為什麼這篇實驗假設怎麼寫鄉民發文收入到精華區:因為在實驗假設怎麼寫這個討論話題中,有許多相關的文章在討論,這篇最有參考價值!作者Dickys200092 (Dickys)看板NBA標題Re: [討論] 2023 NBA歷史百...
實驗假設怎麼寫 在 南聲生生難 Instagram 的最佳貼文
2021-08-18 15:41:51
《#風的十二方位:娥蘇拉・勒瑰恩短篇小說選》|#UrsulaLeGuin|#木馬文化 這陣子的方式都是交錯著看的。一一細數,手邊同時翻開的書有馮客中國三部曲中其二,專討論毛時代發起大躍進導致的饑荒黑暗期;還有不知道為什麼上廁所時搭配著談論日本文人的風花雪月總是特別順暢;緊接而來,九月將迎來的開學,...
假設想要設計一個好的模型應該是:
找到你的Y,Y應該是「球員排名」
換言之沒有先透過一個大規模問卷
或是多個問卷進行meta analysis的話
很難有一個有統計意義的公式
接下來要找到一堆x
這部分我覺得原PO的設計概念就會有很大幫助
不過要靠觀球的經驗法則做一個Empirical model太難了
我想用簡單的logit(實際分析可以order logit)
下面用原本的公式當作X假想實驗
※ 引述《kuiyy (kuiyy)》之銘言:
: 請注意,本排名僅為實驗性質,嘗試以單一公式量化球員生涯成就,並不一定真實反應
: 球員歷史地位與排名。
: 本年度公式異動幅度較大,變更及說明部分以綠色標示。
: 主要變更:
MVP直接設定成「有無MVP」為一個dummy variable
再設定一個「MVP數量」
然後放一個交互項「有無MVP*MVP數量」
如果這邊觀察不到顯著效果有可能是「有沒有連拿兩次」這個因子
也可以設定為一個dummy variabe
: 1.雙MVP積分降回前年標準:MVP調整至40,FMVP調整至28,去年調升主要是為提高
: 冠軍成就比例,但因比例問題同步提高MVP積分導致收效甚微,且冠軍成就過分獨尊
: FMVP之問題依然未解決,今年將雙MVP積分降回,改以其他方式(下列2)改善。
數據部分我想拆分成季賽、季後賽兩項
基本上就能觀測且解決原文的一些權重問題
: 2.新增主力冠軍貢獻積分:以奪冠隊伍整體季後賽Win Shares為基準,
: 第一名10分、第二名6分、第三名3分,詳細積分列表中以W1、2、3標註。
: 變更後總冠軍成就除FMVP外增加第二切入點,冠軍賽季Win Shares排名,如為毫無
: 爭議的球隊第一人可獲得FMVP(28)+W1(10)合計38分,以常見爭議的2015賽季為例,
: 原本只有小AI獲得FMVP(35),新版小AI獲得FMVP(28)+W3(3),Curry也得到W1(10),
: 一定程度修正FMVP如含金量不足所造成的積分不公平問題,對球隊奪冠有重大貢獻的
: 二、三號球員也能獲得更多積分,而非獨尊FMVP一人。
: 再舉例2008賽爾提克,原本除基本總冠軍積分之外,只有PP拿到FMVP(35),
: 而新制:PP FMVP(28)+W3(3),KG W1(10),雷槍W2(6),應較舊制合理。
: 修正過後冠軍隊伍主力排名上升,只有年度MVP而無冠軍的球員積分下滑較為明顯。
: 新增主力冠軍貢獻積分後,FMVP比重稀釋,相對適合跨時代比較。
: 本年度排名漲跌是與2022年調整後數據相較,2022年新版排名附於文後。
: 排名積分分為三大部分:1.冠軍成就 2.賽季榮譽 3.生涯累積
我覺得這部設計是我最看不太懂根據的
透過回歸設計直接控制「冠軍有無」、「冠軍有無*季後賽數據」的交互項
跑出來看共變量就一翻兩瞪眼知道哪些因子重要
: 1.冠軍成就:
: 總冠軍積分:該季季後賽PER*出賽時間/48*出賽比例
: 分區冠軍積分:該季季後賽PER*出賽時間/48*出賽比例/4
: 主力冠軍貢獻積分:該季季後賽WS 第一名:10 第二名:6 第三名3 (本年度新增)
: FMVP積分:28(年度MVP7成) (舊版35)
: CFMVP積分:7(FMVP 1/4)
: 冠軍成就積分以年度MVP為比較基礎,以盡量符合多種主流價值觀的方式,為冠軍成就
