大的邊際遞減效應,而且有更實際的工程問題待解決,比如運算裸晶疊層的散熱問題——即便業界對於這類工程問題的探討也始終在持續。

    不過1,000倍的性能提升,的確說明摩爾定律的終結並不能代表第三次科技革命的終結,而且還有相當大的發展空間。尤其本文談的主要是AI晶片,而不是更具通用性的CPU。

    矽光、記憶體內運算和神經型態運算

    在非傳統發展路線上(以上內容都屬於半導體製造的常規思路),WAIC晶片論壇上宋繼強和劉明都提到了一些頗具代表性的技術方向(雖然這可能與他們自己的業務方向或研究方向有很大的關係)。這些技術可能尚未大規模推廣,或者仍在商業化的極早期。

    (1)近記憶體運算和記憶體內運算:處理器性能和效率如今面臨的瓶頸,很大程度並不在單純的運算階段,而在資料傳輸和儲存方面——這也是共識。所以提升資料的傳輸和存取效率,可能是提升整體系統性能時,一個非常靠譜的思路。

    這兩年市場上的處理器產品用「近記憶體運算」(near-memory computing)思路的,應該不在少數。所謂的近記憶體運算,就是讓儲存(如cache、memory)單元更靠近運算單元。CPU的多層cache結構(L1、L2、L3),以及電腦處理器cache、記憶體、硬碟這種多層儲存結構是常規。而「近記憶體運算」主要在於究竟有多「近」,cache記憶體有利於隱藏當代電腦架構中延遲和頻寬的局限性。

    這兩年在近記憶體運算方面比較有代表性的,一是AMD——比如前文提到3D V-cache增大處理器的cache容量,還有其GPU不僅在裸晶內導入了Infinity Cache這種類似L3 cache的結構,也更早應用了HBM2記憶體方案。這些實踐都表明,儲存方面的革新的確能帶來性能的提升。

    另外一個例子則是Graphcore的IPU處理器:IPU的特點之一是在裸晶內堆了相當多的cache資源,cache容量遠大於一般的GPU和AI晶片——也就避免了頻繁的訪問外部儲存資源的操作,極大提升頻寬、降低延遲和功耗。

    近記憶體運算的本質仍然是馮紐曼架構(Von Neumann architecture)的延續。「在做處理的過程中,多層級的儲存結構,資料的搬運不僅僅在處理和儲存之間,還在不同的儲存層級之間。這樣頻繁的資料搬運帶來了頻寬延遲、功耗的問題。也就有了我們經常說的運算體系內的儲存牆的問題。」劉明說。

    構建非馮(non-von Neumann)架構,把傳統的、以運算為中心的馮氏架構,變換一種新的運算範式。把部分運算力下推到儲存。這便是記憶體內運算(in-memory computing)的概念。

    記憶體內運算的就現在看來還是比較新,也有稱其為「存算一體」。通常理解為在記憶體中嵌入演算法,儲存單元本身就有運算能力,理論上消除資料存取的延遲和功耗。記憶體內運算這個概念似乎這在資料爆炸時代格外醒目,畢竟可極大減少海量資料的移動操作。

    其實記憶體內運算的概念都還沒有非常明確的定義。現階段它可能的內涵至少涉及到在儲記憶體內部,部分執行資料處理工作;主要應用於神經網路(因為非常契合神經網路的工作方式),以及這類晶片具體的工作方法上,可能更傾向於神經型態運算(neuromorphic computing)。

    對於AI晶片而言,記憶體內運算的確是很好的思路。一般的GPU和AI晶片執行AI負載時,有比較頻繁的資料存取操作,這對性能和功耗都有影響。不過記憶體內運算的具體實施方案,在市場上也是五花八門,早期比較具有代表性的Mythic導入了一種矩陣乘的儲存架構,用40nm嵌入式NOR,在儲記憶體內部執行運算,不過替換掉了數位週邊電路,改用類比的方式。在陣列內部進行模擬運算。這家公司之前得到過美國國防部的資金支援。

    劉明列舉了近記憶體運算和記憶體內運算兩種方案的例子。其中,近記憶體運算的這個方案應該和AMD的3D V-cache比較類似,把儲存裸晶和運算裸晶疊起來。

    劉明指出,「這是我們最近的一個工作,採用hybrid bonding的技術,與矽通孔(TSV)做比較,hybrid bonding功耗是0.8pJ/bit,而TSV是4pJ/bit。延遲方面,hybrid bonding只有0.5ns,而TSV方案是3ns。」台積電在3D堆疊方面的領先優勢其實也體現在hybrid bonding混合鍵合上,前文也提到了它具備更高的互連密度和效率。

    另外這套方案還將DRAM刷新頻率提高了一倍,從64ms提高至128ms,以降低功耗。「應對刷新率變慢出現拖尾bit,我們引入RRAM TCAM索引這些tail bits」劉明說。

    記憶體內運算方面,「傳統運算是用布林邏輯,一個4位元的乘法需要用到幾百個電晶體,這個過程中需要進行資料來回的移動。記憶體內運算是利用單一元件的歐姆定律來完成一次乘法,然後利用基爾霍夫定律完成列的累加。」劉明表示,「這對於今天深度學習的矩陣乘非常有利。它是原位的運算和儲存,沒有資料搬運。」這是記憶體內運算的常規思路。

    「無論是基於SRAM,還是基於新型記憶體,相比近記憶體運算都有明顯優勢,」劉明認為。下圖是記憶體內運算和近記憶體運算,精準度、能效等方面的對比,記憶體內運算架構對於低精準度運算有價值。

    下圖則總結了業內主要的一些記憶體內運算研究,在精確度和能效方面的對應關係。劉明表示,「需要高精確度、高運算力的情況下,近記憶體運算目前還是有優勢。不過記憶體內運算是更新的技術,這幾年的進步也非常快。」

    去年阿里達摩院發佈2020年十大科技趨勢中,有一個就是存算一體突破AI算力瓶頸。不過記憶體內運算面臨的商用挑戰也一點都不小。記憶體內運算的通常思路都是類比電路的運算方式,這對記憶體、運算單元設計都需要做工程上的考量。與此同時這樣的晶片究竟由誰來造也是個問題:是記憶體廠商,還是數文書處理器廠商?(三星推過記憶體內運算晶片,三星、Intel垂直整合型企業似乎很適合做記憶體內運算…)

    (2)神經型態運算:神經型態運算和記憶體內運算一樣,也是新興技術的熱門話題,這項技術有時也叫作compute in memory,可以認為它是記憶體內運算的某種發展方向。神經型態和一般神經網路AI晶片的差異是,這種結構更偏「類人腦」。

    進行神經型態研究的企業現在也逐漸變得多起來,劉明也提到了AI晶片「最終的理想是在結構層次模仿腦,元件層次逼近腦,功能層次超越人腦」的「類腦運算」。Intel是比較早關注神經型態運算研究的企業之一。

    傳說中的Intel Loihi就是比較典型存算一體的架構,「這片裸晶裡面包含128個小核心,每個核心用於模擬1,024個神經元的運算結構。」宋繼強說,「這樣一塊晶片大概可以類比13萬個神經元。我們做到的是把768個晶片再連起來,構成接近1億神經元的系統,讓學術界的夥伴去試用。」

    「它和深度學習加速器相比,沒有任何浮點運算——就像人腦裡面沒有乘加器。所以其學習和訓練方法是採用一種名為spike neutral network的路線,功耗很低,也可以訓練出做視覺辨識、語言辨識和其他種類的模型。」宋繼強認為,不採用同步時脈,「刺激的時候就是一個非同步電動勢,只有工作部分耗電,功耗是現在深度學習加速晶片的千分之一。」

    「而且未來我們可以對不同區域做劃分,比如這兒是視覺區、那兒是語言區、那兒是觸覺區,同時進行多模態訓練,互相之間產生關聯。這是現在的深度學習模型無法比擬的。」宋繼強說。這種神經型態運算晶片,似乎也是Intel在XPU方向上探索不同架構運算的方向之一。

    (2)微型化矽光:這個技術方向可能在層級上更偏高了一些,不再晶片架構層級,不過仍然值得一提。去年Intel在Labs Day上特別談到了自己在矽光(Silicon Photonics)的一些技術進展。其實矽光技術在連接資料中心的交換機方面,已有應用了,發出資料時,連接埠處會有個收發器把電訊號轉為光訊號,透過光纖來傳輸資料,另一端光訊號再轉為電訊號。不過傳統的光收發器成本都比較高,內部元件數量大,尺寸也就比較大。

    Intel在整合化的矽光(IIIV族monolithic的光學整合化方案)方面應該是商業化走在比較前列的,就是把光和電子相關的組成部分高度整合到晶片上,用IC製造技術。未來的光通訊不只是資料中心機架到機架之間,也可以下沉到板級——就跟現在傳統的電I/O一樣。電互連的主要問題是功耗太大,也就是所謂的I/O功耗牆,這是這類微型化矽光元件存在的重要價值。

    這其中存在的技術挑戰還是比較多,如做資料的光訊號調變的調變器調變器,據說Intel的技術使其實現了1,000倍的縮小;還有在接收端需要有個探測器(detector)轉換光訊號,用所謂的全矽微環(micro-ring)結構,實現矽對光的檢測能力;波分複用技術實現頻寬倍增,以及把矽光和CMOS晶片做整合等。

    Intel認為,把矽光模組與運算資源整合,就能打破必須帶更多I/O接腳做更大尺寸處理器的這種趨勢。矽光能夠實現的是更低的功耗、更大的頻寬、更小的接腳數量和尺寸。在跨處理器、跨伺服器節點之間的資料互動上,這類技術還是頗具前景,Intel此前說目標是實現每根光纖1Tbps的速率,並且能效在1pJ/bit,最遠距離1km,這在非本地傳輸上是很理想的數字。

