雖然這篇多元智慧理論例子鄉民發文沒有被收入到精華區:在多元智慧理論例子這個話題中,我們另外找到其它相關的精選爆讚文章
在 多元智慧理論例子產品中有18篇Facebook貼文,粉絲數超過0的網紅,也在其Facebook貼文中提到, ▍思考框架是創造力背後的推手 我們心中,本來就有各式各樣的思考框架,我們思考的方式就是如此。這些思考框架有的簡單、有的複雜,有的精確、有的粗略,有的美麗、也有的邪惡。但不論如何,都會呈現現實的某些面向,協助我們提出解釋、抓住重點,做出決定。 例如,民主制度是一種思考框架,而君主制度也是一種思考框...
多元智慧理論例子 在 Jimmy Ying Instagram 的最佳解答
2021-08-03 14:32:32
今天同時看了兩段影片:Mark Ripptoe對於六角杠的看法- 垃圾, 與Mike Boyle對於它的看法- 神器. 覺得非常有趣. 當然兩者都各有自己的觀點, 有部分的看法讓人十分認同, 也有一部分的理由覺得有一點牽強.. 學習本來死就是應該多元, 這樣能夠幫助我們使用不一樣的角度去思考同樣一...
多元智慧理論例子 在 Oscar Lee 李臻 Instagram 的最讚貼文
2020-04-28 19:05:42
善用數據為學生減壓 作者:李 臻 (Oscar Lee) 2018年11月24日刊於《信報》 教育是施政重點之一,政府亦承諾投放更多資源在這範疇上,社會對於相關改革或減輕學生壓力的討論,近年亦沒有停過。香港教育算是比較多元化和選擇豐富,雖然經常被家長批評學生壓力太大、功課和操練太多,但總括來說,...
多元智慧理論例子 在 Facebook 的精選貼文
▍思考框架是創造力背後的推手
我們心中,本來就有各式各樣的思考框架,我們思考的方式就是如此。這些思考框架有的簡單、有的複雜,有的精確、有的粗略,有的美麗、也有的邪惡。但不論如何,都會呈現現實的某些面向,協助我們提出解釋、抓住重點,做出決定。
例如,民主制度是一種思考框架,而君主制度也是一種思考框架。在商業產業上,精實生產(lean manufacturing)是一種思考框架,OKR(objectives and key results,即「目標與關鍵結果」,因英特爾與谷歌的先後採用而聲名大噪)也是一種思考框架。宗教是一種思考框架,世俗人文主義(也就是不信神的道德觀)也是一種思考框架。法治是一種思考框架,「強權即公理」也是一種思考框架。種族平等是一種思考框架,種族主義也是一種思考框架。
在我們的種種推理上,思考框架不但是重要基礎,而且應用極為廣泛。近幾十年間,從哲學到神經科學,各式各樣的領域都曾研究人類的思考框架,只是用來描述的術語有所不同,包括:模板、抽象概念、再現(representation)、基模等等。
時至今日,不論是硬科學或社會科學領域,多半都已經接受「人類透過心智模型來思考」的概念。只不過,這其實是相對晚近的概念。在二十世紀初,多半還只有哲學家在思考「人類如何思考」的問題。佛洛伊德對大腦的奧祕深感興趣,但他是當時的例外,而非常態。到了兩次世界大戰之間,像是卡西勒和維根斯坦等哲學家,則是以心智所操縱的符號與語詞為基礎,以此來認識心智。這確實是邁出了一步,讓人以更理性的方式來瞭解「認知」,但一切仍然只是理論,沒有實證。
等到第二次世界大戰之後,開始有實證科學家研究人類的心智—心理學家接手哲學家的研究,特別是開始思考大腦內部的認知過程。一開始,學者認為認知過程就像是嚴格的邏輯運算,但實證研究並無法支持這種論點。大約在1970 年代,「心智模型」的概念開始流行,眾人也開始認為人類的推理並非邏輯形式的運作,而更像是在模擬現實:我們評估各種選項的方式,是去想像可能發生的種種情況。
如今,這種觀點已經由許多心理學家與認知科學家經過眾多實驗得到證明。近年來,由於功能性磁振造影(fMRI)能夠即時視覺化呈現受試者的腦部活動,就連神經科學也踏入了這項研究領域。舉例來說,研究顯示,人類構思未來的時候,會啟動那些和空間認知與3D 思考相關的大腦區域。可以說,其實就是在有目的、刻意的做夢。
這項研究成果,讓我們對人類如何思考的理解,開始默默改變,瞭解了心智模型是人類認知的基本構件。不論我們任何的所見、所知、所感、所信,都始於我們對宇宙萬物的思考方式。我們如何理解世界,會受到我們「相信」世界如何運作所影響,包括:事情為何會發生、未來會如何發展,以及如果我們採取行動之後又會如何。
.
