雖然這篇三頂點求面積鄉民發文沒有被收入到精華區:在三頂點求面積這個話題中,我們另外找到其它相關的精選爆讚文章
在 三頂點求面積產品中有10篇Facebook貼文,粉絲數超過7,590的網紅李傑老師,也在其Facebook貼文中提到, 110學測數學重點來嘍!!! 1.數與式 有理數與無理數/絕對值的數線意義/算幾不等式。 2.多項式 二次函數(極值,恆正,係數的正負判別)/牛頓定理/勘根/虛根成雙/插值多項式。 3.指對數 圖形/對數的定義題(星等,分貝,地震,ph值)/不等式/首尾數(複利,成長率,內插法)與應用。 4...
三頂點求面積 在 李傑老師 Facebook 的最佳貼文
110學測數學重點來嘍!!!
1.數與式
有理數與無理數/絕對值的數線意義/算幾不等式。
2.多項式
二次函數(極值,恆正,係數的正負判別)/牛頓定理/勘根/虛根成雙/插值多項式。
3.指對數
圖形/對數的定義題(星等,分貝,地震,ph值)/不等式/首尾數(複利,成長率,內插法)與應用。
4.數列級數
等差等比的混合題型/sigma求和應用/複利求和。
5.排列組合
同物排列/排容原理/選排問題/分組分堆/幾何計數(直線數,三角形數,矩形數…)/二項式定理。
6.機率
古典機率(骰子,銅板,數字問題)/條件機率/貝式定理/獨立事件。
7.數據分析
標準差S/相關係數r/迴歸直線/資料的伸縮平移。
8.三角
定義(廣義角)/正餘弦與應用(面積,中線,分角線,偏線,R,r)/二倍角公式/簡易三角測量。
9.直線與圓
斜率/直線的位置關係與分割/線性規劃/圓與線的位置關係/切線的求法。
10.平面向量
加減法概念/共線理論/內積的性質與應用(長度,夾角,正射影)/兩線求夾角(距離)。
11.空間向量
坐標系的設定/外積與面積體積。
12.空間中的平面直線
平面方程式的處理/兩平面求夾角距離/直線與平面的位置關係(交於一點,平行...)。
13.矩陣
乘法與性質/轉移矩陣的判讀/馬可夫鏈/反矩陣(乘法反元素)
14.二次曲線
定義的應用(尤其是兩種曲線的混合命題,共焦點或共頂點…)/求方程式。
請按照上述重點逐一複習,並找試題演練,必可考得佳績!
Go go go & good luck♥
(本文歡迎轉載或分享 請註明出處 謝謝)
三頂點求面積 在 辣媽英文天后 林俐 Carol Facebook 的最讚貼文
Wow! 滿滿滿的會考數學重點吔😍
來來來,紙筆趕快準備好!
數學科會考精華重點,
帶你一手掌握致勝關鍵!
數學科會考30天衝刺重點
考前最後30天,
建議同學,調整好生理時鐘,
讓自己的大腦習慣
在10:30到11:50這段時間算數學。
切記每次考試前都花10分鐘的時間快速總複習,
把公式、重要性質、常忘常錯的地方,
用這個關鍵10分鐘掃過一遍。
考前最後30天以算新題
培養對沒看過的題目的臨場反應為主,
有錯的題目訂正完,
把關鍵寫在考前10分鐘的快速總複習筆記上,
下次考前再複習一次!
以下是會考精華重點,
這些重點不只會在選擇出現,
還可能出現在非選!
好好把握下列重點,
拿到數學滿分的成績單時別太意外!😂
1.正負數與數線:
「絕對值」代表「到原點的距離」、
「相減取絕對值」代表「兩點距離」
這種代數轉幾何的考法總是考不膩;
科學記號的應用問題通常都會搭配四則運算;
新舊數線轉換切記「差成比例」!
2.因倍數與公因倍數:
質數的判定、互質的判定還有短除法請熟練;
難題用標準分解式處理!
3.分數:
四則運算切記「先乘除,後加減,但次方優先!」,
還有括號的處理務必「由小到大」且小心變號!
4.一元一次方程式:
一元一次式的「化簡」切記「只能通分,不能同乘」;
應用題考列式也很常見。
5.二元一次方程式:
基本的分式解聯立請小心隱形的括號;
近年來也常考三格漫畫的應用問題,命中不用太訝異!
6.坐標平面:
基本的象限考正負;點的移動x右加左減,y上加下減;
「點到x軸的距離」=「y坐標取絕對值」,
「點到y軸的距離」=「x坐標取絕對值」;
水平線y相同,鉛直線x相同;
還有最常考的二元一次直線方程式畫圖!