    還有軟體…

    除了AI晶片本身,從整個生態的角度,包括AI感知到運算的整個鏈條上的其他組成部分,都有促成性能和效率提升的餘地。比如這兩年Nvidia從軟體層面,針對AI運算的中間層、庫做了大量最佳化。相同的底層硬體,透過軟體最佳化就能實現幾倍的性能提升。

    宋繼強說,「我們發現軟體最佳化與否,在同一個硬體上可以達到百倍的性能差距。」這其中的餘量還是比較大。

    在AI開發生態上,雖然Nvidia是最具發言權的;但從戰略角度來看,像Intel這種研發CPU、GPU、FPGA、ASIC,甚至還有神經型態運算處理器的企業而言,不同處理器統一開發生態可能更具前瞻性。Intel有個稱oneAPI的軟體平台,用一套API實現不同硬體性能埠的對接。這類策略對廠商的軟體框架構建能力是非常大的考驗——也極大程度關乎底層晶片的執行效率。

    在摩爾定律放緩、電晶體尺寸微縮變慢甚至不縮小的前提下,處理器架構革新、異質整合與2.5D/3D封裝技術依然可以達成1,000倍的性能提升;而一些新的技術方向,包括近記憶體運算、記憶體內運算和微型矽光,能夠在資料訪存、傳輸方面產生新的價值;神經型態運算這種類腦運算方式,是實現AI運算的目標;軟體層面的最佳化,也能夠帶動AI性能的成倍增長。所以即便摩爾定律嚴重放緩,AI晶片的性能、效率提升在上面提到的這麼多方案加持下,終將在未來很長一段時間內持續飛越。這第三(四)次科技革命恐怕還很難停歇。

    資料來源:https://www.eettaiwan.com/20210726nt61-ai-computing/?fbclid=IwAR3BaorLm9rL2s1ff6cNkL6Z7dK8Q96XulQPzuMQ_Yky9H_EmLsBpjBOsWg

  • 產品內涵的五個層次 在 台灣物聯網實驗室 IOT Labs Facebook 的最讚貼文

    2020-10-21 18:27:58
    有 0 人按讚

    汽車軟體深度報告:汽車軟體產業鏈及未來趨勢分析

    北京新浪網 10-01 20:00
    來源:未來智庫

    關鍵結論

    電動智能趨勢下,汽車逐步由機械驅動向軟體驅動過渡。近年 SDV(軟體定義汽車)概念逐步被行業認知,根源在於「汽車如何體現差異化」問題的變遷,隨著電 動化帶來的汽車電子構架革新,汽車硬體體系將逐漸趨於一致,軟體成為定義 汽車的關鍵,行業更具想像空間。即造車壁壘已經由從前的上萬個零部件拼合 能力演變成將上億行代碼組合運行的能力。本文通過對汽車軟體行業的系統性 梳理,幫助讀者把握行業成長中的投資機會。

    我們提出零部件賽道三維篩選框架,基於起點(單車價值量)-持續時間(產品生 命周期)-斜率(產品升級速度)三維體系評價細分零部件的市場空間,軟體平均單車價值量由傳統車的 200 美元,提升至 2025 年新能源汽車的 0.23 萬美元,進 一步至 2025 年新能源汽車的 1.8 萬美元。未來十年軟體市場復合增速為 9%,2030 年 500 億美元空間,57%的增量來自於 ADAS 及 AD 軟體。

    軟體如何定義汽車價值?百年汽車工業面臨由機械機器向電子產品過渡的新變 局。汽車「駕駛感」及車機 APP 化的功能實現發生在我們看不到的隱秘角落— —上百的電子控制單元循環執行軟體代碼功能塊,通過高性能的中央計算單元, 與硬體體繫結合以解析駕駛員需求,邏輯運算後向機械部件發送相應響應指令。

    汽車軟體成為未來汽車構架重要組成部分。而整車電子電氣構架提供的硬體、 操作系統實現的管理功能、基礎軟體平台構架實現的抽象化為 SDV 不可或缺的 三大關鍵部分,軟硬體的分離(研發分離、功能發佈分離)成為實現 SDV 基礎。

    發展史與整車廠戰略。汽車軟體隨產業技術升級持續迭代:1970 年代的簡單發 動機控制演算法→1980 年代中央計算單元創新→1990 年代信息娛樂系統創新→ 2000 年代安全系統→2010 年代開始向全新汽車電子構架及軟體系統演變。不 同於以前依靠多個 ECU 由部件供應商主導的無獨立軟體產品概念時代,主機廠 愈發需具備軟體的管理能力及核心軟體設計能力。整車廠中特斯拉引領車載軟 件行業最高技術,大眾重金重塑軟體架構,整車廠關乎開發周期、賦予附加值、 構架實現、軟體變現模式以及操作系統切入等問題上仍未進行標準化定義,卻 為影響行業發展的關鍵所在。

    產業鏈機遇。新科技、軟體公司湧入帶動供應鏈管理的扁平化、邊界模糊化, 帶動供應鏈生態體系變革。供應模式上,預計 Tier1 與整車廠之間將採取兩種合作方式,其一,整車廠主導軟體,Tier1 負責硬體生產;其二,整車廠定義軟 件框架規範標準,Tier1 供應符合標準的相關軟體。盈利模式上,偏向製造業邏 輯的大部分汽車硬體由於堆橋數量將受到限制,終將會進入產業穩態階段,往 介面及功能上的標準化發展,維持較穩定的利潤率水平;軟體由於迭代周期快 且行業特性帶來的標準化程度低,賦予汽車新盈利模式。現階段特斯拉三大付 費模式打開車企軟體變現想像空間,開發基礎平台收許可費、供應功能模塊按 Royalty 收費及定製化的二次開發均為未來軟體供應商主流打法。

    推演的 5 大未來趨勢。汽車終將成為搭載「差異化元素」的通用化平台。一方 面,ECU 功能模塊里循環迭代的代碼驅動汽車執行動作反饋;另一方面,車載 娛樂信息系統 APP 化吸引第三方開發者入場。海量數據將在車內流轉,關於賦 能域控制器、定位車機系統的各項軟體性能升級,包括功能中心化、乙太網應 用、整車 OTA 升級、信息交互上雲及深層次的信息安全防禦等,或將帶來汽車 軟體一系列發展機遇。

    SDV 新階段:軟體如何定義汽車價值

    百年汽車工業面臨由機械機器向電子產品過渡的新變局。跨入駕駛室,安靜的 啟動、柔中帶剛的加速、平穩過渡的剎車等為代表的汽車「駕駛感」逐步由機 械驅動向軟體驅動過渡,這一套功能的實現發生在我們看不到的隱秘角落—— 上百的電子控制單元循環執行軟體代碼功能塊,通過高性能的中央計算單元, 與硬體體繫結合以解析駕駛員需求,邏輯運算後向機械部件發送相應響應指令。近年來,SDV(Software Define Vehicles,即軟體定義汽車)概念逐步被整車 廠認知,根源在於「汽車如何體現差異化」問題的變遷,隨著電動化帶來的汽 車電子構架革新,汽車硬體體系將逐漸趨於一致,整車廠很難在硬體上打造差 異化,此時軟體成為定義汽車的關鍵,即造車壁壘已經由從前的上萬個零部件 拼合能力演變成將上億行代碼組合運行的能力。

    汽車軟體為未來汽車構架重要組成部分

    汽車軟體與硬體體系發生分化。近幾十年隨汽車構架升級、性能與用戶操作感 需求逐年提升,汽車軟硬體數量爆發,並愈發複雜化。在硬體方面,電控單元 數量迅速增長,於 2010 年面臨增速放緩的拐點(主要受整車成本與控制器數 量平衡的影響),2025 年隨行業集中式電子電氣架構趨勢持續推進,電控單元 邁向集成化從而控制器數量將較為平穩。在軟體方面,各大主機廠軟體功能體 系越做越大,其中「功能函數」作為軟體體系中的最小單元,其單車數量持續 增大,控制器內部的功能函數複雜度提升,疊加智能座艙新增的應用型軟體需 求,軟體重要性愈發凸顯。2010 年(增速放緩的硬體數量 VS. 急劇攀升的軟 件數量)與 2025 年(硬體產業成型 VS.軟體加速迭代塑造汽車差異性)為汽車 軟硬體發展中兩個重要的分水嶺。

    汽車複雜的運作需軟硬體結合進行。無論是駕駛艙對汽車電子功能的調用,抑 或汽車與駕駛員和環境互動,均可抽化為軟硬體密切配合的模型,即駕駛員的 需求與汽車功能反應之間存在著複雜的控制鏈條:駕駛員通過機械硬體或部分 虛擬按鈕輸入期望(例如通過車載按鈕、踏板等輸入型機械硬體給出期望)→ 駕駛員動作轉換為電子信號傳入電控單元→執行器控制控制對象達到駕駛員的 需求→感測器向電控系統持續反饋控制達成的具體情況,軟體邏輯持續運算向 執行器發出指令,最終達成駕駛員的期望要求。以剎車輔助駕駛為例,在駕駛 員剎車信號不足或過慢的情況下,內置的一套軟體邏輯將被激活,讓制動系統 自動做出減速相應。在電控單元中快速進行的一次次軟體迭代循環,為汽車正 常運作的基石。

    SDV 研發工具鏈仍以 V 流程為主。汽車研發系統過程能拆解為軟體、硬體、執 行器及感測器 4 大部分。與傳統車相同,V 模型為車企主流的開發流程,從產 品設計、子系統設計、控制器驗證及系統驗證等階段均有相對應的工具鏈進行 支撐,涵蓋從系統到軟體以及集成后的一系列測試等內容。SDV 模式下對工具 鏈的應用具部分變化:一方面,硬體愈發通用化,研發會集中在作為功能集群 的 ECU 開發上;另一方面,車的各種功能實現盡量靠軟體實現。

    Step 1:產品設計階段。此階段核心為分析和拆解需求。由消費者的需求、車 型安全及性能的剛性需求以及法律法規需求定義出軟體的基礎構架,以及定義 出各大功能模塊。

