雖然這篇晶洞消磁方法鄉民發文沒有被收入到精華區:在晶洞消磁方法這個話題中,我們另外找到其它相關的精選爆讚文章
在 晶洞消磁方法產品中有13篇Facebook貼文,粉絲數超過3,992的網紅台灣物聯網實驗室 IOT Labs,也在其Facebook貼文中提到, 迎接終端AI新時代:讓運算更靠近資料所在 作者 : Andrew Brown,Strategy Analytics 2021-03-03 資料/數據(data)成長的速度越來越快。據估計,人類目前每秒產出1.7Mb的資料。智慧與個人裝置如智慧型手機、平板電腦與穿戴式裝置不但快速成長,現在我...
晶洞消磁方法 在 魔女慧慧?·占卜師?·療癒師?·通靈師??♀️ Instagram 的最佳解答
2021-03-30 15:14:22
水晶消磁充能嘅方法有各式各樣 都有好多唔少奇怪嘅方法 例如放喺雪櫃🤣🤣聽過有人用酒精浸水晶? 今日會主要講吓幾樣我比較常用既方法 消磁石 晶簇晶洞 煙燻 音樂 日光法/月光法 消磁石 大家最常用嘅碎石/消磁石 呢個會係最方便嘅方法 唔戴就放喺兜碎石入邊 但係其實碎石只係打磨時嘅遺留品 所以能量...
晶洞消磁方法 在 木白 Instagram 的最佳貼文
2021-07-11 09:56:03
。 大家敲碗很久的《水晶Q&A》🤩 . ⭐️水晶要戴左手還是右手呢? 水晶要分戴左手右手的這種說法,是來自道家氣功的「左進右出」的說法 宇宙能量都是以左進右出的型態存在,所以水晶戴左手可以讓水晶的能量帶入身體,能夠帶來正面能量和好運氣。 戴在右手的水晶可以協助將身體的負能量和濁氣排出,讓有助抵抗負能...
晶洞消磁方法 在 陳小布(主持.珠寶.水晶.美食.旅遊) Instagram 的最佳貼文
2021-07-11 10:45:13
新的一年到了🎉 首先先㊗️大家開工大吉🍀 - 很多人都會問到如何提升運勢, 其實運勢的高低包含很多面向,往後有機會再和大家細細說明。 今天先教大家最快速的調整方法 1.配戴貼身的能量石手鍊或項鍊 (根據個人狀況挑選) 2.擺放一個聚寶盆或晶洞 (根據個人狀況挑選) 3.做好淨化 (講N次一定要!) ...
晶洞消磁方法 在 台灣物聯網實驗室 IOT Labs Facebook 的最讚貼文
迎接終端AI新時代:讓運算更靠近資料所在
作者 : Andrew Brown,Strategy Analytics
2021-03-03
資料/數據(data)成長的速度越來越快。據估計,人類目前每秒產出1.7Mb的資料。智慧與個人裝置如智慧型手機、平板電腦與穿戴式裝置不但快速成長,現在我們也真正目睹物聯網(IoT)的成長,未來連網的裝置數量將遠遠超越地球的人口。
這包括種類繁多的不同裝置,像是智慧感測器與致動器,它們可以監控從震動、語音到視覺等所有的東西,以及幾乎大家可以想像到的所有東西。這些裝置無所不在,從工廠所在位置到監控攝影機、智慧手錶、智慧家庭以及自主性越來越高的車輛。隨著我們企圖測量生活週遭數位世界中更多的事物,它們的數量將持續爆炸性成長。
資料爆量成長,讓許多企業把資料從內部部署運作移到雲端。儘管集中到雲端運算的性質,在成本與資源效率、彈性與便利性有它的優點,但也有一些缺點。由於運算與儲存在遠端進行,來自終端、也就是那些在網路最邊緣裝置的資料,需要從起始點經過網際網路或其他網路,來到集中式的資料中心(例如雲端),然後在這裡處理與儲存,最後再傳回給用戶。
對於一些傳統的應用,這種方式雖然還可以接受,但越來越多的使用場景就是無法承受終端與雲端之間,資訊被接力傳遞產生的延遲。我們必須即時做出決策,網路延遲要越小越好。基於這些原因,開始有人轉向終端運算;越來越多人轉而使用智慧終端,而去中心化的程度也越來越高。此外,在這些即時應用中產生的龐大資料量,意味著處理與智慧必須在本地以分散的方式進行。
