[爆卦]cpu過熱解決是什麼?優點缺點精華區懶人包

雖然這篇cpu過熱解決鄉民發文沒有被收入到精華區:在cpu過熱解決這個話題中,我們另外找到其它相關的精選爆讚文章

在 cpu過熱解決產品中有47篇Facebook貼文,粉絲數超過6,194的網紅股民當家 幸福理財,也在其Facebook貼文中提到, 【散熱劃時代革命-液冷散熱】 時間:2021/8/1 發文:NO.1287篇 大家好,我是 LEO . ❖晶片效能越強-解熱難度越高 隨著半導體晶片發展-體積越來越小,電晶體密度越來越高,逐漸朝向高性能,超薄,微型化發展,電子元件散熱的空間越來越小,單位面積內所產生的熱能卻越來越高,無論是手機、電腦...

 同時也有1部Youtube影片,追蹤數超過5萬的網紅攝影獨白Alex NG,也在其Youtube影片中提到,影片網址:https://youtu.be/-vz7dTJSX0o 足本長30多分鐘,請加入會員 或Patreon收看免廣告足本 https://www.patreon.com/photonews 1. Z6II更偏重視頻?原來好人誤會了! 2. 點解旗艦機Z7II低光AF性能差過Z6II? 3...

cpu過熱解決 在 Azone|ATS創辦人|健身|肌力訓練|Breaking Instagram 的最讚貼文

2020-04-28 10:58:06

文長不喜可略 ————————————- 近期我想要停止一下教學 看看我身體能不能會到正常的狀態 今天跟 @jerryjerrylu 自尻了一發heat 後面還可以追加1/3個3號 然後鞍馬3x10 旋轉連結約10回 整體來說還算順利 不過在熱身前跟結束冷卻後 人還是暈的 ————————————...