▍「解釋」帶來的好處
因果框架要求一切必須有說得通的解釋,這點除了讓我們得以歸納類推,也讓我們得以學習。這是一項重要特點,而且也是一項相對較新的發現。一般來說,學習是發生在得到資訊的時候—聽到老師講課、看到書上的描述、或是學徒動手修修補補的時候。但在做因果解釋的時候,那位提供資訊和解釋的人其實也在學習。這項觀點是由普林斯頓大學心理學教授倫布羅佐(TaniaLombrozo)提出,她是這個學術領域的熠熠新星,引領著一套關於「解釋」機制的新科學。
倫布羅佐從大學時期開始,就發現不論在心理學、社會學、哲學,處處可見關於解釋的想法。雖然這似乎就明擺在眼前,但事實證明,關於「解釋」這件事本身,科學界的研究都還不夠深入。舉例來說,為什麼我們會覺得某些事值得解釋、又有某些事不值得解釋?解釋能讓我們如何有所成就,或者如何讓人誤入歧途?倫布羅佐的研究從心理學和哲學出發,填補了一些我們關於解釋的知識空白。
倫布羅佐對於「透過解釋而學習」的研究,就是一個很好的例子。在實驗中,倫布羅佐請成年受試者看看兩群來自外星的機器人,分別名為glorp 和drent。兩群機器人各有不同的顏色、體型、腳部形狀的特徵,但受試者並不知道真正的重要區別是哪一項。實驗人員請一半的受試者去描述glorp 和drent 各有何特徵,而另一半則是要解釋glorp 和drent 各有何特徵。(兩群機器人都很可愛,但是真正區分的重點並不在於顏色或體型,而在於腳部的形狀。)
結果如何?比起那些只需要描述而不需要解釋的人,那些必須提出解釋的受試者,在找出真正區別之處的表現,明顯高出一截。倫布羅佐做了很多次實驗,結果都類似。她甚至也對小孩做了實驗,結果一樣:如果要小孩提出因果解釋,他們的表現就會更棒。
讓我們把這點再拉回來討論思考框架:我們用因果框架來解釋這個世界的時候,其實就是在學習,因此我們會更瞭解這個世界,我們也能產生更深入、更準確的見解。而且,向別人解釋這個世界,也能讓自己更瞭解這個世界。這項發現對教育和育兒來說,具有直接的意義:記得要小孩解釋他們推論的過程,而不只是要他們給答案。(這或許也有演化上的意義:比起其他不去解釋這個世界的動物,人類透過解釋的機制,也就學得更快、學得更多。)
這件事能帶來的好處,絕不只是知道怎麼區分glorp 和drent而已。人類從最早的時候,就開始想像出各種秩序的概念,在群星當中勾勒眾神的身形,將各種物種加以分類。小孩會花上幾小時,分類排列著自己的小車車、小布偶、樂高積木,還有萬聖節糖果(直到爸媽半夜偷偷來吃掉)。這種分類和重新分類的動作,靠的就是我們取得抽象概念、進行歸納類推的能力。
要是少了取得抽象概念的能力,我們就會覺得自己碰到的一切都是完全陌生,沒有任何一般法則能夠告訴我們該怎麼做。
.