與資料成長連袂而來的,是人工智慧與機器學習(ML)也朝終端移動,並且越來越朝終端本身移動。大量來自真實世界的資訊,需要用ML的方式來進行詮釋與採取行動。透過AI與ML,是以最小的延遲分析影像、動作、影片或數量龐大的資料,唯一可行且合乎成本效益的方式。運用AI與ML的演算法與應用將在邊緣運作,在未來還將會直接在終端裝置上進行。
資料正在帶動從集中化到分散化的轉變
隨著資訊科技市場逐漸發展與成熟,網路的設計以及在其運作的所有裝置,也都跟著進化。全盛時期從服務數千個小型客戶端的主機,一直到客戶端伺服器模型中使用的越來越本地化的個人電腦運算效能,基礎架構持續重組與最佳化,以便更貼近網路上的裝置以及符合運作應用的需求。這些需求包含檔案存取與資料儲存,以及資料處理的需求。
智慧型手機與其他行動裝置的爆炸性成長,加上物聯網的快速成長,促使我們需要為如何讓資產進行最佳的部署與安排進行評估。而影響這個評估的因素,包括網路的可用性、安全性、裝置的運算力,以及把資料從終端傳送到儲存設備的相關費用,近來也已轉向使用分散式的運算模型。
從邊緣到終端:AI與ML改變終端典範
在成本、資源效率、彈性與便利性等方面,雲端有它的優點,裝置數量的急遽增加(如圖2),將導致資料產出量大幅增加。這些資料大部份都相當複雜且非結構化的,這也是為何企業只會分析1%~12% 的資料的原因之一。把大量非結構化的資料送到雲端的費用相當高、容易形成瓶頸,而且從能源、頻寬與運算力角度來看,相當沒有效率。
在終端執行進階處理與分析的能力,可協助為關鍵應用降低延遲、減少對雲端的依賴,並且更好地管理物聯網產出的巨量資料。
終端AI:感測、推論與行動
在終端部署更多智慧的主要原因之一,是為了創造更大的敏捷性。終端裝置處於網路的最邊緣與資料產生的地方,可以更快與更準確地做出回應,同時免除不必要的資料傳輸、延遲與資料移動中的安全風險,可以節省費用。
處理能力與神經網路的重大進展,正協助帶動終端裝置的新能力,另一股驅動力則是對即時資訊、效率(傳送較少的資訊到雲端)、自動化與在多數情況下,對近乎即時回應的需求。這是一個三道步驟的程序:傳送資料、資料推論(例如依據機器學習辨識影像、聲音或動作),以及採取行動(如物件是披薩,冰箱的壓縮機發出正常範圍外的聲音,因此發出警告)。
感測
處理器、微控制器與感測器產生的資料量相當龐大。例如,自駕車每小時要搜集25GB的資料。智慧家庭裝置、智慧牙刷、健身追蹤器或智慧手錶持續進化,並且與以往相比,會搜集更多的資料。
它們搜集到的資料極具價值,但每次都從各個終端節點把資料推回給雲端,數量又會過多。因此必須在終端進行處理。倘若部份的作業負載能在終端本身進行,就可以大幅提升效率。
推論
終端搜集到的資料是非結構性的。當機器學習從資料擷取到關聯性時,就是在進行推論。這表示使用AI與ML工具來幫忙訓練裝置辨識物件。拜神經網路的進展之賜,機器學習工具越來越能訓練物件以高度的精準度辨識影像、聲音與動作,這對體積越來越小的裝置,極為關鍵。
例如,圖4顯示使用像ONNX、PyTorch、Caffe2、Arm NN或 Tensorflow Lite 等神經網路工具,訓練高效能的意法半導體(ST)微控制器(MCU),以轉換成最佳化的程式碼,讓MCU進行物件辨識(這個的情況辨識對象是影像、聲音或動作)。更高效能的MCU越來越常利用這些ML工具來辨識動作、音訊或影像,而且準確度相當高,而我們接下來馬上就要對此進行檢視。這些動作越來越頻繁地從邊緣,轉移到在終端運作的MCU本身。
行動
資料一旦完成感測與推論後,結果就是行動。這有可能是回饋簡單的回應(裝置是開啟或關閉),或針對應用情況進行最佳化(戴耳機的人正在移動中,因此會針對穩定度而非音質進行最佳化),或是回饋迴路(根據裝置訓練取得的機器學習,輸送帶若發出聲音,顯示它可能歪掉了)。物聯網裝置將會變得更複雜且更具智慧,因為這些能力提升後,運算力也會因此增加。在我們使用新的機器學習工具後,一些之前在雲端或終端完成的關鍵功能,將可以移到終端本身的內部進行。