  • cpu過熱解決 在 股民當家 幸福理財 Facebook 的最佳解答

    2021-08-01 11:19:05
    有 48 人按讚

    【散熱劃時代革命-液冷散熱】
    時間:2021/8/1
    發文:NO.1287篇
    大家好,我是 LEO
    .
    ❖晶片效能越強-解熱難度越高
    隨著半導體晶片發展-體積越來越小,電晶體密度越來越高,逐漸朝向高性能,超薄,微型化發展,電子元件散熱的空間越來越小,單位面積內所產生的熱能卻越來越高,無論是手機、電腦發熱發熱密度皆呈現指數級增長,此外,加密貨幣挖礦場,大型伺服器與資料中心,高階CPU、GPU產生的熱能更為驚人,如果熱能不能快速有效散出,輕則影響效能,嚴重會導致電腦或手機產生「電子遷移效應」,導致當機無法工作。
    .
    ❖台積電未雨綢繆超前部署
    今年7月台積電在超大型積體電路 (VLSI) 研討會,展示晶片水冷研究結果,採用水通道直接引導到晶片,藉此提高晶片散熱效率。聽起來覺得不可思議,為什麼突然做這項研究?傳統晶片散熱-在晶片上塗導熱矽脂,將熱量傳到散熱器底部,導熱管、水冷管再將熱量導到鰭片,最後風扇將鰭片的熱量吹走,完成散熱。
    .
    但是,若未來晶片採用 3D 堆疊技術,最新的SoIC先進封裝可以任意組合各種不同製程的晶片,除了記憶體甚至還能直接將感測器一起封裝在同一顆晶片裡面,線路的密度將是2.5D的1000倍,散熱就會遇到大瓶頸。
    .
    3D堆疊晶片設計更複雜,更小的微縮製程,把晶片一層一層的堆疊起來,中間部分難以有效散熱,所以台積電的研究人員認為,解決方法就是讓水在夾層電路間流動,讓水直接從晶片內帶走熱量,這是最有效的方案,這裡指的水並非一般純水,而是不會導電的介電液,實際上操作起來非常複雜且昂貴,目前處於研究階段,這顯示出解決晶片散熱問題,將是半導體產業未來重要發展趨勢之一。
    .
    ❖晶片改朝換代推動-伺服器新設計
    我們從上面描述可以知道新晶片設計只會更小,更複雜,更熱,而伺服器產業面臨的問題會更大,試想大型資料處理中心,裡面有多少伺服器?多少高階CPU、GPU都是24小時不斷電持續運作,龐大的熱能如何處理?當處理器的瓦數越來越高,一般來說,處理器的熱設計功耗超過240W就很難用風扇(氣冷)來解決,偏偏霸主Intel或是AMD新一代處理器動輒超過270甚至280W,現在馬上面臨到需要液冷散熱來帶走熱量。
    .
    ❖跟著產業霸主的方向走準沒錯
    Intel在伺服器市場,主流解決方案以x86架構為主,全球 CPU市占率約 92%左右。未來Intel 仍將保持產業龍頭的地位,圍繞它的 CPU平台的升級仍是影響伺服器硬體產業鏈周期性變化的關鍵因素。
    .
    2021 年第一季開始Intel最新的 Whitley Ice Lake 的處理器已向資料中心業者小量出貨,第二季開始放量,到第四季預估將占總出貨量的 40%,滲透率將大幅且快速提升,下一步,Intel英特爾預計 2022 年初量產支援 PCIe Gen5 的 Eagle Stream 平台,將會加速升級資料傳輸速度。
    .
    ❖英特爾正式將水冷散熱放進白皮書
    有趣的事情來了,產業龍頭也意識到新平台-散熱問題非常棘手,2020年Whitley平台是intel「首度」將水冷頭(注意:非浸沒式)納入技術白皮書,更誇張的事情是未來的新平台 Eagle Stream第一顆CPU Sapphire Rapids至少 300W以上,甚至將來很多GPU會達到500瓦甚至700W以上,水冷散熱方案成為唯一解方,冷卻液監控主機(CDU)與水冷頭(覆蓋在處理器上方的水冷散熱片)全世界只有三家廠商通過Intel認證,台灣的廣運(6125)是唯一兩項全拿的合格供應商。
    .
    ❖節能減碳-省電又可以賺積分
    歐盟在7月剛通過55套案,其中碳邊境調整機制,又稱碳關稅,預計自2023年起試行,2026年正式實施,先從鋼鐵、電力等產業先行,但是用電大戶的資料中心無法置身事外,跟大家分享一個數字會比較有概念,2017年中國數據中心總耗電量為1200-1300億KW,超過三峽大壩與葛洲壩電廠2017年全年發電量總和(分別為976億KW、190億KW),占中國總發電量的2%,到了2025年資料中心耗電將高達 3842億KW,占全中國總發電量的 6%,這隻吃電怪獸肯定會被盯上,高排碳業者會被課較高關稅(碳關稅),將進一步帶動資料中心業者積極導入液冷散熱達到「省電」與「節能減碳」的效果,甚至有望仿效電動車Tesla透過碳積分來挹注獲利,可望大幅提高液冷散熱滲透率。
    .
    ❖水冷散熱技術門檻高-不簡單
    2021年3月26日雲端資料中心伺服器開發商---緯穎科技宣佈,參與資料中心液冷廠商LiquidStack的A輪融資,並取得一席董事席位,其實早在2019年緯穎就與3M合作開發液冷方案,但是3M的電子氟化液是非導電-介電液是一種專利配方,掌握在3M手中,未來耗材都需向3M購買補充,入股LiquidStack可望取得自主技術。
    .
    大家知道這種-不導電的「介電液」有多貴嗎?1公斤要價100美元,一個180KW的機櫃光是介電液裝滿就要價1000萬,重點是這個介電液每年都會耗損,需要定時補充,這樣就知道賣水的概念有恐怖、有多賺了吧,得介電液者得天下。
    就算目前短期重點放在一般的「冷卻水」,得到英特爾認證的兩款冷卻水,一個櫃的成本大約7~8萬元,廣運集團研發成功的介電液打七折賣,一公斤70美元就相當有競爭力,而冷卻水一個櫃更只需要8000元,重點是水要通過認證,水在管線裡面跑如何恆久不變質?裡面還必須添加抗凍劑、苔癬抑制劑等特殊配方,是不是很多眉角!這些都是LEO深入研究去挖出來的。
    .
    ❖廣運(6125)上中下游整套系統全部整合
    目前有三大產品線,水冷背門(20~25萬)/櫃,水冷頭(100~150萬)/櫃-目前英特爾首度放入新平台技術白皮書,已通過Intel認證,浸沒式機櫃(1000萬)/櫃,此外還有最重要的冷卻液監控主機(CDU)它是水冷散熱技術的根源,還有各種耗材、管線、冷卻水、介電液都是未來的發展重點。
    .
    傳統散熱模組雖然便宜,一個42U的機櫃,風扇加散熱模組成本頂多台幣8~10萬,但將來水冷變成剛性需求,水冷頭機櫃,水對氣120~150萬/櫃,水對水90~120萬/櫃,全球的資料中心大約有 500萬櫃,每年新增30萬櫃左右,大家可以算看看,這產值增速有多恐怖。
    .
    目前全世界只有2家公司有能力量產伺服器等級水冷頭機櫃,雙鴻、超眾這些傳統大廠要跨入最難的CDU(水冷監控主機)至少需要5年以上的參數與經驗值,而廣運的陳總已經深耕30年的散熱產業經驗,水冷頭機櫃的五大關鍵零件--廣運擁有四項(CDU、水冷頭、分岐管、制冷背門)盲插或快接頭,這個產業很新,很多法人也還沒那麼了解,有很多眉角,很多技術秘密,篇幅有限今天LEO就先介紹的這邊。
    .
    如果大家想知道更多關於這個新的「水冷散熱產業」訊息,請鎖定 LEO股民當家團隊的頻道喔,⧉傳送門在下方↓
    .
    ❖Line群組傳送門⤵
    https://lihi1.com/jjjwf
    ❖TG 頻道傳送門⤵
    https://t.me/stock17168
    天佑台灣,疫情早日結束❤️

