[爆卦]kaggle比賽2021是什麼?優點缺點精華區懶人包

為什麼這篇kaggle比賽2021鄉民發文收入到精華區:因為在kaggle比賽2021這個討論話題中,有許多相關的文章在討論,這篇最有參考價值!作者outrunner (ot)看板DataScience標題[心得] kaggle競賽回顧 PKU...


一年前的今天,2020/1/22日本時間上午九點,
我在豐岡往京都的JR特急上等待kaggle競賽開獎。
由於很早就安排帶小孩出遊,所以最後幾天
只用預先準備好的submission玩Fit LB的遊戲。
話說運氣一直都是打kaggle很重要的一部分。

https://www.kaggle.com/c/pku-autonomous-driving/leaderboard

這場比賽是預測圖像中車輛的6個自由度(6 degrees of freedom)
也就是相對於攝影機的平移(x, y, z)與旋轉(yaw, pitch, roll),
評估指標是mAP

輸入圖像:

https://i.imgur.com/QwzD74U.jpg

標記是每輛車的6個自由度,太小的車輛提供mask不予計算。
根據ground truth可以畫出如下示意圖:

https://i.imgur.com/uOA9q69.jpg

每場比賽都有許多大大小小的細節,但過了一年
我想這場只有一個關鍵值得一提。

基本解法是拿物件偵測模型改輸出就不用多說了。

由於訓練資料只有四千多張,所以在看了一些方法後,
就把競賽重心轉移到資料增強方面。
因為這場比賽的資料特性,使得一般常用的旋轉平移裁切都無法使用。

# 看來只能從旋轉攝影機下手

# 意外的是在這個領域沒看過使用這個方法

kaggle好玩就在這裡,有時候你只要比別人多一招就足以影響比賽結果。
更何況這個方法不但增加source的變化,同時target也改變了,堪稱完美。

舉例說明實際的操作結果。
底下有兩張圖,一張原始資料,一張是攝影機原地向左旋轉50度:

https://i.imgur.com/2iGyzmG.jpg

https://i.imgur.com/yjEskVu.jpg

原圖最左邊那台車相對應的6個自由度:

x y z yaw pitch roll
原始 -3.28 2.79 8.51 0.159 -0.009 -3.091
左轉50度 4.42 2.79 7.98 0.064 -0.883 -2.987

左右轉50度的動畫圖:

https://i.imgur.com/9MwpU1x.gif

三個維度都可以自由旋轉,詳情請看範例:

https://www.kaggle.com/outrunner/rotation-augmentation

說穿了不就只是個資料增強?
差別在於同一台車同樣背景,會因為出現在
畫面中的位置、角度與透視變形不同,而有不同的答案。
剛好我們希望模型學到的是"物件的位置、角度與透視變形",
而不是"物件本身與背景"。

豐富的資料也讓模型更強健,
這可能也是最後在private test set勝出的原因。
如果你的模型沒看過天上飛的車子,
就無法對飛天車做出正確的預測。(這就是deep learning)

當然啦,如果要再吹毛求疵一點,
這個操作是假設攝影機是所謂的"理想攝影機"。
不過當你面對僅有四千張圖以及標記誤差的時候不用想這麼多。

# 結果就是mAP大約多10%

解法全部內容:

https://www.kaggle.com/c/pku-autonomous-driving/discussion/127037

競賽總結:

# 一個資料增強的方法使分數多10%,而且只有我在用

~ 你怎麼能說kaggle不好玩

歡迎討論 :)

--
※ 發信站: 批踢踢實業坊(ptt.cc), 來自: 36.230.238.138 (臺灣)
※ 文章網址: https://www.ptt.cc/bbs/DataScience/M.1611311719.A.B7E.html
ddavid: 推,這種比賽確實常常會贏在多一個有用獨家招數 01/22 19:42
st1009: 推推 01/22 22:56
blackmaninEE: 推 01/23 12:42
f422661: 推大神 01/23 14:14
wtchen: 推 01/23 19:12
ILYY: 推 01/24 03:53
william00000: 推!已follow! 01/24 12:20
AgileSeptor: 推 01/24 14:43
email81227: 讚!! 01/24 20:29
s950375: 推 01/25 13:27
ballislife: 推 01/25 13:43
dddddd67: 猛 01/25 13:57
steven95421: 推 01/28 12:44
tay2510: 推分享! 02/03 19:46
appleseed: 讚 02/05 08:29
RumiManiac: 這超強 03/12 22:01
Lamu: 超強! 03/16 22:34
wargods8402: 推 05/08 09:28
anarch: 強者! 06/06 17:04
ouskit: 厲害 01/22 11:57

你可能也想看看

搜尋相關網站