    Step 2:子系統設計階段。步驟為由系統構架需求定義軟硬體構架設計。關乎 軟體系統部分在這一步雛形初顯,能將技術問題具體化,例如定義軟體能實現 的功能、軟體功能模塊的分離、如何跟對應的控制器配合等。

    Step 3:控制器驗證階段。完成硬軟體及控制器集成,代碼成型并迭代測試。

    Step 4:系統驗證階段。測試軟硬體在整車上的裝載使用情況。

    SDV不可或缺的三大關鍵部分——電子電氣架構、操作系統、軟體平台

    整車電子電氣構架為硬體基礎。汽車電子電氣架構(Electronic and Electrical Architecture,文中簡稱 EEA)最初由德爾福公司提出,以博世經典的五域分類 拆分整車為動力域(安全)、底盤域(車輛運動)、座艙域/智能信息域(娛樂信 息)、自動駕駛域(輔助駕駛)和車身域(車身電子)等 5 個子系統。後續演變 成車企所定義的一套整合方式,可形象看作人體結構中的骨架部分,後續需要 「器官」、「血液」和「神經」進行填充。具體到汽車上來說,EEA 把汽車中的 各類感測器、ECU(電子控制單元)、線束拓撲和電子電氣分配系統完美地整合 在一起,完成運算、動力和能量的分配,實現整車的各項智能化功能。博世曾 經將汽車電子電氣架構劃分為三個大階段:傳統分散式電子電氣架構-域控制器 電子電氣架構-集中式電子電氣架構:

    (1)傳統分散式的電子電氣架構:主要用在 L0-L2 級別車型,此時車輛主要由 硬體定義,採用分散式的控制單元,專用感測器、專用 ECU 及演算法,資源協同 性不高,有一定程度的浪費。產業鏈分工上,車型架構由整車廠定義,實現核 心功能的 ECU 及其軟體開發由 Tier 1 完成。

    (2)域控制器電子電氣架構:從 L3 級別開始,通過域控制器的整合,分散的 車輛硬體之間可以實現信息互聯互通和資源共享,軟體可升級,硬體和感測器 可以更換和進行功能擴展。屬於過渡形態,ECU 仍承擔大部分功能實現,整車 廠將參與部分域控制器的開發。

    (3)集中式電子電氣架構:以特斯拉 Model 3 領銜開發的集中式電子電氣架構 基本達到了車輛終極理想——也就是車載電腦級別的中央控制架構。此時集成 化趨勢將消減大部分 ECU,主機廠將逐漸主導原本屬於 Tier 1 參與的軟體部分 (預計以直接開發模式或定義規範標準后讓供應商參與),其目標是設計簡單的 軟體插件和實現物理層變化的本地化。

    操作系統實現管理功能。車載操作系統(Car-OS)承擔著管理車載電腦硬體與 軟體資源的程序的角色。20 世紀 90 年代伊始,汽車上基於微控制晶元的嵌入 式電子產品的應運興起,需加入相關的軟體架構以實現分層化,即汽車電子產 品均需要搭載嵌入式操作系統。從產品品類上,汽車電子產品可歸納為兩類, 一是以儀錶,娛樂音響、導航系統為代表的車載娛樂信息系統;二是主管車輛 運動和安全防護的電控裝置。兩者對比而言,電控系統更強調安全性和穩定性, 因此應用於電控單元 ECU 的嵌入式操作系統標準更為嚴格。未來操作系統發展 面臨兩大趨勢,一是以 OSEK、AUTOSAR 為典型代表的操作系統標準聯盟將 定義統一的技術規範;二是智能網聯趨勢下數據融合度提升,由於各個部件的 安全標準等級不一從而整車上存在多種操作系統的運用,通常引入虛擬機管理 (可提供同時運行多個獨立操作系統的環境),如在智能座艙 ECU 中同時運行 Android(車載電子操作系統)和 QNX(電控操作系統)。

    基礎軟體平台構架是實現抽象化的關鍵所在。從定義上,軟體架構為軟體系統 定義了一個高級抽象(軟體表達行為、屬性、相互作用、集成方式及約束均在 此架構上體現)。而 SDV 核心內涵是能夠通過軟體作用,動態地改變構架網路 節點之間的聯結或分離狀態,從而定義汽車不同的功能組成。基礎軟體平台需 具備三方面要求:一是可靠性,能保證汽車功能實現的實時和安全;二是通用 性,適用於不同車型和不同的操作系統上;三是網構架節點易於更換聯結方式。AUTOSAR 是全球各大整車廠、供應商聯合擬定開放式標準化的軟體架構,其 使得不同結構的電子控制單元的介面特徵標準化,從而軟體具更優的可擴展性 及可移植性,降低重複性工作,縮短開發周期。

    汽車軟硬體分離為 SDV 基礎

    軟硬體的分離涵蓋研發分離、功能發佈分離兩方面。軟硬體分離為實現 SDV 基 礎,電動化趨勢簡化造車流程,未來汽車硬體的研發、製造更偏向於流水線過 程,而軟體發展逐步具互聯網的快速迭代趨勢傾向。汽車軟硬體分離概念由此 而生,其包含兩方面內容,一方面,由於開發周期(汽車硬體 5-7 年的開發周 期 vs. 軟體 2-3 年的開發周期)及技術領域(偏向製造業 vs.偏向互聯網)的 差別,汽車軟硬體在開發上、供應上逐漸分開。另一方面,軟體的功能發佈可 以與車型完成分離,新軟體不僅適用於新車,仍可快速發佈到已量產車型上, 增強車型硬體的使用長尾期。

    軟硬體分離在功能升級及工藝裝配上具優勢。基於軟硬體分離的新構架體系在 車型功能升級及製造模式上發生變化。功能升級上,新的擴充功能由軟體定義 通過雲端直接升級,無需再在硬體層面進行驗證;工藝製造上,與軟體分離后 的電子電氣構架不同於現階段「八爪魚」式的複雜構造,更易於自動化裝配。

    當前車企實現更新的方式——硬體冗餘,後續依靠更新升級。

    (1)硬體預置:傳統汽車定價由硬體及性能決定。而 SDV 模式下,相同硬體 的車型通過不同的軟體配置決定車與車之間不同的功能與體驗。車企在車型設 計之初需提前定義軟硬體,SOP 時將具備擴展功能的冗餘硬體預裝,後續將通 過付費型軟體升級或者功能開放回收成本。以特斯拉的 AutoPilot 為例,冗餘的 預設硬體將通過後期持續的軟體升級調動功能,為新創收模式。

    (2)性能預置:性能預置分為兩個方面,控制器算力預留,為更多的軟體功能 和演算法預留空間。隨智能駕駛趨勢,車載算力大幅提升,由於無法預估後續所 需算力的極限,通常在實際情況中會預留算力空間。性能預留,通常在各性能 硬體上做事先預留,以應付如加速性能提升,續航里程提升,圖像的清晰度提 升,音響效果提升等升級事項。例如 2018 年 6 月,美國權威雜誌《消費者報 告》發現, Model3 剎車距離比皮卡福特 F-150 要長。ElonMusk 接受了《消 費者報告》的批評並承諾通過 OTA 儘快解決此問題。此後在不到一周時間, 特斯拉通過一次 OTA 升級解決了該個問題,《消費者報告》重新測試后發現, 升級后的 Model3 剎車距離縮短了 5.8 米。

    追溯發展史:汽車軟體的前世

    汽車軟體隨產業技術升級持續迭代:1970 年代的簡單發動機控制演算法(軟體嵌 入應用模式)→1980 年代中央計算單元創新(顯示車輛基本信息)→1990 年 代信息娛樂系統創新(GPS、自適應巡航控制出現)→2000 年代安全系統(出 現高級駕駛員輔助駕駛概念)→2010 年代開始向全新汽車電子構架及軟體系統 演變(電子化和軟體化,出現無人駕駛概念)。

    1980 年代之前,汽車僅搭載車燈、啟動機、火花塞等簡易電子設備,並未運用 任何軟體部分。整車電子設備通信及電能供給依靠銅導線傳輸。部分豪華車裝 置僅由收音機為核心部件的車載娛樂系統。

    1970 年代,發動機系統具備演算法功能。出現點火系統、電子燃油噴射等裝置, 軟體直接嵌入應用使用,軟體之間無關聯具獨立性。

    1980 年代隨 IT 技術起步,電子電氣化革命在傳統機械部件上進行創新。油耗 及行駛距離等信息可在車內做電子化顯示,搭載軟體的電控單元開始出現,如 防抱死系統 ABS、車輛穩定系統 ESP、電子變速箱等電子系統誕生,新功能由 嵌入式軟體的演算法控制,CAN 及 LIN 匯流排解決不同控制器之間的通信問題。

    1990 年代,信息娛樂系統持續創新,軟體成為汽車重要部分。汽車軟體構架愈 發分散,出現 GPS 及自適應巡航控制等較高階的電子組件及軟體。同時,不同 控制器間持續延長的通信匯流排成為車企後續進行成本管控的重要一環。

    2000 年代,安全系統推出,軟體開始主導汽車創新。「高級輔助駕駛概念」在 此階段興起,例如駕駛員未及時反應的障礙物可以系統運算下汽車自發停車規 避。此時的軟體系統更為高階,行業引入 AUTOSAR 標準軟體構架。車型方面, 電子化特徵明顯,賓士 S 級轎車車型電控單元超 80 個,通信匯流排近 2000 條。

    2010 年開始,汽車電動化帶來電子電氣構架、汽車軟體新變局。智能駕駛、車 聯網概念引入,造車新勢力、互聯網企業等多玩家參與進造車環節,以特斯拉 為代表的整車廠重新定義軟體系統,新創 OTA 新升級模式。

