[爆卦]pruning深度學習是什麼?優點缺點精華區懶人包

為什麼這篇pruning深度學習鄉民發文收入到精華區:因為在pruning深度學習這個討論話題中,有許多相關的文章在討論,這篇最有參考價值!作者st1009 (前端攻城師)看板DataScience標題[情報] DataScience的相關...


有鑑於置底空間有限,版主整理這篇文給大家參考索引

歡迎大家發文或者推文提供資源和建議,版主不定期會更新這個列表

# ---------------------------------------------------

#版友情報文

作者:MLLAB [情報] ML resources #1Qcx4QMU (DataScience)
作者:aa155495 [情報] Mobile Deep learning Resource #1QcywWWC (DataScience)
作者:ruthertw [轉錄] 史上最完整機器學習自學攻略... #5QWh1oWM (DataScience)
作者:aaaba [轉錄] 基於TensorFlow的機器學習... #5Qb-tSvF (DataScience)
作者:RumiManiac [問題] 機器學習在動漫的應用 #1Q-Gv3pO (DataScience)

因為目前文章很少,直接將部份內容列出

# MLLAB [情報] ML resources #1Qcx4QMU (DataScience)

台大資工林軒田老師
機器學習基石
機器學習技法
https://www.csie.ntu.edu.tw/~htlin/mooc/

台大電機李宏毅老師
machine learning (ML)
machine learning and having it deep and structured (MLDS)
http://speech.ee.ntu.edu.tw/~tlkagk/courses.html

台大電機李宏毅老師&台大資工陳縕儂老師
applied deep learning x machine learning and having it deep and structured
(AD
LxMLDS)
https://www.csie.ntu.edu.tw/~yvchen/f106-adl/syllabus.html

Stanford Andrew Ng
Machine Learning
https://www.coursera.org/learn/machine-learning

University of Oxford
Machine Learning
https://www.cs.ox.ac.uk/people/nando.defreitas/machinelearning/

David Silver
RL course
https://goo.gl/BGwF63

Stanford
CNN for Visual Recognition
http://cs231n.stanford.edu/syllabus.html

Ian Goodfellow
Deep Learning
https://www.youtube.com/playlist?list=PLkISDyMVw2Htm42P0eTVEKyz7scxZ4V-O

UIUC Dan Roth
Machine Learning
https://goo.gl/124noX

交大應數李育杰老師
Machine Learning
http://ocw.nctu.edu.tw/course_detail-v.php?bgid=1&gid=1&nid=563

資料科學相關的課程
從 微積分、線代、機率、統計 到 機器學習 都有
https://goo.gl/mKlq8r

CS相關課程
https://www.ptt.cc/bbs/studyabroad/M.1511862466.A.D02.html

AI、ML相關conference的deadline
https://aideadlin.es/

Paper
https://openreview.net/
https://arxiv.org/list/stat.ML/recent
https://www.aaai.org/Library/conferences-library.php
CV相關paper:http://openaccess.thecvf.com/menu.py
GAN相關的paper:https://deephunt.in/the-gan-zoo-79597dc8c347

tensorflow相關資源

tutorials
https://www.tensorflow.org/tutorials/
code範例
https://github.com/aymericdamien/TensorFlow-Examples

論壇
https://www.reddit.com/r/MachineLearning/

# aa155495 [情報] Mobile Deep learning Resource #1QcywWWC (DataScience)

Survey paper

A Survey of Model Compression and Acceleration for Deep Neural Networks
[arXiv '17]

https://arxiv.org/abs/1710.09282

--------------------------------------------------------

輕量化 Model

1. MobilenetV2: Inverted Residuals and Linear Bottlenecks: Mobile Networks
for
Classification, Detection and Segmentation [arXiv '18, Google]