7.比與比例:
雙比例問題考到爛,務必調整到符合題意。
8.函數:
線型函數應用問題可以利用「差成比例」處理!
9.一元一次不等式:
有基本的一元一次不等式求x範圍;
進階有天平問題和水量的應用問題。
10.乘法公式與多項式:
利用乘法公式求值請用力觀察數字之間的關聯性;
多項式長除法也很愛考;因式倍式關係要會看。
11.二次方根與勾股定理:
基本的化成最簡根式、有理化、四則運算要熟;
進階的根號估計也是大熱門;
勾股定理近年來都搭配後面幾何一起考。
12.因式分解:
通常喜歡考提公因式因式分解,再搭配次方的運算請小心。
13.一元二次方程式:
基本的十字交乘、配方法解x;
給兩根求方程式用倒帶;
觀念題小心消去未知數可能會減根。
14.等差數列:
基本的循環用除法看餘數、
等差數列換首項公差處理、
等差數列求和都是基本款;
近幾年等差數列喜歡搭配不等式請小心!
15.平面幾何:
對稱圖形不難;
外角定理在角度的計算超常用;
中垂線性質到兩端點等距、
角平分線性質到兩夾邊等距考到爛!
30度 - 60度 - 90度 邊長比「1:根號3:2」必考!
多邊形內角和、正多邊形內角和外角
要算到不小心背起來;
正六邊形、正八邊形、正12邊形
都是近年來考試重點。
16.三角形:
三角形兩邊之和大於第三邊、
大角對大邊小角對小邊偶爾會出;
三角形的全等證明要有考非選的心理準備。
17.平行與四邊形:
遇平行線延長會比較容易看;
平行時,同位角、內錯角相等,
同側內角互補超常用;
遇梯形常做的幾種輔助線要複習。
18.相似形:
常見的相似三角形組合要複習;
解題利用相似形的
「對應角相等」、「對應長成比例」、
「面積比等於對應長度平方比」這些性質;
要宣告三角形相似用相似性質,
要宣告非三角形的多邊形相似
則要一一檢查每一個對應角都相等,
每一個對應邊都成比例!
19.圓形:
考扇形、弧長、弓形算是基本款;
考相切要想到(1)垂直(2)切線段等長;
圓周角、圓內角、圓外角、弦切角也都很常考;
兩圓相切要連接兩圓圓心和切點;難題想到對稱性!
20.三角形的三心:
(1)外心:
到三頂點等距;
直角三角形外心在斜邊中點;
等腰三角形的R要會求;
角度可以利用圓周角和圓心角關係,
或是等腰三角形處理。
(2)內心:
到三邊等距;
r 的兩種求法請複習;
長度還可考求切線段長;
角度可利用角平分令x、x、y、y;
面積的兩種考法請複習。
(3)重心:
長度想到2比1,
面積想到六塊小三角形面積相等
21.二次函數拋物線:
開口的方向和大小要會看;
配方法求頂點求最大最小值必考!
考平移要想到
(1)看頂點的移動(2)開口不變a不變;
難題想到對稱性!
22.立體圖形:
近年來喜歡考空間觀念中的展開圖;
考角柱算是中規中矩;
靈活考題可能會搭配水量甚至考不等式!
23.統計:
給原始資料、給表、給直方圖、給圓餅圖,
中位數都要會求!
盒狀圖和圓餅圖也很常考,
特別是盒狀圖常會問四分位距的相關問題!
進階喜歡考圖形的轉換;
還有對稱圖形的平均數和中位數會相等!
24.機率:
列表討論、畫表格、畫樹狀圖必可解!
三頂點求面積 在 尹俐 Julia Facebook 的最讚貼文
來來來,紙筆趕快準備好!
數學科會考精華重點,
帶你一手掌握致勝關鍵!
數學科會考30天衝刺重點
考前最後30天,
建議同學,調整好生理時鐘,
讓自己的大腦習慣
在10:30到11:50這段時間算數學。
切記每次考試前都花10分鐘的時間快速總複習,
把公式、重要性質、常忘常錯的地方,
用這個關鍵10分鐘掃過一遍。
考前最後30天以算新題
培養對沒看過的題目的臨場反應為主,
有錯的題目訂正完,
把關鍵寫在考前10分鐘的快速總複習筆記上,
下次考前再複習一次!
以下是會考精華重點,
這些重點不只會在選擇出現,
還可能出現在非選!