    產業鏈機遇:SDV重塑市場格局

    新科技、軟體公司的湧入帶動了供應鏈管理的扁平化、邊界模糊化,推動產業 競爭要素髮生本質變化,帶動供應鏈生態體系變革。在傳統封閉式供應鏈的汽 車製造商在整條供應鏈中只負責一個環節,主要擔任汽車研發製造的角色。而 在新生態體系中,汽車軟硬體分離重塑產業格局,主機廠、供應商以及互聯網 企業均參與進汽車新生態體系,從汽車全生命周期覆蓋整個產業鏈條。

    供應模式轉變,主機廠、供應商及互聯網企業入局

    SDV 軟體開發模式下,不同於以前依靠多個 ECU 由部件供應商主導的無獨立 軟體產品概念時代,主機廠愈發需具備軟體的管理能力及核心軟體設計能力, 並引入供應商及互聯網企業參與此環節。在軟體領域,預計未來 Tier1 與整車 廠之間將採取兩種合作方式:

    其一,整車廠主導整車軟體部分,Tier1 負責硬體生產。在傳統車企巨頭入場燃 油車領域 100 多年的歷史里,造車流水線仍以機械製造為主,Tier1 以分擔主機 廠重資產角色存在,通常與整車廠車型生產周期形成相應配套。而在智能化時 代,軟體主要以輕資產模式運轉,出於掌握核心技術考量通常為主機廠所主導。其二,整車廠定義軟體框架規範標準,Tier1 供應符合此標準的相關軟體。瞬息 萬變的技術導致車企研發容錯率下降。尤其對新入場的造車勢力而言,若在前 1~2 款車連續失敗,大概率將面臨淘汰。因此對部分在技術儲備、研發及資金 實力較弱的主機廠而言,可在其定義軟體標準後由 Tier1 進行對應的開發配套。

    盈利模式轉換,將逐漸由硬體逐漸向軟體傾斜

    硬體發展具天花板效應,軟體持續賦予車型新附加值。以經過 15 年發展的手機 產業鏈為例,硬體體系隨處理器性能持續提升、攝像頭像素及攝像頭個數持續 增加、屏幕材質與大小升級,其產業增速趨緩,硬體盈利模式逐漸固化。而隨 蘋果 iPhone 產品橫空出世定義軟體附加值新模式,小米做低手機硬體利潤並將 其定位於功能載體,至此軟體與服務成為手機產業鏈盈利模式的重要來源。對 標至汽車,偏向造業模式的傳統車具較固定的盈利模式,從而車企具較穩定的 利潤率,而目前在汽車電子電氣化架構趨勢下,軟體有多樣性應用的空間,無 論硬體抑或軟體體系均包含升級或新生環節,盈利模式尚未定型。而長遠來看, 偏向製造業邏輯的大部分汽車硬體由於堆橋數量將受到限制,終將會進入產業 穩態階段,往介面及功能上的標準化發展,維持較穩定的利潤率水平;軟體由 於迭代周期快且行業特性帶來的標準化程度低,賦予汽車新盈利模式。

    特斯拉已構築初階車企軟體盈利模式。矽谷出身的特斯拉已證實一條軟體大規 模變現的可行性路徑,分為 FSD 付費、軟體應用商城及訂閱服務三種模式:

    (1)FSD 付費模式:特斯拉車型在售出后標配 Autopilot 輔助駕駛功能,而實 現自動泊車、智能召喚的 FSD 全自動駕駛功能需付費使用。FSD 單價並未固 定,過去一年內特斯拉 FSD 售價經過三次提價(國外 8000 美元,國內 6.4 萬 元),成為特斯拉利潤的重要來源。以 2019 年 36.7 萬輛的交付量計算(30 萬 輛 Model3,6.7 萬輛 ModelS/X),假定 35%的 FSD 裝載率,6500 美元的 ASP, 則軟體收入近 8.3 億美元(其毛利率大概率高於 80%)。

    (2)軟體應用商城:類似手機應用商城,可即時購買性能升級軟體包(包括輔 助駕駛功能、FSD 及各類性能升級包),通過 OTA 進行升級。

    (3)訂閱服務:2019Q4 推出定價 9.9 美元/月的車聯網高級連接服務,包括流 媒體、卡拉 OK、影院模式等功能。2020Q2,特斯拉宣布計劃在年底推出定價 100 美元/月的 FSD 套件訂閱服務,為 FSD 的使用提供另一選擇。

    對於第三方汽車軟體供應商,盈利模式仍不明晰,參考手機產業模式及目前行 業發展情況,預計其未來有望採用以下 3 種主流盈利模式:

    (1)受主機廠委託,開發基礎平台並收取許可費用。

    (2)供應功能模塊按汽車出貨量 Royalty收費(按銷售量和單價一定比例分成)。

    (3)基於車企平台為其做定製化的二次開發,並收取費用。

    市場空間:未來十年軟體市場復合增速為 9%,2030 年 500 億美元空間

    軟體市場進入快速擴張期。包括系統軟體和應用軟體在內的軟體系統將在智能 化趨勢中,由低基數實現快速擴張,據麥肯錫預計,軟體在 D 級車整車價值中 所佔的比例有望在 2030 年達到 30%,將成為未來汽車行業最重要的領域。

    市場規模方面:電動智能化趨勢下硬體發展周期領先於軟體,增量市場彈性小 於軟體。據麥肯錫,2020-2030 年汽車軟體和 E / E 架構市場預計復合年增長 7%, 從目前的 2380 億美元增長至 2030 年的 4690 億美元。拆分來看,2020-2030 年軟體市場規模(操作系統、中間件及功能軟體)復合增速為 9%(由 2020 年 的 200 億美元,增長至 2025 年的 370 億美元,進一步增長至 2030 年的 500 億美元)。2020-2030 年動力系統市場規模復合增速為 15%,主要受動力源更 迭拉動。在硬體方面,ECU/DCU、感測器以及其他電子元件的復合增速分別為 5%、8%及 3%。軟體的應用帶動汽車集成及驗證環節革新,2020-2030 年集成 及驗證市場規模復合增速為 10%。

    單車價值量方面:汽車軟硬體實現分離后兩者的發展模式將出現分化。其中硬 件體系的價值量隨模塊化、集成化發展,在規模化降本過程中其單車價值量增 長將較為平緩或略下降態勢;而軟體體系迭代速度快,在其對附加值模式的持 續探索下,價值量將持續上行。據麥肯錫預計,汽車中軟體單車價值量增速最 大,純電動車型將由 2025 年的 0.23 萬美元增長 7倍至 2030 年的 1.82 萬美元。同期 ECU/DCU、感測器、動力系統(除電池)及其他電子器件增速分別為 37%、 27%、-7%、5%。此外,在豪華車及主打智能化車型上,軟體的價值量佔比及絕對值將處較高水平。

    汽車結構方面:全球汽車軟體與硬體內容結構正發生著重大變化,軟體驅動逐 漸成為主導。據麥肯錫預測,2016年軟體驅動佔比從 2010年的 7%增長到 10%, 預計 2030 年軟體驅動的佔比將達到 30%,屆時硬體驅動佔比僅為 41%。

    軟體內容方面:應用型軟體為汽車軟體發展主力,ADAS 及 AD 軟體為主要增 量。據麥肯錫預測,2020-2030 年一體化軟體、驗證型軟體及功能性軟體市場 規模復合增速分別為 9%、10%、10%,其中功能性型軟體佔據汽車軟體半壁江 山(結構上佔比 6 成)。2020-2030 年按軟體功能劃分的市場規模中,最大增量 為 ADAS 及 AD 軟體,佔市場規模增量的 57%;信息娛樂、安全及聯網相關軟 件次之,占 20%;操作系統和中間件、車身和動力系統相關軟體、動力總成和 底盤相關軟體分別佔據 10%、10%、2%。

    整車廠戰略思路:軟體為必爭之地

    在汽車構架三步走過程中——傳統分散式電子電氣架構-域控制器電子電氣架 構-集中式電子電氣架構,主機廠將逐漸主導原本由 Tier 1 包攬的定製軟體部分, 軟硬體進行拆分發包的趨勢近年來愈發明顯。車企和互聯網軟體企業紛紛入局, 特斯拉引領車載軟體行業最高技術,大眾計劃緊跟,組建 5 千名軟體工程師開 發旗下所有車型統一的操作系統「vw.OS」,汽車屬性已然將逐漸由代步工具轉換 為移動的第三空間(例如未來的娛樂、辦公場所)。現階段整車廠與 Tier 1 的合 作模式仍在探索中,關乎開發周期、賦予附加值、構架實現、軟體變現模式以 及操作系統切入等問題上仍未進行標準化定義,卻為影響行業發展的關鍵所在。

    特斯拉在軟體層面最大亮點是OTA 升級模式

    特斯拉創整車 OTA 升級先河。其升級主要在兩個方面:一方面,將軟體升級發 送到車輛內的車載通訊單元,更新車載信息娛樂系統內的地圖和應用程序以及 其他車機類軟體。例如升級車機的運算速度、屏幕操作流暢度,運行高畫質游 戲以及增強可視化效果等,屬於駕駛艙內「看得見」的升級。另一方面,以直 接將軟體增補程序傳送至有關的電子控制單元(ECU),為 Autopilot 持續引入 及優化新功能。例如提升時速、修復駕駛漏洞等。軟硬體分離開發、硬體性能 冗餘的設計思路是實現 OTA 的必要條件,隨法規放開、演算法逐漸完善,特斯拉 以 OTA 升級軟體模式逐步解鎖新運用功能。此外,特斯拉顛覆車載軟體盈利模 式,以 6.4 萬元的 FSD 選裝軟體包定價、2000 美元的「 Acceleration Boost」 動力性能加速升級包獨創軟體付費的商業模式。