以上文字摘自
《#造局者》
思考框架的威力
Framers: Human Advantage in an Age of Technology and Turmoil
.
作者:庫基耶, 麥爾荀伯格, 德菲爾利科德
... ... ... ... ... ... ... ... ... ... ... ... ... ... ...
各位朋友好:
昨天在贈書直播中,談到用過去經驗類比現在或未來未知的處境,是大腦很重要的工作。說真的,這項能力對我們活下來真的幫助很大。
然而,我們昨天也提到,這種思考慣性同時也造成了某些限制。尤其過去經驗本來就比較偏頗,這種慣性要調整,就必須經過有意識的自我教育。
「思考特定議題的時候,我腦海裡如果浮現越多人的立場,最後得到的結論就越讓人信服。」~漢娜鄂蘭
版面上的朋友們,因為常閱讀不同作者的智慧,所以特別能進行討論。這其實更有利於我們看到不同人的觀點,並且選擇適合我們的思考方式,而不只是因循故舊。
今天晚上沒有直播,明天晚上的直播,會再談談傳統教養跟自我傷害的關係。這實在是一種沉重的話題,錯用思考框架,讓我們代代相傳著創傷。
祝願您,能充實我們的思考框架庫,這是能有多元選擇的基礎之一!
多元智慧理論例子 在 台灣物聯網實驗室 IOT Labs Facebook 的精選貼文
摩爾定律放緩 靠啥提升AI晶片運算力?
作者 : 黃燁鋒,EE Times China
2021-07-26
對於電子科技革命的即將終結的說法,一般認為即是指摩爾定律的終結——摩爾定律一旦無法延續,也就意味著資訊技術的整棟大樓建造都將出現停滯,那麼第三次科技革命也就正式結束了。這種聲音似乎是從十多年前就有的,但這波革命始終也沒有結束。AI技術本質上仍然是第三次科技革命的延續……
人工智慧(AI)的技術發展,被很多人形容為第四次科技革命。前三次科技革命,分別是蒸汽、電氣、資訊技術(電子科技)革命。彷彿這“第四次”有很多種說辭,比如有人說第四次科技革命是生物技術革命,還有人說是量子技術革命。但既然AI也是第四次科技革命之一的候選技術,而且作為資訊技術的組成部分,卻又獨立於資訊技術,即表示它有獨到之處。
電子科技革命的即將終結,一般認為即是指摩爾定律的終結——摩爾定律一旦無法延續,也就意味著資訊技術的整棟大樓建造都將出現停滯,那麼第三次科技革命也就正式結束了。這種聲音似乎是從十多年前就有,但這波革命始終也沒有結束。
AI技術本質上仍然是第三次科技革命的延續,它的發展也依託於幾十年來半導體科技的進步。這些年出現了不少專門的AI晶片——而且市場參與者相眾多。當某一個類別的技術發展到出現一種專門的處理器為之服務的程度,那麼這個領域自然就不可小覷,就像當年GPU出現專門為圖形運算服務一樣。
所以AI晶片被形容為CPU、GPU之後的第三大類電腦處理器。AI專用處理器的出現,很大程度上也是因為摩爾定律的發展進入緩慢期:電晶體的尺寸縮減速度,已經無法滿足需求,所以就必須有某種專用架構(DSA)出現,以快速提升晶片效率,也才有了專門的AI晶片。
另一方面,摩爾定律的延緩也成為AI晶片發展的桎梏。在摩爾定律和登納德縮放比例定律(Dennard Scaling)發展的前期,電晶體製程進步為晶片帶來了相當大的助益,那是「happy scaling down」的時代——CPU、GPU都是這個時代受益,不過Dennard Scaling早在45nm時期就失效了。