: 積分提供一定程度的比較基礎。
: 率隊奪冠高於年度MVP:此處以相關冠軍積分加FMVP約60分的方式,高於年度MVP40分
: 年度MVP高於FMVP:年度MVP40分高於FMVP28分
: 冠軍為團隊榮譽:以效率值乘上上場時間及出賽比例,使所有有做出貢獻的球員
: 都能以相同標準獲取相對應的積分。
: 2.賽季榮譽:
: 年度MVP積分 MVP:40 第二名:10 第三名:5 (舊版MVP50)
: 年度最佳陣容積分 一陣:10 二陣:6 三陣:3
: DPOY積分:3
: 最佳防守陣容積分 一陣:1 二陣:0.5
: 單項數據王積分 得分:1 籃板:0.5 助攻:0.5 抄截:0.5 阻攻:0.5
: 明星賽積分:3
: 例行賽榮譽以MVP、年度陣容及明星賽為主,防守陣容及單項數據王僅為加分項目。
: 年度MVP前三名及年度陣容、明星賽皆為攻防兩端數據及戰績全面考量之榮譽,本身已
: 包含防守及單項表現,為避免防守陣容及單項數據王相對不合理的重複獎勵,是以整體
: 考量的榮譽為主,此舉並非認為防守成就或單項數據王不重要,請理解知悉。
: 3.生涯累積:
: 例行賽PER積分:例行賽PER*出賽時間/48*出賽數/500
: 季後賽PER積分:季後賽PER*出賽時間/48*出賽數/250
: 例行賽WS積分:例行賽Win Shares/4
: 季後賽WS積分:季後賽Win Shares/2
: 生涯累積以Win Shares為基準,PER積分加權至與Win Shares積分相當。
: 設計方式以賽季榮譽為基礎,訂好各榮譽積分後,再調整冠軍成就及生涯累積之比例,
: 使三項積分之間比例盡量趨於合理。
: 新版
: 冠軍成就 賽季榮譽 生涯累積 總 分
: 平均值:65.8(25.3%) 117.6(45.3%) 76.4(29.4%) 259.8
: 中位數:48.2 81.3 71.5 194.3
: 舊版
: 冠軍成就 賽季榮譽 生涯累積 總 分
: 平均值:56.6(22.0%) 123.5(48.1%) 76.2(29.7%) 256.9
: 中位數:37.9 83.3 71.5 192.2
: 聯盟早期無FMVP或年度陣容第三陣等榮譽,視作彌補早期規模較小,總冠軍及其他榮譽
: 取得較為容易之自然平衡機制,不強行做調整。
: 本表包含ABA數據,但以NBA為主,僅列生涯一半以上在NBA出賽之球員,考量規模,積
分
: 折半計算,並以季後賽MVP代替FMVP,不計算分區冠軍積分(因比同期NBA少打一輪)。
: 極少數BAA(NBA前身)缺失數據以該球員生涯平均值代替,考量數據缺失時期多為球員巔
: 峰,以平均值代替僅為一定程度彌補,不至於虛高,雖有失真之慮,但仍較欠缺為佳。
: 本表包含MVP Shares排名前百大、年度陣容次數前百大、明星賽次數前百大、例行賽、
: 季後賽Win Shares前百大,3冠以上球員,扣除重複約270名球員加入評比。
:
除了數據面控制外,把薪資也納入控制因子應該也會更準確
總而言之,先以投票結果導出一個模型
爾後再進行微調,當然模型選擇也需要很多驗證
以目前的資料量跟一堆不同人的百大排名
應該有不少公司有一套機器學習下的模型
ESPN那套勝率預測應該也是這個設計脈絡(?
所以說要直接捏出一個歷史排名公式幾乎辦不到
提出一套研究設計分享一下
最近沒空玩資料整理資料
如果剛好手頭有資料整理好的人我試想可以用ologit(stata)跑跑看歷史排名每升一名那
些因子會有什麼變化
--
※ 發信站: 批踢踢實業坊(ptt.cc), 來自: 49.216.20.28 (臺灣)
※ 文章網址: https://www.ptt.cc/bbs/NBA/M.1689346421.A.512.html
但主要是從問卷結果回推的係數會比較準
交互項會解決滿多問題
用這個回歸應該沒問題
多跑一個邊際效果就會有我說的那個結果解釋了
年度也會控制一大部分這個問題
我有說是控制因子 會排除所謂角色球員或是球星的問題
少數底薪爆發可以當作outlier
來回幾次應該準確度就會蠻高
但用機器學習瘋狂跑資料應該最棒 殘差會很低