    集中式電子電氣架構提供 OTA 基礎。特斯拉的整車 OTA 升級需要其超前的汽 車電子電氣架構做配套配合,傳統車企分散式電子電氣架構中 ECU 數量龐大, 單個 ECU RAM 內存容量有限,同時供應商的底層代碼和嵌入軟體差別較大, 難以完成整車功能的統一更新。而特斯拉採用集中式的電子電氣架構,分為 CCM(中央計算模塊,整合ADAS 及 IVI 域功能)、BCM LH(左車身控制模塊)、 BCM RH(右車身控制模塊)三個部分,2015 款的 Model S 大約有 15 個 ECU, 此後發佈的 Model 3 則直接通過 Hardware3.0 和三個車身控制器執行來控制行 駛、轉向和停止等功能,集中的架構和高算力的控制模塊支撐了特斯拉整車 OTA 升級。目前特斯拉已經可以通過 OTA 的方式實現改善車輛的底盤、信息娛樂、 電池續航、ADAS 乃至自動駕駛等多項功能,讓車的功能迭代更加靈活和便捷, 最終變成一台可以不斷進化的智能終端。

    OTA 升級過程需數據網路配合,其安全性尤為重要。特斯拉 OTA 升級即指將程序從主機廠伺服器更新到指定 ECU,主要步驟為:車輛與伺服器通過蜂窩網 絡進行安全連接,將待更新的固件傳輸至車輛遠程信息處理系統及 OTA Manager,OTA Manager 將固件分發至需更新的 ECU 並管理更新過程,更新 完畢後向伺服器發送確認信息。整個 OTA 升級過程面臨安全考驗,騰訊科恩實 驗室曾實現對特斯拉的無物理接觸遠程攻擊,並將漏洞情況報告給特斯拉以做 修復。OTA 模式的信息安全(信息包加密及隔離)及功能安全(車輛狀態信息 傳輸)需得到足夠保障。

    特斯拉 OTA 依然屬於行業標杆,傳統車企追趕特斯拉在研發 OTA 過程中仍面 臨困境。具先發優勢的特斯拉在 OTA 對動力和底盤系統有效升級層面、用戶體 驗、系統成熟和穩定性方面均處於行業領先地位,引領傳統車企和造車新勢力 跟隨布局,但仍面臨較多困難,體現在三個方面:其一,需投入較大的人力、 物力、財力,考驗主機廠研發實力;其二,OTA 打破固有的經銷商提供增值服 務的模式,利潤蛋糕重新切分具一定阻力;其三,OTA 安全性和穩定性上要求 較高,主機廠需理解部分互聯網領域技術。

    大眾重塑軟體架構,推行 vw.OS 規劃

    曾囿於軟體問題車型延遲交付。在特斯拉軟體技術快速迭代壓力下,大眾加緊 開發基礎架構,或因為開發過於倉促等因素,曾多次發生軟體問題,如新一代 純電動汽車 ID.3 因為軟體開發延遲造成交付時間推遲,新款高爾夫也曾因為倉 促上馬新技術(全數字座艙)於車輛中發現軟體問題而臨時停售。

    大眾已著手構建軟體架構體系。為抗衡特斯拉及科技巨頭等新勢力的布局,大 眾愈發重視汽車軟體開發業務。2020 年 1 月 1 日起,大眾集團所有軟體開發工 作被集中至獨立新部門——Car.Software(2019 年 6 月份成立)。Car.Software 分為「互聯汽車和設備平台」「智能車身和駕駛艙」「自動駕駛」「車輛運動和能源」以 及「數字業務和出行服務」五個業務單元,其所有功能都將用於開發 vw.OS 車機 系統。一系列車型軟體問題出現后,寶馬製造工程高級副總裁 Dirk Hilgenberg 加入成為 Car.Software 負責人。此外大眾也對智能駕駛研發體系進行重組,如 拆分 L4 智能駕駛研發部分、合併各部門自動輔助駕駛研發。

    大眾軟體計劃的內在驅動力來源於兩個方面:

    其一:汽車軟體代碼愈發複雜。大眾曾做過統計,汽車軟體的行代碼遠大於其 他應用終端(汽車軟體 1 億行代碼 VS. Facebook 8 千萬行代碼 VS. PC 電腦 4 千行代碼 VS. 飛機 2.5 千萬行代碼 VS. 谷歌瀏覽器 1 千萬行代碼),是智能 手機的 10 倍。2020 年整車代碼量有望超 2 億行,達 L5 級智能駕駛代碼量有 望超 10 億行。

    其二:汽車成為複雜的聯網設備,軟體將扮演重要角色。在大眾傳統車型上僅 需約 70 個 ECU,功能相對較為分散。而在未來的集成化計算單元體系下,軟 件的重要性將愈發凸顯,與 ECU 配合定義汽車功能,涵蓋操作系統、基礎軟體 以及其他應用軟體的車載軟體大眾均會自主開發。

    大眾對研發投入、人員安排及軟體化目標做出規劃:

    投入方面,大眾集團將在未來三到五年內投入 90 億美元(約合人民幣 630 億 元)資金進行軟體開發。員工方面,不同於製造環節的裁員情況,數字化部門 員工由 5000 名再次擴編至 1 萬人。軟體化目標方面,內部研發軟體佔比由不 足 10%提升到 60%以上,同時提出「8 合 1 目標」(將現有的 8 個電子平台整 合為一個平台)。2025 年前,所有新車型將使用 vw.OS 操作系統和定製的雲服 務(大眾與微軟合作),軟體在汽車創新中佔據 90%份額。

    汽車軟體的未來推演

    若考慮對汽車開發的終極假想,汽車最終會成為搭載「差異化元素」的通用化 平台。以目前視角,差異化元素涵蓋智能座艙(人與車互動的生態系統,包括 包括全液晶儀錶、車聯網、車載信息娛樂系統 IVI、ADAS、HUD、AR、AI、全 息、氛圍燈、智能座椅等方面)及智能駕駛(L1~L5 級智能駕駛等級)領域。而差異化元素主要由車型全新的電子電氣架構和軟體兩方面定義,一方面,ECU 里的功能模塊持續循環迭代的代碼驅動汽車執行最適宜的動作反饋;另一方面, 車載娛樂系統越發 APP 化吸引較多第三方開發者入場。海量數據在車內流轉, 其深層次的安全防禦(檢測和防禦網路攻擊)愈發重要。經過產業趨勢推演, 提出以下 5 大汽車軟體趨勢預判。

    趨勢 1.往車輛集中式電子電氣架構發展,功能中心化

    集中式電子電氣架構為終極構架體系。以域控制器為代表產品的跨域集中式電 子電氣架構再往後走,就是集成化程度更高的車輛集中式電子電氣架構—— Vehicle computer and zone concept(車載電腦),終極階段為 Vehicle cloud computing(車雲計算)。未來車輛通過用高性能的中央計算單元取代現在常用 的分散式計算的架構,將實現「軟體定義車輛」的終極目標。再此過程 ECU 的整合過程持續提升,應用程序完全從硬體中抽象出來,控制單元概念最終被 智能節點計算網路接棒。

    趨勢2.更高傳輸性能的乙太網作為主幹網路承擔信息交換任務

    乙太網作為車內通信網路大勢所趨。隨車內數據傳輸總量及對傳輸速度要求持 續提升,以及在跨行業的標準協議需求驅動下,支撐更多應用場景、更高速的 乙太網有望取代 CAN(主要用於車載控制數據傳輸,最大帶寬 1MB/s)、LIN(低 成本通用串列匯流排,主要用於車門、天窗及座椅控制)、Most(主要用於發數據 包)等傳統汽車車內通信網路成為車內通信網路。在對同樣的 ECU 的軟體進行 更新時,CAN 模式下的傳輸時間是乙太網的 30 倍。因此,乙太網的運用趨勢 得到主流整車廠(如寶馬、通用等)及半導體公司(如博通、恩智浦等)認可, 均推出符合乙太網的應用元件。未來趨勢上,乙太網並非能一蹴而就完全替代 CAN、LIN,預計多種通信模式將在較長一段時間內共存——CAN、LIN 用於傳 感器和執行器等封閉低級網路間的數據傳輸;乙太網(取代 MOST 等技術)用 於域控制器及子部件間的信息交換。

    趨勢3.OTA 空中升級模式普及

    OTA 由特斯拉引領,向全行業普及。由特斯拉最先推行的 OTA 升級功能模塊 能持續修復汽車軟體缺陷、解決部分故障、解鎖或引入新功能以滿足用戶需求, 成為汽車軟體發展的主流趨勢。按照升級對象的不同,OTA 可分為 FOTA(硬 件在線升級)、SOTA(軟體在線升級)兩個大類,其中 FOTA 主要針對基礎硬 件和汽車底層安全相關功能的升級需求,例如剎車系統、制動系統及 BMS 等;SOTA 主要對座艙娛樂系統進行升級。對 ECU 而言,其內部為備份軟體準備了 額外區域空間,以備當前運行程序出現故障或升級中發生斷錯誤時自動滾回備 份軟體系統,防止車輛出現安全事故。

    趨勢4.汽車在雲端交換信息

    更為靈活的雲服務是 SDV 載體。從早期的機械時代過渡到目前的硬體時代,在 進一步進化至未來的軟體時代,汽車的功能實現方式持續演變,隨著客戶的個 性化定製需求日益增加,加之雲計算對智能、靈活和自動化的天然要求,由「軟 件定義」來操控硬體資源成為更合適的解決方案,未來大部分汽車功能在雲端 運行,為車企轉型提供聯接使能、數據使能、生態使能和演進使能。因此,在 雲計算的計算、存儲和網路等各方面的基礎設施上,均呈現出從軟硬體捆綁, 到硬體+閉源軟體,再到白盒硬體+開源軟體的演進趨勢。而雲服務也成為 AI、 智能汽車、大數據等新興科技實現商業化落地的載體(例如特斯拉在雲服務載 體上進行 OTA 升級)。近年來雲服務市場實現爆髮式增長,而車載環節尚處於 發展初期,後續增量空間大。