https://arxiv.org/pdf/1801.04381.pdf

2. NasNet: Learning Transferable Architectures for Scalable Image Recognition
[arXiv '17, Google]
註:Google AutoML 的論文

https://arxiv.org/pdf/1707.07012.pdf


3. DeepRebirth: Accelerating Deep Neural Network Execution on Mobile Devices
[AAAI'18, Samsung]

https://arxiv.org/abs/1708.04728

4. ShuffleNet: An Extremely Efficient Convolutional Neural Network for Mobile
Devices [arXiv '17, Megvii]

https://arxiv.org/abs/1707.01083


5. MobileNets: Efficient Convolutional Neural Networks for Mobile Vision
Applications [arXiv '17, Google]

https://arxiv.org/abs/1704.04861


6. CondenseNet: An Efficient DenseNet using Learned Group Convolutions [arXiv
'17]

https://arxiv.org/abs/1711.09224

------------------------------------------------------------

System

1. DeepMon: Mobile GPU-based Deep Learning Framework for Continuous Vision
Applications [MobiSys '17]

https://www.sigmobile.org/mobisys/2017/accepted.php


2. DeepEye: Resource Efficient Local Execution of Multiple Deep Vision Models
using Wearable Commodity Hardware [MobiSys '17]

http://fahim-kawsar.net/papers/Mathur.MobiSys2017-Camera.pdf

3. MobiRNN: Efficient Recurrent Neural Network Execution on Mobile GPU [EMDL
'17]

https://arxiv.org/abs/1706.00878


4. DeepSense: A GPU-based deep convolutional neural network framework on
commodity mobile devices [WearSys '16]



http://ink.library.smu.edu.sg/cgi/viewcontent.cgi?article=4278&context=sis_res
earch


5. DeepX: A Software Accelerator for Low-Power Deep Learning Inference on
Mobile
Devices [IPSN '16]

http://niclane.org/pubs/deepx_ipsn.pdf

6. EIE: Efficient Inference Engine on Compressed Deep Neural Network [ISCA
'16]

https://arxiv.org/abs/1602.01528


7. MCDNN: An Approximation-Based Execution Framework for Deep Stream
Processin
g Under Resource Constraints [MobiSys '16]

http://haneul.github.io/papers/mcdnn.pdf


8. DXTK: Enabling Resource-efficient Deep Learning on Mobile and Embedded
Devices with the DeepX Toolkit [MobiCASE '16]

9. Sparsification and Separation of Deep Learning Layers for Constrained
Resource Inference on Wearables [SenSys ’16]

10. An Early Resource Characterization of Deep Learning on Wearables,
Smartpho
nes
and Internet-of-Things Devices [IoT-App ’15]

11. CNNdroid: GPU-Accelerated Execution of Trained Deep Convolutional Neural
Networks on Android [MM '16]

12. fpgaConvNet: A Toolflow for Mapping Diverse Convolutional Neural Networks
on
Embedded FPGAs [NIPS '17]

--------------------------------------------------------------

Quantization (Model compression)

1. The ZipML Framework for Training Models with End-to-End Low Precision: The
Cans, the Cannots, and a Little Bit of Deep Learning [ICML'17]

2. Compressing Deep Convolutional Networks using Vector Quantization
[arXiv'14]

3. Quantized Convolutional Neural Networks for Mobile Devices [CVPR '16]

4. Fixed-Point Performance Analysis of Recurrent Neural Networks [ICASSP'16]

5. Quantized Neural Networks: Training Neural Networks with Low Precision
Weig
hts and Activations [arXiv'16]

6. Loss-aware Binarization of Deep Networks [ICLR'17]

7. Towards the Limit of Network Quantization [ICLR'17]

8. Deep Learning with Low Precision by Half-wave Gaussian Quantization
[CVPR'17]

9. ShiftCNN: Generalized Low-Precision Architecture for Inference of
Convoluti
onal Neural Networks [arXiv'17]

10. Training and Inference with Integers in Deep Neural Networks [ICLR'18]

------------------------------------------------------------

Pruning (Model Compression)