  • cpu過熱解決 在 台灣物聯網實驗室 IOT Labs Facebook 的最讚貼文

    2021-07-27 11:56:34
    有 1 人按讚

    摩爾定律放緩 靠啥提升AI晶片運算力?

    作者 : 黃燁鋒,EE Times China
    2021-07-26

    對於電子科技革命的即將終結的說法,一般認為即是指摩爾定律的終結——摩爾定律一旦無法延續,也就意味著資訊技術的整棟大樓建造都將出現停滯,那麼第三次科技革命也就正式結束了。這種聲音似乎是從十多年前就有的,但這波革命始終也沒有結束。AI技術本質上仍然是第三次科技革命的延續……

    人工智慧(AI)的技術發展,被很多人形容為第四次科技革命。前三次科技革命,分別是蒸汽、電氣、資訊技術(電子科技)革命。彷彿這“第四次”有很多種說辭,比如有人說第四次科技革命是生物技術革命,還有人說是量子技術革命。但既然AI也是第四次科技革命之一的候選技術,而且作為資訊技術的組成部分,卻又獨立於資訊技術,即表示它有獨到之處。

    電子科技革命的即將終結,一般認為即是指摩爾定律的終結——摩爾定律一旦無法延續,也就意味著資訊技術的整棟大樓建造都將出現停滯,那麼第三次科技革命也就正式結束了。這種聲音似乎是從十多年前就有,但這波革命始終也沒有結束。

    AI技術本質上仍然是第三次科技革命的延續,它的發展也依託於幾十年來半導體科技的進步。這些年出現了不少專門的AI晶片——而且市場參與者相眾多。當某一個類別的技術發展到出現一種專門的處理器為之服務的程度,那麼這個領域自然就不可小覷,就像當年GPU出現專門為圖形運算服務一樣。

    所以AI晶片被形容為CPU、GPU之後的第三大類電腦處理器。AI專用處理器的出現,很大程度上也是因為摩爾定律的發展進入緩慢期:電晶體的尺寸縮減速度,已經無法滿足需求,所以就必須有某種專用架構(DSA)出現,以快速提升晶片效率,也才有了專門的AI晶片。

    另一方面,摩爾定律的延緩也成為AI晶片發展的桎梏。在摩爾定律和登納德縮放比例定律(Dennard Scaling)發展的前期,電晶體製程進步為晶片帶來了相當大的助益,那是「happy scaling down」的時代——CPU、GPU都是這個時代受益,不過Dennard Scaling早在45nm時期就失效了。

    AI晶片作為第三大類處理器,在這波發展中沒有趕上happy scaling down的好時機。與此同時,AI應用對運算力的需求越來越貪婪。今年WAIC晶片論壇圓桌討論環節,燧原科技創始人暨CEO趙立東說:「現在訓練的GPT-3模型有1750億參數,接近人腦神經元數量,我以為這是最大的模型了,要千張Nvidia的GPU卡才能做。談到AI運算力需求、模型大小的問題,說最大模型超過萬億參數,又是10倍。」

    英特爾(Intel)研究院副總裁、中國研究院院長宋繼強說:「前兩年用GPU訓練一個大規模的深度學習模型,其碳排放量相當於5台美式車整個生命週期產生的碳排量。」這也說明了AI運算力需求的貪婪,以及提供運算力的AI晶片不夠高效。

    不過作為產業的底層驅動力,半導體製造技術仍源源不斷地為AI發展提供推力。本文將討論WAIC晶片論壇上聽到,針對這個問題的一些前瞻性解決方案——有些已經實現,有些則可能有待時代驗證。