終端 AI:千里之行始於足下
從智慧型手機到車輛,今日所有電子裝置的核心都是許多的處理器、微控制器與感測器。它們執行各種任務,從最簡單到最複雜,並需要各式各樣的能力。例如,應用處理器是高階處理器,它們是為行動運算、智慧型手機與伺服器設計;即時處理器是為例如硬碟控制、汽車動力傳動系統,與無線通訊的基頻控制使用的非常高效能的處理器,至於微控制器處理器的矽晶圓面積則小了許多,能源效率也高出很多,同時擁有特定的功能。
這意味著利用ML工具訓練如MCU等較不複雜元件來執行的動作,之前必須透過威力更強大的元件才能完成,但現在邊緣與雲端則是理想的場所。這將讓較小型的裝置以更低的延遲執行更多種類的功能,例如智慧手錶、健康追蹤器或健康照護監控等穿戴式裝置。
隨著更多功能在較小型的終端進行,這將可以省下資源,包括資料傳輸費用與能源費用,同時也會產生極大的環境衝擊,特別是考量到全球目前已有超過200億台連網裝置,以及超過2,500億顆MCU(根據Strategy Analytics統計數據)。
TinyML、MCU與人工智慧
根據Google的TesnsorFlow 技術主管、同時也是深度學習與TinyML領域的指標人物 Pete Warden 表示:「令人相當興奮的是,我還不知道我們將如何使用這些全新的裝置,特別是它們後面代表的科技是如此的吸引人,我無法想像那些即將出現的全新應用。」
微型機器學習(TinyML)的崛起,已經催化嵌入式系統與機器學習結合,而兩者傳統上大多是獨立運作的。TinyML 捨棄在雲端上運作複雜的機器學習模型,過程包含在終端裝置內與微控制器上運作經過最佳化的模式識別模型,耗電量只有數毫瓦。
物聯網環境中有數十億個微型裝置,可以為各個產業提供更多的洞察與效率,包括消費、醫療、汽車與工業。TinyML 獲得 Arm、Google、Qualcomm、Arduino等業者的支持,可望改變我們處理物聯網資料的方式。
受惠於TinyML,微控制器搭配AI已經開始增添各種傳統上威力更強大的元件才能執行的功能。這些功能包括語音辨識(例如自然語言處理)、影像處理(例如物件辨識與識別),以及動作(例如震動、溫度波動等)。啟用這些功能後,準確度與安全性更高,但電池的續航力卻不會打折扣,同時也考量到各種更微妙的應用。
儘管之前提到的雲端神經網路框架工具,是取用這個公用程式最常用的方法,但把AI函式庫整合進MCU,然後把本地的AI訓練與分析能力插入程式碼中也是可行的。這讓開發人員依據從感測器、麥克風與其他終端嵌入式裝置取得的訊號導出資料模式,然後從中建立模型,例如預測性維護能力。
如Arm Cortex-M55處理器與Ethos U55微神經處理器(microNPU),利用CMSIS-DSP與CMSIS-NN等常見API來簡化程式碼的轉移性,讓MCU與共同處理器緊密耦合以加速AI功能。透過推論工具在低成本的MCU上實現AI功能並符合嵌入式設計需求極為重要,原因是具有AI功能的MCU有機會在各種物聯網應用中轉變裝置的設計。
AI在較小型、低耗電與記憶體受限的裝置中可以協助的關鍵功能,我們可以把其精華歸納至我們簡稱為「3V」的三大領域:語音(Voice,如自然語言處理)、視覺(Vision,如影像處理)以及震動(Vibration,如處理來自多種感測器的資料,包括從加速計到溫度感測器,或是來自馬達的電氣訊號)。
終端智慧對「3V」至關重要
多數的物聯網應用聚焦在一些特定的領域:基本控制(開/關)、測量(狀態、溫度、流量、噪音與震動、濕度等)、資產的狀況(所在地點以及狀況如何?),以及安全性功能、自動化、預測性維護以及遠端遙控(詳見圖 6)。