    趨勢5.信息安全領域需深層次防禦

    汽車電子的運用及智能網聯化趨勢推進車載信息安全要求提升。汽車脫離孤立 單元后,隨之而來的是攻擊面的新增,一方面車輛聯網后其數據面臨被盜取、 泄露風險,另一方面電控系統普及后存在轉向、剎車等關鍵功能被外部控制的 可能性(例如破解車機、T-Box、網管后,向 CAN 發送惡意指令)。即接入汽車控制終端的 APP、網路系統、ECU 代碼均可能成為新攻擊向量。雲(車聯網 平台)-管(車聯網基礎設施)-端(車載智能及聯網設備)均存在信息安全問 題,將造成車輛功能性安全隱患:

    (1)雲端與管端:接送關鍵數據的中央互聯網關直接連接至車企後台,部分第 三方公司被允許數據訪問。目前網聯實現通常會通過 APP 實現應用層功能(例 如解鎖車門、調用空調功能等),此時存在手機端與雲端的通信過程,且應用程 序供應商能直接訪問開放的相關數據介面。通過雲端和對外通信管端能對車機 端直接進行攻擊。

    (2)車機端:當功能系統被授權時,黑客能對CAN匯流排發送相關指令控制ECU。騰訊道恩實驗室曾對特斯拉 Model S 進行過無物理破解實驗,以 Wifi 熱點接入 向車載娛樂系統植入軟體取得車機許可權,在破解網關后能控制其多個電控單元。

    為抵禦外部攻擊需建立深層次的安全防禦系統,嚴控與功能安全及數據連接。汽車的防護措施隨交互信息增多其力度持續提升。車企安全團隊通常基於雲-管 -端對症建立安全防禦系統以應對外部攻擊:

    (1)雲端:車載終端是汽車安全架構的核心,主要注意 T-BOX(用於車端和 外界通信)和 OBD(用於將汽車外部設備連接到 CAN 匯流排)兩大塊的信息防 護。實時進行入侵檢測,防止 DDos 攻擊。

    (2)管端:汽車在未來將頻繁接入和退出網路節點,存在被篡改信息的風險。通常需要對通訊過程及傳輸數據進行加密,採用專門的 APN 接入網路。

    (3)車機端:加強安全固件驗簽及防 root 機制,管理介面並建立監控體系。此外,可在車輛功能模塊上單設安全晶元對數控進行校驗。

    部分第三方供應商能參與至信息安全環節。汽車安全防禦對於以特斯拉、蔚來、 小鵬等為代表的有互聯網基因的造車新勢力來說,擁有一定先天的優勢。包括 特斯拉在成立之初便組建了來自谷歌、微軟等互聯網企業的 40 人的網路安全專 家,小鵬和蔚來與阿里、騰訊等互聯網廠商進行深度合作,未來華為等供應商 是此領域的預備軍。目前網路安全系統仍缺乏標準的信息安全方案,原本的汽 車軟硬體供應商難以以統一標準滿足不同整車廠的信息安全要求,並且在測試 階段很難直接接入車企平台進行網路安全試驗。預計未來行業將有提供信息安 全方案、網路安全模塊以及某一特定領域防禦系統的第三方軟體供應商出現。

    投資建議和推薦標的

    百年汽車工業面臨由機械機器向電子產品過渡的新變局,在我們看不到的隱秘 角落——上百的電子控制單元循環執行軟體代碼功能塊,通過高性能的中央計 算單元,與硬體體繫結合以解析駕駛員需求,邏輯運算後向機械部件發送相應 響應指令。近年來,SDV(軟體定義汽車)概念逐步被整車廠認知,根源在於 「汽車如何體現差異化」問題的變遷,硬體體系將逐漸趨於一致,軟體成為定 義汽車的關鍵,即造車壁壘已經由從前的上萬個零部件拼合能力演變成將上億 行代碼組合運行的能力。

    SDV 趨勢下汽車軟硬體分離重塑市場格局,盈利模式由硬體向持續賦予附加值 的軟體傾斜。主機廠愈發需具備軟體的管理能力及核心軟體設計能力,並引入 供應商及互聯網企業參與此環節,開發基礎平台並收取許可費用、供應功能模 塊按汽車出貨量 Royalty 收費及基於車企平台做定製化的二次開發均為未來主 流的軟體供應商盈利模式。預計 2030 年 500 億美元市場空間,復合增速 9%。

    汽車最終會成為搭載「差異化元素」的通用化平台。一方面,ECU 里的功能模 塊持續循環迭代的代碼驅動汽車執行最適宜的動作反饋;另一方面,車載娛樂 信息系統越發 APP 化吸引較多第三方開發者入場。海量數據在車內流轉,其深 層次的安全防禦(檢測和防禦網路攻擊)愈發重要。關於賦能域控制器、定位 車機系統的各項軟體性能升級,包括車內乙太網應用、整車 OTA 升級、信息交 互上雲及深層次的信息安全防禦等,或將帶來一系列發展機遇。

    資料來源:https://m.news.sina.com.tw/article/20201001/36497492.html?fbclid=IwAR1zWwTMiTHwfLyqZ7Qx698UjYwI3v0c-hs3gXdy560Rf5BgAS4Ts4QLbOQ

  • 產品內涵的五個層次 在 台灣物聯網實驗室 IOT Labs Facebook 的精選貼文

    2019-12-10 19:12:17
    有 1 人按讚

    姚前談區塊鏈和央行數字貨幣的「前世今生」

    北京新浪網 (2019-11-14 07:31)

    「我認為央行加密貨幣(CBCC)是央行數字貨幣研發的重要方向之一,我國央行的研究起點也就是CBCC。過去十年,數字技術在支付、清算和結算方面出現了重要的新發展。加密貨幣代表了這一波大潮的前沿。」

    【編者按】

    區塊鏈,這個之前主要在IT和金融領域被廣泛討論的概念,因為中央政治局一次集體學習而迅速在普通民眾間成為高頻詞和「網紅」。一時間,與區塊鏈有關的概念、技術和產業都受到前所未有的關注。

    在這其中,區塊鏈與數字貨幣、電子支付等概念關聯更是關注的焦點。「金銀天然不是貨幣,但貨幣天然是金銀」,那麼,區塊鏈作為一種不可篡改和不可偽造的分散式資料庫,其與數字貨幣之間是否也存在這種關係?區塊鏈和數字貨幣到底有何關聯?央行數字貨幣的未來將向什麼方向發展?

    就此,中國證券登記結算有限責任公司總經理、央行數字貨幣研究所前所長姚前向新京報記者講述了區塊鏈和數字貨幣的淵源。

    中國證券登記結算有限責任公司總經理、央行數字貨幣研究所前所長姚前。

    區塊鏈的密碼學緣起及演化

    現代密碼學的一個革命性突破是解決對稱密碼演算法無法在大規模的信息加密傳輸中普及的問題。對稱密碼演算法是指加密和解密共用一個密碼,也稱單鑰密碼演算法。

    1976年,Diffie(迪菲)和 Hellman(赫爾曼)提出,將原來的一個密鑰一分為二成一對密鑰,一個密鑰用於加密,一個密鑰用於解密。加密密鑰公開,稱為公鑰。解密密鑰不能公開,唯獨本人秘密持有,不能給別人知道,稱為私鑰。比如,張三想給李四發信息,張三要用李四的公鑰對信息進行加密,只有李四的私鑰才能解開,其他任何人都解不開。

    1978年,Rivest(李維斯特)、Shamir(薩莫爾)和Adleman(阿德曼)提出RSA密碼演算法,首次實現了非對稱密碼演算法。非對稱密碼演算法除了解決開放系統中密鑰大規模分發的問題,還帶來原來對稱密碼體制不具備的功能,那就是非常獨特的認證功能。比如,張三想給別人發信息,張三不僅用別人的公鑰對報文進行加密,同時還可用張三的私鑰進行簽名,這樣別人就可以用張三的公鑰進行驗簽,判定報文是不是由張三發出。

    哈希演算法是現代密碼學的又一個飛躍,它又稱信息摘要。最早的SHA哈希演算法由美國國家安全局設計,於1993年發佈。2010年,中國國家密碼管理局公佈中國商用密碼哈希演算法標準:SM3密碼哈希演算法。

    與對稱加密和非對稱加密不同,哈希函數是一種快速收斂的演算法,從輸入到輸出的計算非常快,迅速收斂數值,無須耗費巨大的計算資源,而從輸出倒推輸入又幾乎不可行。基於這樣優秀的特性,哈希函數得到廣泛的應用,我們習以為常的人民幣冠字型大小碼可以理解為是由哈希演算法產生的。

    在數字貨幣領域,哈希演算法更是得到廣泛的應用。比如,哈希演算法常常被當做數字貨幣交易挖礦、交易區塊鏈接以及錢包地址壓縮生成的工具。

    數字貨幣的由來

    一直以來,密碼學家有個想法,既然郵件能夠加密、簽名發送出去,那麼手裡的現金能不能像郵件一樣,加個數字信封,進行加密和簽名后,從一端發送到另外一端?這就是最早的數字現金思想的由來。

    1982年,David Chaum(大衛·喬姆)在頂級密碼學術會議美密會上發表了一篇論文《用於不可追蹤的支付系統的盲簽名》。論文中提出了一種基於RSA演算法的新型密碼協議——盲簽名。利用盲簽名構建一個具備匿名性、不可追蹤性的電子現金系統,這是最早的數字貨幣理論,也是最早能夠落地的試驗系統,得到了學術界的高度認可。

    但是Chaum當時建立的模型還是傳統的「銀行、個人、商家」中心化模式。隨著交易量的上升,已花費數字貨幣序列號資料庫就會變得越來越龐大,驗證過程也會越來越困難。

    2008年,中本聰發表了經典論文《比特幣:一種點對點的電子現金系統》,提出了一種全新的去中心化的電子現金系統,其核心思想之一就是是通過對等網路方式消除單中心依賴,實現點對點交易,同時將已花費的數字貨幣序列號資料庫轉變成未花費的數字貨幣序列號(UTXO)資料庫,控制數據規模,並利用哈希演算法,打上時間標記,縱貫相連。通過這種方式可以構建一種全新的基於全網共識的分散式賬本,把通常意義上的集中式簿記分拆為約每十分鐘一次的分散式簿記,簿記的權利由全網競爭選取,簿記數據按時間順序連接起來並廣播全網。任何節點均可同步到網路上的全部簿記記錄,均可投入計算資源參與簿記權的爭奪。攻擊者如果不掌握全網 50%以上的計算資源,就無法攻擊這套簿記(鏈接)系統。