AI晶片作為第三大類處理器,在這波發展中沒有趕上happy scaling down的好時機。與此同時,AI應用對運算力的需求越來越貪婪。今年WAIC晶片論壇圓桌討論環節,燧原科技創始人暨CEO趙立東說:「現在訓練的GPT-3模型有1750億參數,接近人腦神經元數量,我以為這是最大的模型了,要千張Nvidia的GPU卡才能做。談到AI運算力需求、模型大小的問題,說最大模型超過萬億參數,又是10倍。」
英特爾(Intel)研究院副總裁、中國研究院院長宋繼強說:「前兩年用GPU訓練一個大規模的深度學習模型,其碳排放量相當於5台美式車整個生命週期產生的碳排量。」這也說明了AI運算力需求的貪婪,以及提供運算力的AI晶片不夠高效。
不過作為產業的底層驅動力,半導體製造技術仍源源不斷地為AI發展提供推力。本文將討論WAIC晶片論壇上聽到,針對這個問題的一些前瞻性解決方案——有些已經實現,有些則可能有待時代驗證。
XPU、摩爾定律和異質整合
「電腦產業中的貝爾定律,是說能效每提高1,000倍,就會衍生出一種新的運算形態。」中科院院士劉明在論壇上說,「若每瓦功耗只能支撐1KOPS的運算,當時的這種運算形態是超算;到了智慧型手機時代,能效就提高到每瓦1TOPS;未來的智慧終端我們要達到每瓦1POPS。 這對IC提出了非常高的要求,如果依然沿著CMOS這條路去走,當然可以,但會比較艱辛。」
針對性能和效率提升,除了尺寸微縮,半導體產業比較常見的思路是電晶體結構、晶片結構、材料等方面的最佳化,以及處理架構的革新。
(1)AI晶片本身其實就是對處理器架構的革新,從運算架構的層面來看,針對不同的應用方向造不同架構的處理器是常規,更專用的處理器能促成效率和性能的成倍增長,而不需要依賴於電晶體尺寸的微縮。比如GPU、神經網路處理器(NPU,即AI處理器),乃至更專用的ASIC出現,都是這類思路。
CPU、GPU、NPU、FPGA等不同類型的晶片各司其職,Intel這兩年一直在推行所謂的「XPU」策略就是用不同類型的處理器去做不同的事情,「整合起來各取所需,用組合拳會好過用一種武器去解決所有問題。」宋繼強說。Intel的晶片產品就涵蓋了幾個大類,Core CPU、Xe GPU,以及透過收購獲得的AI晶片Habana等。
另外針對不同類型的晶片,可能還有更具體的最佳化方案。如當代CPU普遍加入AVX512指令,本質上是特別針對深度學習做加強。「專用」的不一定是處理器,也可以是處理器內的某些特定單元,甚至固定功能單元,就好像GPU中加入專用的光線追蹤單元一樣,這是當代處理器普遍都在做的一件事。
(2)從電晶體、晶片結構層面來看,電晶體的尺寸現在仍然在縮減過程中,只不過縮減幅度相比過去變小了——而且為緩解電晶體性能的下降,需要有各種不同的技術來輔助尺寸變小。比如說在22nm節點之後,電晶體變為FinFET結構,在3nm之後,電晶體即將演變為Gate All Around FET結構。最終會演化為互補FET (CFET),其本質都是電晶體本身充分利用Z軸,來實現微縮性能的提升。
劉明認為,「除了基礎元件的變革,IC現在的發展還是比較多元化,包括新材料的引進、元件結構革新,也包括微影技術。長期賴以微縮的基本手段,現在也在發生巨大的變化,特別是未來3D的異質整合。這些多元技術的協同發展,都為晶片整體性能提升帶來了很好的增益。」