Strategy Analytics的研究顯示,許多已經完成部署或將要部署的物聯網B2B應用,仍然只需要相對簡單的指令,如基本的開/關,以及對設備與環境狀態的監控。在消費性物聯網領域中,智慧音箱的語音控制AI已經出現爆炸性成長,成為智慧家庭指令的中樞,包括智慧插座、智慧照明、智慧攝影機、智慧門鈴,以及智慧恆溫器等。消費性裝置如藍牙耳機現在已經具備情境感知功能,可以依據地點與環境,在音質優先與穩定度優先之間自動切換。
如同我們檢視的結果,終端AI可以在「3V」核心領域提供價值,而它觸及的許多物聯網領域,遍及B2B與B2C的應用:
震動:包含來自多種感測器資料的處理,從加速計感測器到溫度感測器,或來自馬達的電氣訊號。
視覺:影像與影片辨識;分析與識別靜止影像或影片內物件的能力。
語音:包括自然語言處理(NLP)、瞭解人類口中說出與寫出的語言的能力,以及使用人類語言與人類交談的能力-自然語言產生(NLG)。
垂直市場中有多種可以實作AI技術的使用場景:
震動
可以用來把智慧帶進MCU中的終端AI的進展,有各式各樣的不同應用領域,對於成本與物聯網裝置與應用的效用,都會帶來衝擊。這包括我們在圖6中點出的數個關鍵物聯網應用領域,包括:
溫度監控;
壓力監控;
溼度監控;
物理動作,包括滑倒與跌倒偵測;
物質檢測(漏水、瓦斯漏氣等) ;
磁通量(如鄰近感測器與流量監控) ;
感測器融合(見圖7);
電場變化。
一如我們將在使用場景單元中檢視的,這些能力有許多可以應用在各種被普遍部署的物聯網應用中。
語音
語音是進化的產物,也是人類溝通非常有效率的方式。因此我們常常想要用語音來對機器下指令,也不令人意外;聲音檢測是持續成長的類別。語音啟動在智慧家庭應用中很常見,例如智慧音箱,而它也逐漸成為啟動智慧家庭裝置與智慧家電的語音中樞,如電視、遊戲主機與其他新的電器。
在工業環境中,供車床、銑床與磨床等電腦數值控制(CNC)機器使用的電腦語音引擎正方興未艾。iTSpeex的ATHENA4是第一批專為這些產品設計的語音啟動作業系統。這些產品往往因為安全原因,有離線語音處理的需求,因此終端 AI 語音發展在這裡也創造出有趣的機會。用戶可以指示機器執行特定的運作,並從機器手冊與工廠文件,立即取用資訊。
語音整合在車輛中也相當關鍵。OEM 代工廠商持續對車載娛樂系統中的語音辨識系統,進行大量投資。語音有潛力成為最安全的輸入模式,因為它可以讓駕駛的眼睛持續盯著道路,而雙手仍持續握著方向盤。
對於使用觸控螢幕或硬體控制器通常需要多道步驟的複雜任務,語音辨識系統特別能勝任。這些任務包括輸入文字簡訊、輸入目的地、播放特定歌曲或歌曲子集,以及選擇廣播電台頻道。其他的服務包含如拋錨服務(或bCall)與禮賓服務。
視覺
正如我們之前已經檢視過,終端 AI 提供視覺領域全新的機會,特別是與物件檢測及辨識相關。這可能包括觀察生產線的製造瑕疵,以及找出自動販賣機需要補貨的庫存。其他實例包括農業應用,例如依據大小與品質為農產品分級。
曳引機裝上機器視覺攝影機後,我們幾乎可以即時檢測出雜草。雜草冒出後,AI可以分類雜草並估算它對農產收穫的潛在威脅。這讓農民可以鎖定特定的雜草,並打造客製的除草解決方案。機器視覺然後可以檢測除草劑的效用,並找出農地中仍具抗藥性的殘餘雜草。
使用場景
預測性維護工具已經從擷取與比較震動的量測資料,進化到提出即時的資產監控。藉由連接物聯網感測器裝置與維護軟體,我們也可能做到遠端監控。
震動分析
這種類型的預測性維護在旋轉型機器密集的製造工廠裡,相當常見。震動分析可以揭露鬆脫、不平衡、錯位與軸承磨損等狀況。例如,把震動計量器接上靠近選煤廠離心泵浦內部承軸處,就可以讓工程師建立起正常震動範圍的基線。超出這個範圍的震動,可能顯示滾珠軸承出現鬆動,需要更換。
磁感測器融合