    通過這樣的設計,以前人們隔著萬水千山做不到的點對點交易,現在不依賴銀行等中介機構而僅靠分散式賬本就可以實現。

    區塊鏈的革新之處

    從系統架構看,區塊鏈技術是一種全新的信息網路架構,打開了傳統中心化系統的圍牆,各節點既可以是客戶端,也可以是伺服器端。這使得C端客戶的自主掌控能力及其在系統中的話語權得到極大的增強。

    從會計學角度看,它是一種全新的分散式賬本技術(DLT),採用了全新的記賬方法:每個人都可以參加,所有參與者共有、共享賬本信息,都能檢測、驗證賬本信息。與傳統賬本技術相比,DLT賬本技術的優勢在於不易偽造,難以篡改,開放透明,且可追溯,容易審計不僅能保障多方賬本一致,還能自動實時完成賬證相符、賬賬相符、賬實相符。從技術可行性看,瞬時的資產負債表編製或將成為可能。

    從賬戶角度看,它是全新的賬戶體系,傳統上我們所有的金融業務都是圍繞著銀行的賬戶開展的,而現在私鑰本地生成,非常隱秘,從中導出公鑰,再變換出錢包地址,自己給自己開賬戶,不需要中介,賬戶體系發生了變革,這在金融史上是一個非常重大的變化。

    從資產交易角度看,它是一種全新的價值交換技術,基於這一技術,我們可以創造一種全新的金融市場模式:作為信任機器,資產交易可以去中介化。

    從組織行為學角度看,它使有效的分散式協同作業真正成為可能:沒有董事會,沒有公司章程,沒有森嚴的上下級制度,沒有中心化的管理者,大家共建共享,這是經濟活動組織形式的變革。

    從經濟學角度看,它開創了一種新型的演算法經濟模式,以去中介化、開放為特徵,強調和尊重市場交易的自願原則,發揮市場價格的激勵協調機制,兼具計劃和市場兩種機制的優點,是一種更加接近市場的經濟模式。

    區塊鏈的不足

    一是性能問題。區塊鏈技術的理念之一是分散式共享,但假設近萬個節點都要共享數據的時候,速度自然就慢下來,效率不高。目前比特幣的成交至少要等10分鐘,有時候要等1個小時以上,這是許多人不能容忍的。

    二是隱私保護。比特幣的整個賬本是公開的,隱私保護成為了區塊鏈技術的一個研究熱點,一些解決方案已經出現,比如採用零知識證明、同態加密等技術手段。

    三是安全問題。目前智能合約還處於初級階段,一旦有漏洞就會被人攻擊,可能出現重大的風險,其安全性需要在技術上進一步改進,形式化驗證是一個可能的解決思路。私鑰的安全保護更是一個至關重要的問題。

    四是治理缺失。當社區面臨重大決策事件時,如何讓社區參與進來,以某種機制形成社區意見,最終在區塊鏈上表達出來。

    五是互操作性問題。區塊鏈作為新一代價值互聯網並沒有通用的協議,目前都還是社區自組織模式,跨鏈互操作沒有統一的規範,很大程度上限制了應用創新。

    區塊鏈技術發展方向

    共識協議是區塊鏈的關鍵技術,其核心指標包括共識協議的強壯性、高效性及安全性。目前看,共識協議最大的難題在於如何實現安全性與高效性的平衡。在保障安全性的前提下,大概有幾種提高效能的思路:一是新型共識協議;二是新型數據結構;三是不改變共識協議的系統改進;四是硬體和算力的改進;五是分層分片技術。

    現在有各種鏈:公鏈、聯盟鏈和私有鏈。當不同機構之間業務發生交互時,不同的鏈與鏈之間怎麼交互,會成為很大的問題。跨鏈技術是下一步區塊鏈技術發展的重點。

    區塊鏈本身即是一種天然投票系統,此前,許多國家的監管部門傾向於將初始代幣發行(ICO)的代幣界定為證券。為此,證券型代幣的區塊鏈系統需要考慮如何將監管部門提出的合規要求內嵌於系統,總體思路是在技術上設置監管介面,改造公有鏈,建立監管聯盟鏈,為監管者提供客戶識別、反洗錢、反恐融資、項目盡調、風險評級、信息披露、風險監測等監管功能。

    區塊鏈使自主身份成為可能。它本身可以作為去中心化公鑰基礎設施(PKI)來使得公鑰體系更有用和更安全。

    區塊鏈技術創造了一種全新的隱私保護模式:用戶無需讓渡數據權利,個人數據自主可控。例如,用戶自主產生本地公私鑰,通過公鑰計算髮布有效的錢包地址,來隔斷錢包地址和錢包持有人真實身份的關聯,並通過控制私鑰在區塊鏈網路自主完成交易。

    數字錢包方面,目前數字錢包都在嘗試從單純的錢包服務轉向數字資產生態入口,希望藉此獲取更大的市場份額,發展更豐富的資產管理服務,主要有資產管理、資產交易、信息聚合、DApp分發等方向。隨著數字資產產業的不斷發展,生態的不斷完善,數字錢包的場景功能將會越來越重要。其未來發展重點有三個方面:一是保證錢包服務的安全、開放和便捷;二是圍繞資產增值需求,搭建數字資產管理平台,為用戶提供豐富的金融產品,提高用戶轉化率;三是打通數字資產與現實世界的連接,豐富數字資產應用場景,構建數字資產生態。

    建立在智能合約之上的自組織商業應用,有助於提升區塊鏈技術的價值,使可編程經濟模式的適用範圍和領域不斷擴大。關於智能合約的應用,一方面需要從技術層面保障其安全性;另一方面需要從法律層面明確其合規性。由於智能合約具備天然的確定性,不具有普通合同的靈活性和可選擇性,因此在特定場景中,需要建立允許代碼暫停或終止執行的干預機制。

    在與其他科技的融合上,常說的雲計算、大數據、人工智慧、區塊鏈技術等,實質上均是「演算法+數據」的體現,相互之間的融合也是必然。例如,在資產證券化的場景中,需要對底層資產的信息進行持續的披露,同時還需要實現大規模分散式文件存儲。區塊鏈技術可以通過交易簽名、共識演算法和跨鏈技術,保證各交易相關方分散式賬本的一致性,從而在保障交易背景真實性的基礎上,自動實時完成信息披露,從而實現賬證相符、賬賬相符、賬實相符,大大提高可交易產品的信用等級,又大幅降低成本。將區塊鏈技術與分散式文件系統、大數據分析、雲計算、人工智慧等進行融合是未來發展的一個重要方向。

    加密貨幣與第三方支付的差異

    支付寶的數據傳輸過程加了密,並不代表它就是加密貨幣。兩者的賬戶體系有根本的區別,如果將支付寶的技術比擬為4G,通過加密貨幣的支付更像是5G。

    在金融普惠性上,目前的支付體系是多層次賬戶系統,以及對應的信息傳輸專用通道,成本耗費巨大,尤其是跨國支付,導致金融服務費用和門檻高企,金融發展嚴重不平衡,損害金融普惠。同時,支付機構實際掌控了用戶的支付過程,其封閉體系和商業競爭,有可能限制和影響用戶自主選擇權。而通過加密貨幣的支付,省去了「鋪路架橋」的費用,不受傳統賬戶體系和封閉專網限制,直接復用現有的互聯網基礎設施,任何能連接互聯網的人皆可參與,任何參與方都具有技術上的對等性。

    在用戶隱私保護上,第三方支付屬於傳統中心模式,個人無法完全控制自己的數據,中心節點很容易濫用用戶數據,且容易成為被攻擊的目標,一旦爆發風險,對個人和平台的危害巨大,Facebook就曾發生過5000萬用戶數據泄露事件。但是區塊鏈技術,創造了一種全新的不依賴中心、多方共享環境下、基於密碼學、用戶自主可控的隱私保護新模式,數據不單點存儲於第三方機構,用戶自主可控地對個人數據匿名化,無需讓渡數據權利。也就是說,數據向哪些人透明、透明程度、是否可被追蹤均由用戶自主掌控。

    央行數字貨幣的未來方向

    Facebook沒有簡單拷貝比特幣、Ripple幣,也沒有簡單模仿支付寶,而是推出了全新理念的Libra,說明真正代表未來技術發展方向的數字貨幣很可能是既要吸收借鑒先進成熟的數字貨幣技術,又要把傳統貨幣長期演進中的合理內涵繼承下來。

    我認為央行加密貨幣(CBCC)是央行數字貨幣研發的重要方向之一,我國央行的研究起點也就是CBCC。過去十年,數字技術在支付、清算和結算方面出現了重要的新發展。加密貨幣代表了這一波大潮的前沿。

    中國法定數字貨幣的原型構思,可以從筆者2016年的一篇文章中看到,文中提到我們需充分吸收借鑒國際上先進成熟的知識和經驗,深入剖析數字貨幣的核心技術。一方面,從理論入手,梳理國內外學術界對密碼貨幣的研究成果,構建中國法定數字貨幣的理論基礎;另一方面,從現實入手,對運營中的各類典型電子與數字貨幣系統進行深入分析,構建中國法定數字貨幣的基礎原型。

    目前各國開展的央行數字貨幣試驗,比如加拿大央行Jasper項目、新加坡金管局Ubin項目、歐洲中央銀行和日本中央銀行Stella項目等,大都是基於區塊鏈技術的加密數字貨幣試驗,但還停留在批發(機構端)應用場景。這是因為中央銀行一向被認為不擅長零售端業務,有種擔憂是當數字貨幣向社會公眾發行流通時,中央銀行可能會面臨極大的服務壓力和成本。