好好把握下列重點,
拿到數學滿分的成績單時別太意外!😂
1.正負數與數線:
「絕對值」代表「到原點的距離」、
「相減取絕對值」代表「兩點距離」
這種代數轉幾何的考法總是考不膩;
科學記號的應用問題通常都會搭配四則運算;
新舊數線轉換切記「差成比例」!
2.因倍數與公因倍數:
質數的判定、互質的判定還有短除法請熟練;
難題用標準分解式處理!
3.分數:
四則運算切記「先乘除,後加減,但次方優先!」,
還有括號的處理務必「由小到大」且小心變號!
4.一元一次方程式:
一元一次式的「化簡」切記「只能通分,不能同乘」;
應用題考列式也很常見。
5.二元一次方程式:
基本的分式解聯立請小心隱形的括號;
近年來也常考三格漫畫的應用問題,命中不用太訝異!
6.坐標平面:
基本的象限考正負;點的移動x右加左減,y上加下減;
「點到x軸的距離」=「y坐標取絕對值」,
「點到y軸的距離」=「x坐標取絕對值」;
水平線y相同,鉛直線x相同;
還有最常考的二元一次直線方程式畫圖!
7.比與比例:
雙比例問題考到爛,務必調整到符合題意。
8.函數:
線型函數應用問題可以利用「差成比例」處理!
9.一元一次不等式:
有基本的一元一次不等式求x範圍;
進階有天平問題和水量的應用問題。
10.乘法公式與多項式:
利用乘法公式求值請用力觀察數字之間的關聯性;
多項式長除法也很愛考;因式倍式關係要會看。
11.二次方根與勾股定理:
基本的化成最簡根式、有理化、四則運算要熟;
進階的根號估計也是大熱門;
勾股定理近年來都搭配後面幾何一起考。
12.因式分解:
通常喜歡考提公因式因式分解,再搭配次方的運算請小心。
13.一元二次方程式:
基本的十字交乘、配方法解x;
給兩根求方程式用倒帶;
觀念題小心消去未知數可能會減根。
14.等差數列:
基本的循環用除法看餘數、
等差數列換首項公差處理、
等差數列求和都是基本款;
近幾年等差數列喜歡搭配不等式請小心!
15.平面幾何:
對稱圖形不難;
外角定理在角度的計算超常用;
中垂線性質到兩端點等距、
角平分線性質到兩夾邊等距考到爛!
30度 - 60度 - 90度 邊長比「1:根號3:2」必考!
多邊形內角和、正多邊形內角和外角
要算到不小心背起來;
正六邊形、正八邊形、正12邊形
都是近年來考試重點。
16.三角形:
三角形兩邊之和大於第三邊、
大角對大邊小角對小邊偶爾會出;
三角形的全等證明要有考非選的心理準備。
17.平行與四邊形:
遇平行線延長會比較容易看;
平行時,同位角、內錯角相等,
同側內角互補超常用;
遇梯形常做的幾種輔助線要複習。
18.相似形:
常見的相似三角形組合要複習;
解題利用相似形的
「對應角相等」、「對應長成比例」、
「面積比等於對應長度平方比」這些性質;
要宣告三角形相似用相似性質,
要宣告非三角形的多邊形相似
則要一一檢查每一個對應角都相等,
每一個對應邊都成比例!
19.圓形:
考扇形、弧長、弓形算是基本款;
考相切要想到(1)垂直(2)切線段等長;
圓周角、圓內角、圓外角、弦切角也都很常考;
兩圓相切要連接兩圓圓心和切點;難題想到對稱性!
20.三角形的三心:
(1)外心:
到三頂點等距;
直角三角形外心在斜邊中點;
等腰三角形的R要會求;
角度可以利用圓周角和圓心角關係,
或是等腰三角形處理。
(2)內心:
到三邊等距;
r 的兩種求法請複習;
長度還可考求切線段長;
角度可利用角平分令x、x、y、y;
面積的兩種考法請複習。
(3)重心:
長度想到2比1,
面積想到六塊小三角形面積相等
21.二次函數拋物線:
開口的方向和大小要會看;
配方法求頂點求最大最小值必考!
考平移要想到
(1)看頂點的移動(2)開口不變a不變;
難題想到對稱性!
22.立體圖形:
近年來喜歡考空間觀念中的展開圖;
考角柱算是中規中矩;
靈活考題可能會搭配水量甚至考不等式!
23.統計:
給原始資料、給表、給直方圖、給圓餅圖,
中位數都要會求!
盒狀圖和圓餅圖也很常考,
特別是盒狀圖常會問四分位距的相關問題!
進階喜歡考圖形的轉換;
還有對稱圖形的平均數和中位數會相等!
24.機率:
列表討論、畫表格、畫樹狀圖必可解!