磁感測器利用磁性浮筒與一系列可以感應並與液體表面一起移動的感測器,測量液面的高低。所有的這些應用都使用一個固定面上的磁感測器,它與附近平面的磁鐵一起作動,與這個磁鐵相對應的感測器也會移動。
聲學分析(聲音)
與震動分析相似,聲測方位分析也是供潤滑技師使用,主要是專注在主動採取潤滑措施。這意味我們可以避免移動設備時產生的過度磨損,否則會為了修理造成代價高昂的停機。實際的例子可能包括測量輸送皮帶的承軸狀況。出現過度磨損時,承軸會因為潤滑不足或錯位出現故障,可能造成整個生產流程的中斷。
聲學分析(超音波)
聲音聲學分析雖然可以用來進行主動與預測性維護,超音波聲學分析卻只能用於預測性維護。它可以在超音波範圍內找出與機器摩擦及壓力相關的聲音,並使用在會發出較細微聲音的電氣設備與機器設備。我們可以說這一類型的分析與震動或油量分析相比,更可以預測即將出現的故障。目前它部署起來比其他種類的預防性維護花費較高,但終端 AI 的進展可以促成這種細微層級的聲學檢測,大幅降低部署的費用。
熱顯影
熱顯影利用紅外線影像來監控互動機器零件的溫度,讓任何異常情況很快變得顯而易見。具備終端 AI 能力的裝置,可以長期檢測微細的變化。與其他對事故敏感的監視器一樣,它們會觸發排程系統,自動採取適當的行動來預防零件故障。
消費者與智慧家庭
將語音運用在消費者與智慧家庭,是最常看到的場景之一。這包括智慧型手機與平板電腦上、未包含電話整合功能的裝置,例如螢幕尺寸有限的穿戴式裝置。這類型的裝置包含智慧手錶與健康穿戴式裝置,可以為各種功能提供免動手的語音啟動。像 Amazon 的 Echo 或 Google 的 Home 等智慧音箱市場的成長,說明消費者對於可接收與提供語音互動等現有裝置的強勁需求,與日俱增。
消費者基於各種理由使用智慧音箱,最常見的使用場景為:
聽音樂;
控制如照明等智慧家庭裝置;
取得新聞與天氣預報的更新;
建立購物與待辦事項清單。
除了像智慧音箱與智慧電視等消費裝置,智慧家庭裝置語音的使用,也顯現相當的潛力。諸如連網門鈴(如 ring.com)等裝置與連網的煙霧偵測器(例如 Nest Protect 煙霧與一氧化碳警報)目前都已上市可供消費者選購,它們結合了語音與視覺的感測器融合功能以及運動檢測。有了連網的煙霧偵測器,裝置在偵測到煙霧或一氧化碳時,可以發出語音警告。
終端 AI 為強化這些能力提供了全新機會,而且常常結合震動(動作)、視覺與語音控制。例如,增加姿態辨識來控制例如電視等家電,或是把語音控制嵌入白色家電,即是以最低成本強化功能性最直接的方式。
健康照護
用來發現醫護資訊的 AI 驅動終端裝置的應用,將為病況的治療與診斷,提供更多的價值。這種資訊可能是資料,也可能是影像、影片以及說出的話,我們可以透過 AI 進行型態與診斷分析。這些資料將引發全新、更有效的治療方法,為整個產業節省成本。受惠於終端 AI 的進展,像 Google Duplex 等語音系統的複雜性將會降低。例如門診預約等勞力密集的工作,也可以轉換成 AI 活動。利用自然語言語音來延伸 AI 的使用,也可以把 AI 用在第一線的病人診斷,然後再由醫師接手提供諮詢。
其他健康照護實例包括像 Wewalk5 等物件,這是一個供半盲與全盲人員使用的智慧拐杖。它使用感測器來檢測胸口水平以上的物件,並搭配 Google Maps 與 Amazon Alexa 等 app,方便使用者提出問題。
結論
由於連網的終端裝置數量越來越多,這個世界也越來越複雜。連接到網際網路的裝置已經超過 300 億個,而微控制器的數量也超過 2,500 億,每年還會增加約 300 億個。越來越多的程序開始進行自動化,不過,把大量資料傳送到雲端涉及的延遲以及邊緣運算的額外費用,意味著許多全新、令人興奮且引人矚目的物聯網使用場景,可能無法開花結果。
解決這些挑戰的答案,並不是為雲端資料中心持續增添運算力。降低出現在邊緣的延遲雖然會有幫助,但不會解決日益分散的世界的所有挑戰。我們需要把智能應用到基礎架構中。
