雖然這篇敏捷式管理定義鄉民發文沒有被收入到精華區:在敏捷式管理定義這個話題中,我們另外找到其它相關的精選爆讚文章
在 敏捷式管理定義產品中有36篇Facebook貼文,粉絲數超過83萬的網紅經理人月刊MANAGERtoday,也在其Facebook貼文中提到, 經營一家店不容易,面對逐漸改變消費習慣的數位革新,不管你是老闆還是店長,都必須要有與時俱進的新思維! #即將開課【2021超級店長學】超過SOP的靈活反應力,建團隊、創營收! ◆ 09/10 建立敏捷團隊:成為團隊先行者,定義原則鬆綁規則,發揮人才縱效 ◆ 09/23 滾動業績成長:獲取營收的新方...
敏捷式管理定義 在 BetweenGos 職場風格誌 Instagram 的精選貼文
2020-04-21 11:56:04
下一步該往哪走?由資深獵頭S姊,提供你9大職務發展做參考,因應時代變化,這些職務需求正在增加中: ⠀⠀⠀⠀⠀⠀⠀⠀⠀⠀⠀⠀ 1️⃣ 客服➡️客戶成功專員(Customer Success) 結合客服+行銷+業務,有些還加IT,以客戶為尊,在今天這個時代,能掌握客戶需求才是王道。 ⠀⠀⠀...
敏捷式管理定義 在 ???????????? ????????? Instagram 的最佳解答
2021-04-04 18:08:00
🎉2019感謝有你們的陪伴!首圖氣球想帶給你們祝福🎈右圖是我的 #bestnine2019 耶~ . 今天是特別的日子,所以也突然有感而發,想分享有別於平常的健身健康料理內容😌是關於我自己這一年工作與生活上的回顧與收穫, #文章不小心有點長 ,不知道有多少人可以讀得完😂然而如果你讀完了我的經歷分享,...
敏捷式管理定義 在 經理人月刊MANAGERtoday Facebook 的精選貼文
經營一家店不容易,面對逐漸改變消費習慣的數位革新,不管你是老闆還是店長,都必須要有與時俱進的新思維!
#即將開課【2021超級店長學】超過SOP的靈活反應力,建團隊、創營收!
◆ 09/10 建立敏捷團隊:成為團隊先行者,定義原則鬆綁規則,發揮人才縱效
◆ 09/23 滾動業績成長:獲取營收的新方式與思維,深耕顧客價值、動態調整最便利的服務,持續滿足顧客需求
敏捷式管理定義 在 經理人月刊MANAGERtoday Facebook 的精選貼文
服務業的資產是人,不論領導團隊、或是顧客服務,一家店不能只有店長單打獨鬥、服務顧客也沒有鐵邏輯。 當需管理性格不同的新人、面對逐漸改變消費習慣的數位革新,不管你是老闆還是店長,都必須要有與時俱進的新思維!
#即將開課【2021超級店長學】超過SOP的靈活反應力,建團隊、創營收!
◆ 09/10 建立敏捷團隊:成為團隊先行者,定義原則鬆綁規則,發揮人才縱效
◆ 09/23 滾動業績成長:獲取營收的新方式與思維,深耕顧客價值、動態調整最便利的服務,持續滿足顧客需求
敏捷式管理定義 在 Facebook 的最佳解答
創新工場和BCG諮詢合作的「+AI改造者」系列:創新工場投資的Insilico Medicine,看AI新藥研發平臺如何賦能傳統藥企,一起進行“AI+生命科學”的顛覆式創新!
