為什麼這篇excel線性回歸公式鄉民發文收入到精華區:因為在excel線性回歸公式這個討論話題中,有許多相關的文章在討論,這篇最有參考價值!作者Vulpix (Sebastian)看板Statistics標題[程式] 關於Excel中趨勢線...
[軟體程式類別]:
Microsoft Excel 2007
[程式問題]:
線性迴歸的公式問題
[軟體熟悉度]:
熟悉
[問題敘述]:
想藉由程式給出的數值做進一步分析,卻不知道該怎麼下手。
一般的單變數線性迴歸公式在高中數學課程中已有提及:
迴歸直線的斜率、y 截距、相關係數的公式及意義。
在分析數據時偶爾會先規定好 y 截距(例如已知二變量成正比),
Excel 也有提供這個功能,而且仍能算出一個「R^2」,
但此時這個 R 與原始數據的相關係數並不相同。
(至於斜率則確定是由最小平方法決定:Sum(XY)/Sum(X^2)。)
經過測試,前述的「R^2」的公式如下:
<XY>^2-<X^2><Y>^2 + 2b * (<X^2><Y>-<X><XY>) - b^2 * (<X^2>-<X>^2)
-------------------------------------------------------------------,
<X^2>(<Y^2>-<Y>^2)
其中 b 是預設的 y 截距,<Z> 代表數據 {Z_i}_{i=1}^{n} 的平均值。
若考慮的是「Y 與 X 應該要成正比」,即 b=0,
則「R^2」的公式簡化為
<XY>^2-<X^2><Y>^2
--------------------。
<X^2>(<Y^2>-<Y>^2)
已經知道的是:R^2≦1,且隨著 b 而變化的最大值就是相關係數^2。
如同一開始所說,想要針對 R^2 這個數值去分析數據,
但是卻遇到 R^2 可能出現負值(這點由公式可簡單看出),
所以似乎難以將它詮釋成與「相關係數」類似的概念。
那到底應該怎麼去詮釋才合理呢?
以上就是想問的問題。因為關於統計大概只知道
高中程度+能用微積分計算一些分佈,所以寫得可能不是那麼專業,
還望各位大大海涵並先謝謝各位指導。
[題外]:
打完才發現我並不是對程式碼有問題,這樣的話分類在程式真的對嗎?
不對的話請告訴我,我會改標題。
--
※ 發信站: 批踢踢實業坊(ptt.cc), 來自: 61.230.122.4
※ 文章網址: https://www.ptt.cc/bbs/Statistics/M.1483264557.A.71F.html
擬合用的模型是 y=ax (這就是手動規定 y 截距=0)
極小化 Σ(y_i - a*x_i)^2 得到 a=[Σ(x_i*y_i)]/[Σ(x_i^2)]
不過至少物理上這個做法滿常用到。
因為很多模型已經確定是正確的,例如測量一物體的密度:D=M/V。
在校正過所使用的儀器後,
1. 把測得的質量對體積作圖,計算迴歸直線斜率。
2. 把測得的質量對體積作圖,計算最佳過原點直線的斜率。
3. 對每筆數據計算 M/V,再求其平均。
以上三個方法應該都可行,只是今天剛好選了2而已。
還是說這個方法就是胡說八道而已呢?
※ 編輯: Vulpix (61.230.122.4), 01/02/2017 13:08:51
我想應該是我的說法有問題……
Excel 給了 R^2,
但沒有一個地方找的到公式,那個公式是我自己嘗試幾筆數據後歸納而得。
(也經過多筆隨機產生的數據驗證過,所以程式給的 R^2 就是這麼算的。)
目前遇到的數據若真的「應該」成正比,那用這個模型擬合的效果其實不差。
而 R^2 也頗接近 1,通常也比相關係數^2小。
但是「從公式來看」,R^2 有可能是負值,
所以不應該單純以相關係數的角度去詮釋它。
甚至,它似乎應該當成某種更廣義的東西,但那到底是什麼?
經過配方,公式可改寫成:
R^2 = r^2 - (σ_X/σ_Y)^2 / <X^2> * (b-"最佳b")^2
其中 r 是 Pearson 相關係數,
σ_Z 表示 Z 這組數據的樣本標準差,
"最佳b" 則是一般線性迴歸所得的 y 截距。
※ 編輯: Vulpix (61.230.122.4), 01/02/2017 18:49:06