儘管為終端裝置增添先進的運算能力在十年前仍不可行,TinyML 技術近來的提升,已經讓位處相當邊緣的裝置 (也就是終端本身)增添智能的機會大大改觀。在終端增加運算與人工智慧能力,可以讓我們在源頭搜集到更多更具關聯性與相關的資訊。隨著裝置與資料的數量持續攀升,在源頭掌握情境化與具關聯性的資料,具有極大的價值,並將開啟全新的使用場景與營收機會。
終端裝置的機器學習,可以促成全新的終端 AI 世界。新的應用場景正在崛起,甚至跳過傳送大量資料的需求,因而紓解資料傳輸的瓶頸與延遲,並在各種作業環境中創造全新機會。終端 AI 將為我們開啟一個充滿全新機會與應用場景的世界,其中還有很多我們現在想像不到的機會。
附圖:圖1:從集中式到分散式運算的轉變。
(資料來源:《The End of Cloud Computing》,by Peter Levine,Andreessen Horowitz)
圖2:全球上網裝置安裝量。
(資料來源:Strategy Analytics)
圖3:深度學習流程。
圖4:MCU的視覺、震動與語音。
(資料來源:意法半導體)
圖5:AI 工具集執行模型轉換,以便在MCU上執行經最佳化的神經網路推論。
(資料來源:意法半導體)
圖6:物聯網企業對企業應用的使用-目前與未來。
(資料來源:Strategy Analytics)
圖7:促成情境感知的感測器融合。
(資料來源:恩智浦半導體)
資料來源:https://www.eettaiwan.com/20210303nt31-the-dawn-of-endpoint-ai-bringing-compute-closer-to-data/?fbclid=IwAR0JTRpNsJUl-DmSNpfIcymGQpkQaUgXixEaczwDpELxGCaCeJpkTyoqUtI
晶洞消磁方法 在 Facebook 的最讚貼文
我們的下一代和美國pk科技,能贏在起跑線上嗎?
分享一篇我的好朋友談教育的文章,作者郝景芳是大陸知名新銳科幻作家、教育企業「童行學院」的聯合創始人,比較東西方在兒童基礎教育思維上的差異,探討我們的下一代需要什麼、而我們能為他們做什麼?
文章轉載自郝景芳的微信公眾號:晴媽說(id:qingmashuo),已獲作者轉載授權。
前一段時間,有一所學校招生的新聞悄無聲息佔據了很多關注教育的人目光C位,紛紛議論:如果是你,會送孩子去這所驚世駭俗的學校嗎?
▎從一所學校引發的討論
這是一所什麼樣的學校呢?原來是矽谷鋼鐵俠 Elon Musk 埃隆.馬斯克給自己孩子建立的私人小學,現在對外公開招生了。
消息一經發出,瞬間擠破頭。加州有1000個以上家庭遞交了申請。 (注意!這只是本校Ad Astra的分校Astra Nova,雖然課程和模式照搬了本校,但畢竟只是子品牌,就已經如此轟動了。)為什麼?
我們先來看一下這所學校入學考什麼:
試題一:首次殖民火星任務需要一位隊長。以下為六位候選人自評及他評的創造力、合作力、尋找資源力、定力、學習力、體力、意志力,七個方面的數值。
1.1 請問哪位候選人最適合擔任隊長來完成以下任務:
“存活並在火星建立基地,在兩年後返回地球。”
1.2 如果任務變成以下,誰又更適合:
“存活並在火星建立基地,使用火星的資源建立能源工廠。永久待在火星並等待三年後第二批殖民者。”
1.3 我們是否應該派人去殖民火星?為什麼?
試題二是一款自創的策略桌遊,讓孩子跟對手對戰二十次,摸清桌遊規律,並尋找出最佳策略。
哇哦,這樣的入學測試題,是不是耳目一新呢?你家小朋友會如何回答呢?
馬斯克原本建立的Ad Astra學校,只是給他的SpaceX員工家的少量小朋友辦的”子弟校“,也算是承襲了我們社會主義祖國”企業辦校“的優良傳統,有著濃濃的SpaceX企業風。那麼這所學校日常如何教學呢?