他並指出,「從電晶體級、到晶圓級,再到晶片堆疊、引線接合(lead bonding),精準度從毫米向奈米演進,互連密度大大提升。」從晶圓/裸晶的層面來看,則是眾所周知的朝more than moore’s law這樣的路線發展,比如把兩片裸晶疊起來。現在很熱門的chiplet技術就是比較典型的並不依賴於傳統電晶體尺寸微縮,來彈性擴展性能的方案。
台積電和Intel這兩年都在大推將不同類型的裸晶,異質整合的技術。2.5D封裝方案典型如台積電的CoWoS,Intel的EMIB,而在3D堆疊上,Intel的Core LakeField晶片就是用3D Foveros方案,將不同的裸晶疊在一起,甚至可以實現兩片運算裸晶的堆疊、互連。
之前的文章也提到過AMD剛發佈的3D V-Cache,將CPU的L3 cache裸晶疊在運算裸晶上方,將處理器的L3 cache大小增大至192MB,對儲存敏感延遲應用的性能提升。相比Intel,台積電這項技術的獨特之處在於裸晶間是以混合接合(hybrid bonding)的方式互連,而不是micro-bump,做到更小的打線間距,以及晶片之間數十倍通訊性能和效率提升。
這些方案也不直接依賴傳統的電晶體微縮方案。這裡實際上還有一個方面,即新材料的導入專家們沒有在論壇上多說,本文也略過不談。
1,000倍的性能提升
劉明談到,當電晶體微縮的空間沒有那麼大的時候,產業界傾向於採用新的策略來評價技術——「PPACt」——即Powe r(功耗)、Performance (性能)、Cost/Area-Time (成本/面積-時間)。t指的具體是time-to-market,理論上應該也屬於成本的一部分。
電晶體微縮方案失效以後,「多元化的技術變革,依然會讓IC性能得到進一步的提升。」劉明說,「根據預測,這些技術即使不再做尺寸微縮,也會讓IC的晶片性能做到500~1,000倍的提升,到2035年實現Zetta Flops的系統性能水準。且超算的發展還可以一如既往地前進;單裸晶儲存容量變得越來越大,IC依然會為產業發展提供基礎。」
500~1,000倍的預測來自DARPA,感覺有些過於樂觀。因為其中的不少技術存在比較大的邊際遞減效應,而且有更實際的工程問題待解決,比如運算裸晶疊層的散熱問題——即便業界對於這類工程問題的探討也始終在持續。
不過1,000倍的性能提升,的確說明摩爾定律的終結並不能代表第三次科技革命的終結,而且還有相當大的發展空間。尤其本文談的主要是AI晶片,而不是更具通用性的CPU。
矽光、記憶體內運算和神經型態運算
在非傳統發展路線上(以上內容都屬於半導體製造的常規思路),WAIC晶片論壇上宋繼強和劉明都提到了一些頗具代表性的技術方向(雖然這可能與他們自己的業務方向或研究方向有很大的關係)。這些技術可能尚未大規模推廣,或者仍在商業化的極早期。
(1)近記憶體運算和記憶體內運算:處理器性能和效率如今面臨的瓶頸,很大程度並不在單純的運算階段,而在資料傳輸和儲存方面——這也是共識。所以提升資料的傳輸和存取效率,可能是提升整體系統性能時,一個非常靠譜的思路。
這兩年市場上的處理器產品用「近記憶體運算」(near-memory computing)思路的,應該不在少數。所謂的近記憶體運算,就是讓儲存(如cache、memory)單元更靠近運算單元。CPU的多層cache結構(L1、L2、L3),以及電腦處理器cache、記憶體、硬碟這種多層儲存結構是常規。而「近記憶體運算」主要在於究竟有多「近」,cache記憶體有利於隱藏當代電腦架構中延遲和頻寬的局限性。