改造者系列:AI醫藥的下一站是長壽 -- 本文来自BCG微信公眾號,經授權轉載。
近期,創新工場聯合BCG波士頓咨詢旗下亨德森智庫,推出「AI融合產業:『改造者』如何促進AI普惠」系列研究。人工智能在中國大陸有著明確的落地應用場景,大量的AI企業活躍於這些垂直場景中,我們定義這些企業為「改造者」。「改造者」通過傳授其AI技術和垂直行業理解,極大地打破了傳統企業應用AI的瓶頸。
作為擅於趨勢前瞻的TechVC,創新工場長期看好AI領域,深入佈局,至今已經投出了7只AI獨角獸。在系列研究中,我們采訪了數家創新系AI企業,通過這些「改造者」的視角,探究傳統企業擁抱AI的範式與路徑。
創新工場投資的英矽智能(Insilico Medicine)是一家由人工智能驅動的全球領先生物技術公司,通過發明和迭代人工智能藥物研發平臺,變革創新藥物和療法的發現方式。
英矽智能的AI藥物研發平臺已經證明了自己的能力:在今年2月和8月,半年的時間內,先後公佈了兩種臨床前候選藥物,分別用於治療特發性肺纖維化和腎臟纖維化。
在采訪中,英矽智能創始人兼首席執行官Alex Zhavoronkov博士表示,AI醫藥企業的下一個重要問題將是如何更好地理解生物學和跨物種生物學,長壽業或者抗衰老技術將會是未來的方向。以下:
■系列導讀
本系列由BCG亨德森智庫與創新工場董事長兼首席執行官李開復博士帶領的創新工場團隊共同推出,圍繞「AI融合產業:『改造者』1如何促進AI普惠」的課題,我們致力於探究傳統企業在應用AI過程中的關鍵要素與合作夥伴,以及傳統企業擁抱AI的範式與路徑。
AI製藥領域於2014年左右興起,在2018—2020年間全面爆發。AI能夠快速識別大量樣本中的客觀規律,加速尋找和測試潛在靶點的過程。「有了AI,我們50個人可以做到的事情,比得上一個典型的製藥公司5000人所做的事情」,英矽智能創始人Alex Zhavoronkov在「未來呼嘯而來」一書中如是分享。2
1 「改造者」 通過傳授其AI技術和垂直行業理解,極大地打破了傳統企業應用AI的瓶頸,充當產業中傳統企業應用AI的橋樑。「改造者」包括AI企業與成功轉型AI的傳統企業。
2「未來呼嘯而來」,彼得·戴曼迪斯(Peter H.Diamandis)和史蒂芬·科特勒(Steven Kotler)著。
■本期受訪嘉賓:Alex Zhavoronkov
英矽智能(Insilico Medicine)是一家由人工智能驅動的全球領先生物技術公司,通過發明和迭代人工智能藥物研發平臺,變革創新藥物和療法的發現方式,加速研發進程,為癌症、纖維化、抗感染、免疫和抗衰老等未被滿足的臨床治療需求提供創新的藥物和療法方案。
Alex Zhavoronkov是英矽智能的創始人兼首席執行官。他擁有皇后大學學士學位,約翰·霍普金斯大學生物技術碩士學位,以及莫斯科國立大學物理和數學博士學位。
■對談實錄
Q1 英矽智能原來在美國創立,後來為什麼選擇遷至中國?
Alex:中國構建了一套完善的體系和土壤,吸引創業企業、大型企業紛紛入駐。中國大陸多樣化的投資者,包括傳統藥企、科技巨頭、PE/VC等各類投資者,能將最優質的AI人才、CRO、藥企融合在一起。投資者能為初創企業提供資質牌照、幫助招聘、企業管理和宣傳等等。英矽還與許多學校開展了合作研究,擁有豐富的內部研發管線。中國完整的生態夥伴體系使得像我們這樣的企業能夠迅速擴大研發規模,甚至與大藥廠競爭。
Q2 英矽智能和輝瑞、安斯泰來、楊森製藥等諸多藥企都有合作,在和大型藥企合作的過程中有什麼心得或者經驗?