Ad Astra的學生:
- 不分年級:8-14歲的孩子一起上課
- 側重科技:學習的科目主要是編程、AI、倫理和工程
- 練習創業:每人都會建一家虛擬公司,使用學校的虛擬貨幣進行創業和交易
- 接受複雜性挑戰:模擬、案例研究、製造和設計項目、Astra Nova開發的實驗室和企業合作夥伴;學生被複雜性和解決未知問題的能力所吸引。
- 每年更新:每年根據學生和每個項目、實驗室、討論或戰略計劃的經驗教訓來重新設計。
- 讓孩子們喜歡上學:如果學生被認真對待,他們的時間被充分利用,會怎麼樣呢?
哈哈,就是赤裸裸地培養科技創業企業家啊!說不准其中就有SpaceX的繼承人,或是下一代矽谷獨角獸公司創始人。
很想了解一下,這樣直奔主題、前沿酷炫、自由創新、前途未卜、不走尋常路、偏科嚴重的學校,如果是你,會給孩子報名嗎?
▎從科技之爭引發的思考
Ad Astra對科技的重視,讓我們想到近期另一個持續火爆的話題:中國大陸的科技和西方發達國家之間到底有多大差距?
我們都知道,自從去年華為被美國針對性封鎖以來,中國科技面臨著前所未有的挑戰:敵人像窮凶極惡的野狼一樣圍追堵截,而我們在關鍵性技術——尤其是芯片上——受到了極大掣肘。美國進入了麥卡錫主義,對所有與科研有關的華人採取排擠和封鎖政策。這讓人議論紛紛、憂心忡忡、怒氣沖衝。
這引發了很多討論:大陸和發達國家的科技差距,最主要的來源是什麼?
對這個問題,我曾經寫過兩篇文章,從資金投入、資金結構、產業結構角度進行了分析:《創新中國仍然缺失的必要環節》和《特朗普貿易戰,為什麼是個教育問題》,在此不多展開。
在此只想分析一種說法:“中國科研起步晚、投入少,暫時落後很正常,只要持續花錢投入,假以時日,一定能全方位超越歐美髮達國家。”
這種說法聽起來很有道理,但是深入分析就會發現問題:如果認為中國20年後科研水平將全方位超越歐美發達國家,那就意味著,20年後,中國的科研主力軍實力水平要全面超越於歐美髮達國家科研主力軍之上,進一步推論,這就意味著,今天10歲的中國孩子,未來的科研能力要全面超越於今天10歲的歐美孩子。
是這樣嗎?我們的少年真能贏在科研的起跑線上嗎?
我向大家推荐一本書:《Cycles of Invention and Discovery——Rethinking the Endless Frontier》,是一本深入回顧科學和科技創新的研究,有不少紮實的工作和洞見(尤其推薦其中講貝爾實驗室的部分)。
這本書裡詳細回顧了現代半導體和通信工業的發展歷程,其中重大的成果節點包括:
- 1956年諾貝爾獎(1947/48年成果):晶體管的發現/發明;
- 1964年諾貝爾獎(1954/58年成果):量子電子學的發展引發激光的發現/發明;
- 1985年諾貝爾獎(1980年成果):量子霍爾效應的發現;
- 1998年諾貝爾獎(1982年成果):帶有分數電荷的新型量子流體的發現;
- 2000年諾貝爾獎(1957/63/70年成果):半導體異質結構的發明;
- 2009年諾貝爾獎(1966年成果):光纖波導的發明;
可以看得出來,這裡面有兩個非常明顯的現象:
1)發達的信息工業背後,是強大的基礎研究作為水下冰山;
2)發現和發明往往先於工業應用很多年。
晶體管的發現/發明(1948年)先於英特爾公司成立20年(1968年),更早於286芯片上市(80年代)。再往前追溯,晶體管的前身電子管,是1884年的想法,1904年的專利。是100多年持續不間斷的強大的基礎研究才導向今天發達的工業應用。那是什麼力量帶來了這樣強大的基礎研究?