這兩年在近記憶體運算方面比較有代表性的,一是AMD——比如前文提到3D V-cache增大處理器的cache容量,還有其GPU不僅在裸晶內導入了Infinity Cache這種類似L3 cache的結構,也更早應用了HBM2記憶體方案。這些實踐都表明,儲存方面的革新的確能帶來性能的提升。
另外一個例子則是Graphcore的IPU處理器:IPU的特點之一是在裸晶內堆了相當多的cache資源,cache容量遠大於一般的GPU和AI晶片——也就避免了頻繁的訪問外部儲存資源的操作,極大提升頻寬、降低延遲和功耗。
近記憶體運算的本質仍然是馮紐曼架構(Von Neumann architecture)的延續。「在做處理的過程中,多層級的儲存結構,資料的搬運不僅僅在處理和儲存之間,還在不同的儲存層級之間。這樣頻繁的資料搬運帶來了頻寬延遲、功耗的問題。也就有了我們經常說的運算體系內的儲存牆的問題。」劉明說。
構建非馮(non-von Neumann)架構,把傳統的、以運算為中心的馮氏架構,變換一種新的運算範式。把部分運算力下推到儲存。這便是記憶體內運算(in-memory computing)的概念。
記憶體內運算的就現在看來還是比較新,也有稱其為「存算一體」。通常理解為在記憶體中嵌入演算法,儲存單元本身就有運算能力,理論上消除資料存取的延遲和功耗。記憶體內運算這個概念似乎這在資料爆炸時代格外醒目,畢竟可極大減少海量資料的移動操作。
其實記憶體內運算的概念都還沒有非常明確的定義。現階段它可能的內涵至少涉及到在儲記憶體內部,部分執行資料處理工作;主要應用於神經網路(因為非常契合神經網路的工作方式),以及這類晶片具體的工作方法上,可能更傾向於神經型態運算(neuromorphic computing)。
對於AI晶片而言,記憶體內運算的確是很好的思路。一般的GPU和AI晶片執行AI負載時,有比較頻繁的資料存取操作,這對性能和功耗都有影響。不過記憶體內運算的具體實施方案,在市場上也是五花八門,早期比較具有代表性的Mythic導入了一種矩陣乘的儲存架構,用40nm嵌入式NOR,在儲記憶體內部執行運算,不過替換掉了數位週邊電路,改用類比的方式。在陣列內部進行模擬運算。這家公司之前得到過美國國防部的資金支援。
劉明列舉了近記憶體運算和記憶體內運算兩種方案的例子。其中,近記憶體運算的這個方案應該和AMD的3D V-cache比較類似,把儲存裸晶和運算裸晶疊起來。
劉明指出,「這是我們最近的一個工作,採用hybrid bonding的技術,與矽通孔(TSV)做比較,hybrid bonding功耗是0.8pJ/bit,而TSV是4pJ/bit。延遲方面,hybrid bonding只有0.5ns,而TSV方案是3ns。」台積電在3D堆疊方面的領先優勢其實也體現在hybrid bonding混合鍵合上,前文也提到了它具備更高的互連密度和效率。
另外這套方案還將DRAM刷新頻率提高了一倍,從64ms提高至128ms,以降低功耗。「應對刷新率變慢出現拖尾bit,我們引入RRAM TCAM索引這些tail bits」劉明說。
記憶體內運算方面,「傳統運算是用布林邏輯,一個4位元的乘法需要用到幾百個電晶體,這個過程中需要進行資料來回的移動。記憶體內運算是利用單一元件的歐姆定律來完成一次乘法,然後利用基爾霍夫定律完成列的累加。」劉明表示,「這對於今天深度學習的矩陣乘非常有利。它是原位的運算和儲存,沒有資料搬運。」這是記憶體內運算的常規思路。