    我們的數字貨幣原型系統探索了區塊鏈的應用,但並不完全依賴該技術。在設計上,它利用分散式賬本不可篡改、不可偽造的特性,構建了一個基於區塊鏈的CBCC確權賬本,對外通過互聯網提供查詢服務,相當於網路「驗鈔機」。這種設計一方面將核心的發行登記賬本對外界進行隔離和保護,同時利用分散式賬本的優勢,提高確權查詢系統和數據的安全性和可信度。另一方面,交易處理仍由採用傳統分散式架構的發行登記系統來完成,分散式賬本僅用於對外提供查詢訪問。交易處理子系統和確權查詢子系統分離並採用不同的技術路線,可以有效規避現有分散式賬本在交易處理上的性能瓶頸。

    同時,原型系統還採用了「總/分雙層賬本結構」,既減輕了中央銀行壓力,又保障中央銀行的全局掌控能力。

    目前來看,學術界的熱點大多是基於區塊鏈技術的央行加密貨幣的研究。

    Libra與各國央行數字貨幣的對比

    兩者雖然均採用加密貨幣技術,技術路線有相似之處。但在發行方、技術平台、可追溯性、匿名性、與銀行賬戶耦合程度、是否支持資產發行等方面存在差異。

    從貨幣層次看,央行貨幣是M0層次,銀行存款等傳統信用貨幣在M1和M2層次,而Libra則是在更高的貨幣層次。最新統計數據顯示,我國的M0與M2的比值約為4%。與數字M0相比,數字M1、M2……Mn更具想像空間。

    從創新角度看,各國央行數字貨幣試驗基本上是比較秘密的「曼哈頓」工程,這種方式未必符合現代開源開放社區的發展需求。

    而Libra項目的代碼按照Apache2.0標準開源,任何人都可以按照開源協議標準來查看、複製、部署Libra的底層源代碼,也可以根據自己的想法提交對開源代碼的修改建議,一旦Libra協會批准,該修改就會被納入生產系統。按照開源社區十年來的運作經驗,這種開放和眾智的方式,充分體現了絕大多數參與者的利益,保證項目的凝聚力,促其快速發展壯大,同時也充分促進了技術系統與市場需求的匹配融合,最終培育出一個技術先進、市場認可的數字貨幣生態。

    任何數字貨幣均要接受市場的考驗和競爭。

    資料來源:https://news.sina.com.tw/article/20191114/33310568.html

  • 產品內涵的五個層次 在 飲食男女 Youtube 的最讚貼文

    2018-08-21 21:00:04

    有沒有想過採用北海道道產食材都可以一嘗高級法菜滋味?吃法國菜不一定要去歐洲,去就近的日本就可以了!以下就為大家介紹兩間法菜餐廳。

    [米芝蓮一星法國餐廳 Asperges]
    早於十年前,美瑛農業協會已經希望推廣當地農業,他們邀請了札幌法菜的元祖級人馬中道博來經營餐廳。中道博是北海道首批從外國餐廳學藝回來的法菜廚師。初時,中道博曾構思餐廳以全蔬食為概念,從頭盤至甜品,全以美瑛的新鮮蔬果製作,然而大眾未能完全接受無肉菜單,於是就添加了美瑛本地的豚肉及牛肉等,但仍然以蔬菜作主打,便成了今天眼前的 Asperges。

    現為餐廳總廚的加藤說,每年這裏的農夫們都會開會,分配種植的農作物種類,決定誰要種薯仔,誰要種番茄,不過通常慣常種薯仔的會繼續種薯仔,因為其種植技術高,收成品質會較好。「當地農夫的種植手法相當專注,例如一平方公里的農地裏,就只種薯仔,農夫心無旁鶩,對每一寸土地都了解,薯仔品質自然瞭如指掌。」大片的粉紅薯仔花是美瑛的經典田園景色之一,這裏盛產的薯仔口感扎實,帶天然的甜味。


    Asperges以它製作薯蓉和薯仔麵包,是這兒每個客人都會吃到的前菜。薯蓉即使沒下大量牛油,仍然有黏稠幼滑的口感。其薯仔麵包有異曲同工之妙,以美瑛產的麵粉加入連皮的薯仔搓成麵糰,發酵後再加上切粒的薯仔及橄欖油一同烘焗,麵包綿密細緻有彈性,薯仔粒散發着焗薯香氣,非常好吃。

    除了薯仔,還有大量特別蔬菜,一個個比掌心更小的蜜瓜,是剛成形時被摘除下來的蜜瓜 BB,瓜農的用意是讓未摘下的蜜瓜得到更多養分,但這些被犧牲的小蜜瓜煮熟後卻有另一番風味,成為獨特食材;羅馬花椰菜在坊間亦較罕見,據說品種由意大利引入,跟這兒的氣候一拍即合,花球呈三角幾何形狀,口感爽脆;還有青色的茄子,煮熟後柔軟多汁,全無澀味。 Asperges善於使用這些特產,招牌田園沙律內有超過 20種蔬菜,包括之前提到的小蜜瓜及羅馬花椰菜、秋葵、椰菜花、紫椰菜、番茄,小蘿蔔也有五個品種之多,還有紫蘇花及菊花等,加藤千典以檸檬醬、芝麻及蛋黄醬做 dressing,味道豐富清新,像一片百花齊放的原野。


    當吃完沙律和薯仔麵包,大概已經感受到農田的氣息,之後的主菜是燉牛面肉、慢煮豬扒或火腿切盤。牛面肉夠腍滑,卻不失咬口,慢煮豬扒甚有肉香,表面烤得香脆,火腿全是自製,用自家煙燻房烤烘,煙燻味不濃郁,純是吃肉的味道,那是北海道農夫們的最愛。

    但這些肉類主菜都不是重點,甜品才令人留下深刻印象。由於美瑛的蔬菜甜度高,加藤千典夠膽用番茄及茄子做甜品——把番茄打成汁,過濾出透明的汁液,加入糖,以此來浸泡番茄、茄子、菠蘿及士多啤梨,當中以茄子的味道最令人驚喜,吃起來竟有點像酒煮梨!加上酸甜的紅酒橙汁,伴着美瑛產牛奶製雪糕,感覺甜蜜涼透心。

    得到 Asperges的推廣,美瑛的農產品在日本已有一定知名度,不少餐廳更以使用美瑛蔬菜作為賣點。加藤千典說,當地農夫正積極引入更多不同種類的農作物,以令這片土地的內涵更加豐富。而他的料理、 Asperges,以及美瑛的農業,三者已經密不可分。

    Asperges
    地址:北海道上川郡美瑛町大町2丁目
    電話:+81 166 92 5522
    營業時間:星期一至日 11am-7pm(周三休息)

    [法菜西洋畫 Cote D'or]
    北海道食材既然如此優質,若果轉一種技法,用法式烹調手法,又如何?在札幌便有一間專門用北海道食材做法菜的 Cote D'or,開業 20多年,人氣高企,是不少美食家朝聖的地方。餐廳並非浪得虛名,從2012年曾獲北海道米芝蓮特別版選為一星餐廳,至指南推出網上版 Club Michelin, Cote D'or仍位列一星。

    餐廳所使用的食材,都來自北海道,上之國町蝦夷鮑、根室帶子、厚丹比目魚、積丹海膽等。另外大鮑魚、墨魚及鱈場蟹等,都是一流貨色。廚師會從相熟的漁夫及漁販處取海產,又有石狩市的契約農家為餐廳提供蔬果,食材都是最新鮮當造的。

    餐廳的食物配搭手法以大膽見稱,將蝦夷馬糞海膽及粟米兩種截然不同的甜味結合,製作出海膽粟米凍湯,兩者隔着一層高湯啫喱,高湯由牛肉及雞熬煮三天而成——倒三角的玻璃杯內,海膽幼滑、高湯清爽、粟米濃郁,組合起來竟有意想不到的豐富層次。又例如大家熟悉的鵝肝,一般伴以酸甜的梅子醬,以減低油膩感,這裏則採用偏甜的余市產佐藤錦車厘子作平衡——鵝肝慕絲被一層薄薄的車厘子 Puree啫喱包裹,鵝肝慕絲滑如牛油,油脂緊緊黏着舌頭,微酸的車厘子醬,成功將兩者中和。

    另一道充滿北海道風味的,是以鮑魚肝汁煮成的 Risotto,米飯吸滿湯汁,飽滿香甜;以切成波浪紋的蝦夷鮑片代替菇菌,有菇菌的清爽咬口,更多了濃濃的鮑魚香;香脆的 Parmesan芝士脆片,產自道中的農場,點點鹹香把海洋味道昇華。
    另一道令人印象深刻的菜式是利用鮮蝦及鮮帶子製成的泡沫蝦湯。碟心帶濃郁海鮮氣息的蝦膏湯,是由甜蝦連殼打成,再以蝦膏、帶子、鮮奶及 Noilly Prat酒打成泡沫加入其中,齒縫間盡是海洋精華。

    還有主菜比目魚扒,選用了 7公斤的比目魚,魚肉厚實,配上紅酒黑橄欖汁襯托出魚的甜味。

    由前菜到主菜,每道都有強烈的北海道味道,以北海道道產食材,嘗法菜味道,又有何不可呢?

    Cote D'or
    地址:北海道札幌市中央區宮ケ丘1-2-38;
    電話:+81 11 614 1501
    營業時間:周一至周日 12nn-2pm;6pm-8:30pm

    編輯:黃愷晴

    ===================================
    立即Subscribe我哋YouTube頻道:http://bit.ly/2Mc1aZA (飲食男女)

    新店食評,名家食譜,一App睇晒!
    立即免費下載飲食男女App: http://onelink.to/etwapp

    《飲食男女》Facebook:http://www.facebook.com/eatandtravel

    飲食男女網站:http://etw.hk

    Follow我哋Instagram,睇更多靚片靚相:http://bit.ly/2J4wWlC (@eat_travel_weekly)

你可能也想看看

搜尋相關網站