基礎研究不同於應用研究。應用研究通常是把所有能獲取的科學成果整合在一起。結果是可控的、時間是可控的、成本是可控的、方向是可控的。但是基礎研究不是這樣。基礎研究方向是完全不確定的,它的目標就是發現和理解,是向未知前行。站在歷史節點上,我們會發現:
半導體的發現不是為了電腦,是法拉第發現了異常電阻現象;電磁波的發現不是為了手機,是麥克斯韋從數學上整合電現象和磁現象;流體力學方程不是為了飛機,是伯努利為了解釋水流速不同的現象;激光的預言不是為了光纖和武器,是愛因斯坦發現的光電效應和量子力學能級理論的推演。
所有這些帶來劃時代改變的重大發現,都是為了解釋自然現象、探索基本規律,背後是抽象思想帶來的快感,是科學家對自然不斷追問的樂趣。
▎教育系統需要作出的改革和困難
從前面的梳理我們可以看到,真正劃時代的重大發現,都是去解決未知問題。但是我們目前的教育,讓學生練習的都是“解決已知答案的問題”,而不是“解決未知答案的問題”。我們練就了孩子們猜測出題人心思的能力,但是真正面對複雜未知的自然,該如何思考和探索,孩子們是毫無概念的。
真正好的基礎教育,是讓孩子學習探索未知問題。這種教育需要教孩子的是探索問題的方法,而不是直接記住答案。
馬斯克在接受采訪時說過,如果你想教別人如何使用引擎,你應該把引擎給他們,讓他們自己動手拆卸,而不是簡單地在教科書上閱讀螺絲刀和汽車的知識。如果一個孩子把引擎拆開,他們會明白所有的部分是如何一起工作的,他們會明白整體,而不是部分。
我們的傳統教育是告訴孩子電磁感應定律是什麼,然後讓孩子通過左右手定則做練習題,而真正培養創新者的教育,應該反過來:讓孩子理解法拉第到底在探索什麼問題,他觀察到什麼,他是怎樣想問題的,是怎樣提出理論猜想,怎樣做實驗驗證,遇到什麼挫折,又是怎樣找到答案,最後得出電磁感應定律。
也就是說,傳統教育是從知識出發,培養創新者的教育是從探索出發,讓知識作為結果。
我們有多少課堂帶孩子了解過科學定律的發現過程?我們有多少學生知道,胡克是為什麼研究彈簧?伽利略是為什麼研究慣性?如果不知道科學探索背後的思維邏輯,就很難做出未來的創新。可是引領孩子探索知識的發現過程太花時間了,沒有哪個課堂有這樣的耐心。
對比中美教育創新,會發現,我們的基礎教育改革實在是太慢了、太難了,不要說一所像Ad Astra這樣顛覆式創新的學校,就連做一些教材和教學法方面的改革,都舉步維艱。
制度政策先不說,人才培養方面,能夠做“以問題為引導”“探究式教學”設計的老師就十分稀缺;考核方式方面,目前之所以只強調應試,是因為其他教學方式缺乏統一評價標準,給舞弊開了口子;教育出路方面,現在仍然只有高考一條路能導向好的職場發展,缺乏和新興職場發展的鏈接;社會環境方面,現在整個大環境都急功近利,讓父母也充滿焦慮。這些方面都讓真正開創性的教育探索困難重重。
▎致力培養下個時代的革新者
我之所以創辦童行學院,就是希望在中國也能做一些面向下個時代培養創新者的事情。辦學校不容易,我們就辦課外學校。
童行學院採取線上課的方式,給孩子項目制的實踐機會,培養孩子知識、視野、思維,並讓孩子感受並學習科學、人文、藝術背後的思維方法。童行學院的所有課程和引導理念,都是以問題為出發,問題驅動的學習。我們在時空之旅課程裡,帶孩子探訪科學家,回到科學發現的現場,跟科學家一起發現知識。這種“問題驅動——激發好奇——引導思考——培養思維——學習知識”的教學思路,是一種從根本出發的教學方式。
在童行學院的“火星探索”項目制學習營中,有一個環節是讓孩子探索“如何讓火星車減速,安全抵達火星”。我們讓孩子準備一個煮雞蛋,用生活中各種能想到的材料,想辦法讓煮雞蛋從高空中落下而不摔碎。孩子通過動手,再和老師討論,會真正理解火星探索過程中的挑戰,也會對重力/空氣阻力/緩衝等等物理概念充滿好奇,熱情發問。
我們希望有更多同路人參與,我們會積極尋找志同道合的合作者,也希望更多家庭和孩子加入我們。
晶洞消磁方法 在 龍潭拍賣場-少年猴直播現場 Facebook 的最讚貼文
沒有說哪種消磁方法是最好、最徹底的。
只要選擇自己喜歡歡、方便、好執行的方案就行囉~
#龍潭拍賣場 #水晶 #碧璽 #消磁 #晶簇 #檀香 #沉香 #鹽燈 #桃園 #楊梅 #晶洞 #能量