「無論是基於SRAM,還是基於新型記憶體,相比近記憶體運算都有明顯優勢,」劉明認為。下圖是記憶體內運算和近記憶體運算,精準度、能效等方面的對比,記憶體內運算架構對於低精準度運算有價值。
下圖則總結了業內主要的一些記憶體內運算研究,在精確度和能效方面的對應關係。劉明表示,「需要高精確度、高運算力的情況下,近記憶體運算目前還是有優勢。不過記憶體內運算是更新的技術,這幾年的進步也非常快。」
去年阿里達摩院發佈2020年十大科技趨勢中,有一個就是存算一體突破AI算力瓶頸。不過記憶體內運算面臨的商用挑戰也一點都不小。記憶體內運算的通常思路都是類比電路的運算方式,這對記憶體、運算單元設計都需要做工程上的考量。與此同時這樣的晶片究竟由誰來造也是個問題:是記憶體廠商,還是數文書處理器廠商?(三星推過記憶體內運算晶片,三星、Intel垂直整合型企業似乎很適合做記憶體內運算…)
(2)神經型態運算:神經型態運算和記憶體內運算一樣,也是新興技術的熱門話題,這項技術有時也叫作compute in memory,可以認為它是記憶體內運算的某種發展方向。神經型態和一般神經網路AI晶片的差異是,這種結構更偏「類人腦」。
進行神經型態研究的企業現在也逐漸變得多起來,劉明也提到了AI晶片「最終的理想是在結構層次模仿腦,元件層次逼近腦,功能層次超越人腦」的「類腦運算」。Intel是比較早關注神經型態運算研究的企業之一。
傳說中的Intel Loihi就是比較典型存算一體的架構,「這片裸晶裡面包含128個小核心,每個核心用於模擬1,024個神經元的運算結構。」宋繼強說,「這樣一塊晶片大概可以類比13萬個神經元。我們做到的是把768個晶片再連起來,構成接近1億神經元的系統,讓學術界的夥伴去試用。」
「它和深度學習加速器相比,沒有任何浮點運算——就像人腦裡面沒有乘加器。所以其學習和訓練方法是採用一種名為spike neutral network的路線,功耗很低,也可以訓練出做視覺辨識、語言辨識和其他種類的模型。」宋繼強認為,不採用同步時脈,「刺激的時候就是一個非同步電動勢,只有工作部分耗電,功耗是現在深度學習加速晶片的千分之一。」
「而且未來我們可以對不同區域做劃分,比如這兒是視覺區、那兒是語言區、那兒是觸覺區,同時進行多模態訓練,互相之間產生關聯。這是現在的深度學習模型無法比擬的。」宋繼強說。這種神經型態運算晶片,似乎也是Intel在XPU方向上探索不同架構運算的方向之一。
(2)微型化矽光:這個技術方向可能在層級上更偏高了一些,不再晶片架構層級,不過仍然值得一提。去年Intel在Labs Day上特別談到了自己在矽光(Silicon Photonics)的一些技術進展。其實矽光技術在連接資料中心的交換機方面,已有應用了,發出資料時,連接埠處會有個收發器把電訊號轉為光訊號,透過光纖來傳輸資料,另一端光訊號再轉為電訊號。不過傳統的光收發器成本都比較高,內部元件數量大,尺寸也就比較大。
Intel在整合化的矽光(IIIV族monolithic的光學整合化方案)方面應該是商業化走在比較前列的,就是把光和電子相關的組成部分高度整合到晶片上,用IC製造技術。未來的光通訊不只是資料中心機架到機架之間,也可以下沉到板級——就跟現在傳統的電I/O一樣。電互連的主要問題是功耗太大,也就是所謂的I/O功耗牆,這是這類微型化矽光元件存在的重要價值。
這其中存在的技術挑戰還是比較多,如做資料的光訊號調變的調變器調變器,據說Intel的技術使其實現了1,000倍的縮小;還有在接收端需要有個探測器(detector)轉換光訊號,用所謂的全矽微環(micro-ring)結構,實現矽對光的檢測能力;波分複用技術實現頻寬倍增,以及把矽光和CMOS晶片做整合等。