1. Learning both Weights and Connections for Efficient Neural Networks
[NIPS'15]

2. Pruning Filters for Efficient ConvNets [ICLR'17]

3. Pruning Convolutional Neural Networks for Resource Efficient Inference
[ICL
R'17]

4. Soft Weight-Sharing for Neural Network Compression [ICLR'17]

5. Deep Compression: Compressing Deep Neural Networks with Pruning, Trained
Qu
antization and Huffman Coding [ICLR'16]

6. Dynamic Network Surgery for Efficient DNNs [NIPS'16]

7. Designing Energy-Efficient Convolutional Neural Networks using
Energy-Aware
Pruning [CVPR'17]

8. ThiNet: A Filter Level Pruning Method for Deep Neural Network Compression
[
ICCV'17]

9. To prune, or not to prune: exploring the efficacy of pruning for model comp
ression [ICLR'18]

---------------------------------------------------------------

Approximation

1. Efficient and Accurate Approximations of Nonlinear Convolutional Networks
[
CVPR'15]

2. Accelerating Very Deep Convolutional Networks for Classification and
Detect
ion (Extended version of above one)

3. Convolutional neural networks with low-rank regularization [arXiv'15]

4. Exploiting Linear Structure Within Convolutional Networks for Efficient
Eva
luation [NIPS'14]

5. Compression of Deep Convolutional Neural Networks for Fast and Low Power
Mo
bile Applications [ICLR'16]

6. High performance ultra-low-precision convolutions on mobile devices
[NIPS'17]

其他版友推薦

1.Udacity 的免費DL課程 由google的科學家親自講課
https://www.udacity.com/course/deep-learning--ud730
(全英授課 對計畫留學的版友 應該是不錯的資源)

2. 史丹佛大學的 機器學習:自然語言處理的應用

https://www.youtube.com/watch?v=OQQ-W_63UgQ&list=PL3FW7Lu3i5Jsnh1rnUwq_TcylNr7
EkRe6

3.Deep Learning(英文書)

http://www.deeplearningbook.org/

4.兩門修完林軒田老師的課後可以進修的課

https://goo.gl/HV39mG

https://goo.gl/JK2esy
--
* * * *
最美麗的詩歌是最絕望的詩歌 * *
* * * * *
* * * 有些不朽篇章是純粹的眼淚
* * * * * *
* * * * * Alfred de Musset

--
※ 發信站: 批踢踢實業坊(ptt.cc), 來自: 1.163.147.50
※ 文章網址: https://www.ptt.cc/bbs/DataScience/M.1521727605.A.4DF.html
vvind: 推 03/23 16:12
TuCH: 有沒有技能樹點法? 03/23 20:37

林軒田老師的教材好像頗受好評

a75468: 唯一支持大金 03/24 01:14
ChenXY: 大推詳細整理 03/24 01:40
lucien0410: 推! 03/24 14:37
AEnvgiell20: 整理詳細推 03/26 20:42
kokolotl: http://www.deeplearningbook.org/ 這本書可以看看 04/11 14:08

已更新
ariainaqua: 大推,這些資源讓初探深度學習領域的我受益良多 04/17 15:10
ariainaqua: 也補推一些機器學習的課程: https://goo.gl/HV39mG 04/17 15:11
ariainaqua: https://goo.gl/JK2esy,這兩門課程是修完田神的課後 04/17 15:13
ariainaqua: 繼續進修的,對於機器學習系統設計滿有幫助的 :-) 04/17 15:14

已更新

ruthertw: 感謝版主整理清單,您辛苦了~有發現好東西,煩請再放入! 04/18 14:42
littleyuan: 謝謝版主! 04/21 14:16
※ 編輯: st1009 (1.163.154.100), 05/16/2018 23:26:55
Ruuu307: 推 05/22 18:02
mikemike1021: 我有自建一個論壇可以方便大家討論 05/03 03:43
mikemike1021: https://forum.community.tw 05/03 03:43
mikemike1021: 可以用 Markdown 跟 LaTeX,程式碼的部分也有自動上 05/03 03:43
mikemike1021: 色,這樣討論的時候就可以直接在論壇上討論,不用額 05/03 03:43
mikemike1021: 外用其他網站來貼程式碼等。也有標籤可以加,當有更 05/03 03:43
mikemike1021: 多文章的時候可以方便找到相關的。 05/03 03:43

你可能也想看看

搜尋相關網站