[爆卦]reflexive離散是什麼?優點缺點精華區懶人包

為什麼這篇reflexive離散鄉民發文收入到精華區:因為在reflexive離散這個討論話題中,有許多相關的文章在討論,這篇最有參考價值!作者s90413k64 (成言追口河與草)看板Grad-ProbAsk標題Re: [理工] 離散數學...


※ 引述《dearwen61 (Water Blue)》之銘言:
: 一、若A ={1,2,3,4},R 為定義在集合A上之ㄧ關係(relation),R ={(1,2),(2,3),(3,4)},試求
: (一)反身性閉包(reflexive closure)
: (二)對稱性閉包(symmetric closure)
: (三)遞移性閉包(transitive closure)
: 答
: (一)所求 = {(1,1),(2,2),(3,3),(4,4)}

http://en.wikipedia.org/wiki/Reflexive_closure

r(R) = R ∪ R^(0) = {(1,1),(1,2),(2,2),(2,3),(3,3),(3,4),(4,4)}

: (二)所求 = {(2,1),(3,2),(4,3)}

http://en.wikipedia.org/wiki/Symmetric_closure

根據維基所說的

定義s(R)為R的symmetric closure

s(R) = R ∪ R^(-1)

R^(-1) = {(2,1),(3,2),(4,3)}

所以

s(R) = {(1,2),(2,1),(2,3),(3,2),(3,4),(4,3)}

: (三)所求 = {(1,3),(2,4)}

http://en.wikipedia.org/wiki/Transitive_closure

令M為R的關係矩陣



M = 0 1 0 0
0 0 1 0
0 0 0 1
0 0 0 0

M^(2) = 0 0 1 0
0 0 0 1
0 0 0 0
0 0 0 0

M^(3) = 0 0 0 1
0 0 0 0
0 0 0 0
0 0 0 0

M^(4) = 0 0 0 0
0 0 0 0
0 0 0 0
0 0 0 0

Mt(R) = M ∪ M^(2) ∪ M^(3) ∪ M^(4)

= 0 1 1 1
0 0 1 1
0 0 0 1
0 0 0 0

因此 t(R) = {(1,2),(1,3),(1,4),(2,3),(2,4),(3,4)}


: 請問小弟的擬答是否正確呢?
: 主要是想確認自己的觀念是否正確,有勞高手指點了,感謝。

原PO有買參考書嗎?

這個看書會比較清楚

如果沒有的話可以去弄本原文書或黃子嘉的書

這樣讀起來效果比較好

--
dearwen61:非常感謝s大的解答,小弟真的獲益匪淺 09/04 21:00
dearwen61:小弟並非資工系出身,純粹買了一本入門書自修 09/04 21:01
dearwen61:所以有些東西較沒補充到,有打算過陣子買本厚一點的書 09/04 21:01
s90413k64:恩恩 看書會比BBS好 我很多符號都打不出來 QQ 09/04 21:52
※ 編輯: s90413k64 來自: 1.160.31.67 (09/04 23:54)

你可能也想看看

搜尋相關網站