Intel認為,把矽光模組與運算資源整合,就能打破必須帶更多I/O接腳做更大尺寸處理器的這種趨勢。矽光能夠實現的是更低的功耗、更大的頻寬、更小的接腳數量和尺寸。在跨處理器、跨伺服器節點之間的資料互動上,這類技術還是頗具前景,Intel此前說目標是實現每根光纖1Tbps的速率,並且能效在1pJ/bit,最遠距離1km,這在非本地傳輸上是很理想的數字。
還有軟體…
除了AI晶片本身,從整個生態的角度,包括AI感知到運算的整個鏈條上的其他組成部分,都有促成性能和效率提升的餘地。比如這兩年Nvidia從軟體層面,針對AI運算的中間層、庫做了大量最佳化。相同的底層硬體,透過軟體最佳化就能實現幾倍的性能提升。
宋繼強說,「我們發現軟體最佳化與否,在同一個硬體上可以達到百倍的性能差距。」這其中的餘量還是比較大。
在AI開發生態上,雖然Nvidia是最具發言權的;但從戰略角度來看,像Intel這種研發CPU、GPU、FPGA、ASIC,甚至還有神經型態運算處理器的企業而言,不同處理器統一開發生態可能更具前瞻性。Intel有個稱oneAPI的軟體平台,用一套API實現不同硬體性能埠的對接。這類策略對廠商的軟體框架構建能力是非常大的考驗——也極大程度關乎底層晶片的執行效率。
在摩爾定律放緩、電晶體尺寸微縮變慢甚至不縮小的前提下,處理器架構革新、異質整合與2.5D/3D封裝技術依然可以達成1,000倍的性能提升;而一些新的技術方向,包括近記憶體運算、記憶體內運算和微型矽光,能夠在資料訪存、傳輸方面產生新的價值;神經型態運算這種類腦運算方式,是實現AI運算的目標;軟體層面的最佳化,也能夠帶動AI性能的成倍增長。所以即便摩爾定律嚴重放緩,AI晶片的性能、效率提升在上面提到的這麼多方案加持下,終將在未來很長一段時間內持續飛越。這第三(四)次科技革命恐怕還很難停歇。
資料來源:https://www.eettaiwan.com/20210726nt61-ai-computing/?fbclid=IwAR3BaorLm9rL2s1ff6cNkL6Z7dK8Q96XulQPzuMQ_Yky9H_EmLsBpjBOsWg
多元智慧理論例子 在 健身教官-應充明Jimmy Facebook 的最讚貼文
今天同時看了兩段影片:Mark Ripptoe對於六角杠的看法- 垃圾, 與Mike Boyle對於它的看法- 神器. 覺得非常有趣. 當然兩者都各有自己的觀點, 有部分的看法讓人十分認同, 也有一部分的理由覺得有一點牽強..
學習本來死就是應該多元, 這樣能夠幫助我們使用不一樣的角度去思考同樣一件事, 不認識很容易落入狹隘的死胡同裡. 而對某特定單一理論過度的信仰之後就會開始自我封閉, 無視其他言語, 甚至只要看到一點點不同聲音就會反應激烈
人的成長本來就是需要不一樣形狀的拼圖, 結合以後才會完整, 多方面的吸收知識可以協助我們發現本身缺乏之處
當然, 也會常常看到相反的例子, 教練囫圇吞棗的去學習, 但每一樣技能其實都沒有完整的掌握… 如此反而好像只是在花錢買證照而已
我們都還沒到「盡信書不如不讀書」的境界, 那必須達到武當張三豐的修為. 既然如此, 就把自己當作海綿寶寶吧, 持續的尋找各種巨人, 爬上他們的肩膀吸取他們的智慧, 這些寶貴的東西有朝一日, 經過反芻發酵一定可以內化為我們自己的功力的!