    XPU、摩爾定律和異質整合

    「電腦產業中的貝爾定律,是說能效每提高1,000倍,就會衍生出一種新的運算形態。」中科院院士劉明在論壇上說,「若每瓦功耗只能支撐1KOPS的運算,當時的這種運算形態是超算;到了智慧型手機時代,能效就提高到每瓦1TOPS;未來的智慧終端我們要達到每瓦1POPS。 這對IC提出了非常高的要求,如果依然沿著CMOS這條路去走,當然可以,但會比較艱辛。」

    針對性能和效率提升,除了尺寸微縮,半導體產業比較常見的思路是電晶體結構、晶片結構、材料等方面的最佳化,以及處理架構的革新。

    (1)AI晶片本身其實就是對處理器架構的革新,從運算架構的層面來看,針對不同的應用方向造不同架構的處理器是常規,更專用的處理器能促成效率和性能的成倍增長,而不需要依賴於電晶體尺寸的微縮。比如GPU、神經網路處理器(NPU,即AI處理器),乃至更專用的ASIC出現,都是這類思路。

    CPU、GPU、NPU、FPGA等不同類型的晶片各司其職,Intel這兩年一直在推行所謂的「XPU」策略就是用不同類型的處理器去做不同的事情,「整合起來各取所需,用組合拳會好過用一種武器去解決所有問題。」宋繼強說。Intel的晶片產品就涵蓋了幾個大類,Core CPU、Xe GPU,以及透過收購獲得的AI晶片Habana等。

    另外針對不同類型的晶片,可能還有更具體的最佳化方案。如當代CPU普遍加入AVX512指令,本質上是特別針對深度學習做加強。「專用」的不一定是處理器,也可以是處理器內的某些特定單元,甚至固定功能單元,就好像GPU中加入專用的光線追蹤單元一樣,這是當代處理器普遍都在做的一件事。

    (2)從電晶體、晶片結構層面來看,電晶體的尺寸現在仍然在縮減過程中,只不過縮減幅度相比過去變小了——而且為緩解電晶體性能的下降,需要有各種不同的技術來輔助尺寸變小。比如說在22nm節點之後,電晶體變為FinFET結構,在3nm之後,電晶體即將演變為Gate All Around FET結構。最終會演化為互補FET (CFET),其本質都是電晶體本身充分利用Z軸,來實現微縮性能的提升。

    劉明認為,「除了基礎元件的變革,IC現在的發展還是比較多元化,包括新材料的引進、元件結構革新,也包括微影技術。長期賴以微縮的基本手段,現在也在發生巨大的變化,特別是未來3D的異質整合。這些多元技術的協同發展,都為晶片整體性能提升帶來了很好的增益。」

    他並指出,「從電晶體級、到晶圓級,再到晶片堆疊、引線接合(lead bonding),精準度從毫米向奈米演進,互連密度大大提升。」從晶圓/裸晶的層面來看,則是眾所周知的朝more than moore’s law這樣的路線發展,比如把兩片裸晶疊起來。現在很熱門的chiplet技術就是比較典型的並不依賴於傳統電晶體尺寸微縮,來彈性擴展性能的方案。

    台積電和Intel這兩年都在大推將不同類型的裸晶,異質整合的技術。2.5D封裝方案典型如台積電的CoWoS,Intel的EMIB,而在3D堆疊上,Intel的Core LakeField晶片就是用3D Foveros方案,將不同的裸晶疊在一起,甚至可以實現兩片運算裸晶的堆疊、互連。

    之前的文章也提到過AMD剛發佈的3D V-Cache,將CPU的L3 cache裸晶疊在運算裸晶上方,將處理器的L3 cache大小增大至192MB,對儲存敏感延遲應用的性能提升。相比Intel,台積電這項技術的獨特之處在於裸晶間是以混合接合(hybrid bonding)的方式互連,而不是micro-bump,做到更小的打線間距,以及晶片之間數十倍通訊性能和效率提升。

    這些方案也不直接依賴傳統的電晶體微縮方案。這裡實際上還有一個方面,即新材料的導入專家們沒有在論壇上多說,本文也略過不談。

    1,000倍的性能提升

    劉明談到,當電晶體微縮的空間沒有那麼大的時候,產業界傾向於採用新的策略來評價技術——「PPACt」——即Powe r(功耗)、Performance (性能)、Cost/Area-Time (成本/面積-時間)。t指的具體是time-to-market,理論上應該也屬於成本的一部分。

    電晶體微縮方案失效以後,「多元化的技術變革,依然會讓IC性能得到進一步的提升。」劉明說,「根據預測,這些技術即使不再做尺寸微縮,也會讓IC的晶片性能做到500~1,000倍的提升,到2035年實現Zetta Flops的系統性能水準。且超算的發展還可以一如既往地前進;單裸晶儲存容量變得越來越大,IC依然會為產業發展提供基礎。」