Alex:創新型的AI生物技術公司按照創立時間可以分為三大類:2014年之前成立、2014年—2015年左右成立、最近5年成立。2014年之前成立的企業通常不運用深度學習(deep learning),或者不具備向藥企提供解決方案所需的行業知識。2014—2015年間成立的企業則創立的正是時候,生成式對抗網絡(Generative Adversarial Network)出現,AI製藥開始興起。同時,許多藥企缺乏AI的專業知識和AI團隊,如果想要獲取AI方面的知識和技能,就必須與初創企業合作。作為交換,那時候的藥企也通常願意向初創企業提供資料和各類資源。英矽智能很幸運,創立時間(2014)正處於大藥企對外部合作最為開放和寬鬆的時期。而最近幾年成立的企業就沒那麼幸運了,很多藥企已經開始自建AI團隊、自研AI應用,只有具備非常特定細分領域AI技術的初創企業才有可能成功撬動藥企,與之建立合作。
然而據我的觀察,儘管許多大藥企都建有自己的AI部門和數據科學家團隊,但他們並沒有足夠強的AI能力——他們往往缺乏具備足夠AI知識的團隊。以生物醫藥方面的論文發表為例,在2014—2019年間,英矽智能發佈了上百篇AI相關的論文,然而發表AI論文數量最多的藥企阿斯利康則只有65篇,位列其次的諾華有54篇。
藥企往往也不知道從何處開始應用AI,而這正是AI初創公司能夠創造價值的地方。但是,在AI初創公司開始接觸藥企和銷售方案之前,首先要充分理解大型藥企錯綜複雜的組織架構和部門分工,針對不同部門銷售定制化的模塊,而非從一開始就銷售整體性、綜合性的解決方案。這是因為藥企內部通常很難有一個部門能夠處理所有的模塊,部門之間的協同往往沒有那麼強。因此,AI初創公司在提供解決方案的時候也要靈活地劃分模塊,對症下藥,英矽智能通常一次只銷售一個模塊。
儘管銷售是模塊化的,AI初創公司需要具備端到端、全鏈路的解決方案。英矽根據不同的研發週期,設計了三大AI平臺——新藥靶點發現平臺、分子生成和設計平臺、臨床試驗預測平臺。據我們瞭解,中國還沒有任何一家同行,同時擁有生成生物學和生成化學兩大AI平臺,能把靶點發現和小分子化合物生成有機結合在一起的公司很少。此外,英矽智能的AI系統可以用軟件形式呈現,藥企可以自行操作,用自己的數據運算測試。這些都為我們創造了差異化的優勢。
最後,對於藥企而言,如果想要應用綜合的AI解決方案,需要有整體性的戰略為引領。咨詢公司可以充當整合各部門組織、統籌整體戰略的角色,AI企業可以選擇與之合作。
Q3 在您看來,未來AI醫藥領域的發展趨勢是什麼?
Alex:在未來,最重要的不是AI技術,而是如何將AI和行業特定的實驗數據或模型結合。現在市場上已經充滿了各種各樣的技術企業,他們在不斷精進演算法模型和數據。未來的競技不會是關乎演算法或者算力,而是新的商業模式或者應用AI的新方式。
AI初創公司需要積累足夠的行業專識,理解藥企的需求,學習藥企的經驗,並向藥企證明自己提供的模塊能夠在真實的商業環境下應用,並且模塊之間能夠很好地兼容,能融入業務流程,且符合監管要求。比如機器學習加速了藥物識別,但還有很多步驟和流程並不能被加速或跨越:實驗論文不能被跨越,你依然需要向藥物監管部門提供大量實驗數據和模型來證明研究的有效性;實驗中的生物過程不能被加速,你依然需要等待生物體自然的新陳代謝和細胞活動,你也不可能直接從大鼠實驗跨越到人類實驗。而這些都涉及到更細分的新技術問題。
所以,對於AI醫藥企業而言,下一個重要的問題將是如何能夠更好地理解生物學?如何理解跨物種生物學?正因如此,我判斷長壽業或者抗衰老技術將會是未來的方向,即如何運用AI來監督和追蹤生命體在漫長時間裡無數細微的實時變化,來創建數字孿生(digital twin),進行跨物種比較、跨疾病模型比較。我相信AI是説明我們更好地認識生命體的最佳工具。
■要點回顧
1、中國的資本環境天然地聚集了垂直產業領域的優質企業,幫助AI初創公司,即「改造者」,迅速汲取經驗、擴大規模,加速行業創新與賦能。
2、在與垂直行業企業合作時,「改造者」既要有端到端的解決方案,也要有靈活、敏捷的銷售和服務模式。端到端、全鏈路的方案有助於「改造者」更靈活地根據傳統企業的需求組合方案,能夠擴大服務範圍和客群,提升「改造者」的競爭優勢。
3、未來最重要的不是AI技術,而是如何將AI與行業特定的實驗數據或模型結合。限制因素並不是演算法或者算力,而是新的商業模式或者應用AI的方式來實現行業定制化。