    500~1,000倍的預測來自DARPA,感覺有些過於樂觀。因為其中的不少技術存在比較大的邊際遞減效應,而且有更實際的工程問題待解決,比如運算裸晶疊層的散熱問題——即便業界對於這類工程問題的探討也始終在持續。

    不過1,000倍的性能提升,的確說明摩爾定律的終結並不能代表第三次科技革命的終結,而且還有相當大的發展空間。尤其本文談的主要是AI晶片,而不是更具通用性的CPU。

    矽光、記憶體內運算和神經型態運算

    在非傳統發展路線上(以上內容都屬於半導體製造的常規思路),WAIC晶片論壇上宋繼強和劉明都提到了一些頗具代表性的技術方向(雖然這可能與他們自己的業務方向或研究方向有很大的關係)。這些技術可能尚未大規模推廣,或者仍在商業化的極早期。

    (1)近記憶體運算和記憶體內運算:處理器性能和效率如今面臨的瓶頸,很大程度並不在單純的運算階段,而在資料傳輸和儲存方面——這也是共識。所以提升資料的傳輸和存取效率,可能是提升整體系統性能時,一個非常靠譜的思路。

    這兩年市場上的處理器產品用「近記憶體運算」(near-memory computing)思路的,應該不在少數。所謂的近記憶體運算,就是讓儲存(如cache、memory)單元更靠近運算單元。CPU的多層cache結構(L1、L2、L3),以及電腦處理器cache、記憶體、硬碟這種多層儲存結構是常規。而「近記憶體運算」主要在於究竟有多「近」,cache記憶體有利於隱藏當代電腦架構中延遲和頻寬的局限性。

    這兩年在近記憶體運算方面比較有代表性的,一是AMD——比如前文提到3D V-cache增大處理器的cache容量,還有其GPU不僅在裸晶內導入了Infinity Cache這種類似L3 cache的結構,也更早應用了HBM2記憶體方案。這些實踐都表明,儲存方面的革新的確能帶來性能的提升。

    另外一個例子則是Graphcore的IPU處理器:IPU的特點之一是在裸晶內堆了相當多的cache資源,cache容量遠大於一般的GPU和AI晶片——也就避免了頻繁的訪問外部儲存資源的操作,極大提升頻寬、降低延遲和功耗。

    近記憶體運算的本質仍然是馮紐曼架構(Von Neumann architecture)的延續。「在做處理的過程中,多層級的儲存結構,資料的搬運不僅僅在處理和儲存之間,還在不同的儲存層級之間。這樣頻繁的資料搬運帶來了頻寬延遲、功耗的問題。也就有了我們經常說的運算體系內的儲存牆的問題。」劉明說。

    構建非馮(non-von Neumann)架構,把傳統的、以運算為中心的馮氏架構,變換一種新的運算範式。把部分運算力下推到儲存。這便是記憶體內運算(in-memory computing)的概念。

    記憶體內運算的就現在看來還是比較新,也有稱其為「存算一體」。通常理解為在記憶體中嵌入演算法,儲存單元本身就有運算能力,理論上消除資料存取的延遲和功耗。記憶體內運算這個概念似乎這在資料爆炸時代格外醒目,畢竟可極大減少海量資料的移動操作。

    其實記憶體內運算的概念都還沒有非常明確的定義。現階段它可能的內涵至少涉及到在儲記憶體內部,部分執行資料處理工作;主要應用於神經網路(因為非常契合神經網路的工作方式),以及這類晶片具體的工作方法上,可能更傾向於神經型態運算(neuromorphic computing)。

    對於AI晶片而言,記憶體內運算的確是很好的思路。一般的GPU和AI晶片執行AI負載時,有比較頻繁的資料存取操作,這對性能和功耗都有影響。不過記憶體內運算的具體實施方案,在市場上也是五花八門,早期比較具有代表性的Mythic導入了一種矩陣乘的儲存架構,用40nm嵌入式NOR,在儲記憶體內部執行運算,不過替換掉了數位週邊電路,改用類比的方式。在陣列內部進行模擬運算。這家公司之前得到過美國國防部的資金支援。

    劉明列舉了近記憶體運算和記憶體內運算兩種方案的例子。其中,近記憶體運算的這個方案應該和AMD的3D V-cache比較類似,把儲存裸晶和運算裸晶疊起來。

    劉明指出,「這是我們最近的一個工作,採用hybrid bonding的技術,與矽通孔(TSV)做比較,hybrid bonding功耗是0.8pJ/bit,而TSV是4pJ/bit。延遲方面,hybrid bonding只有0.5ns,而TSV方案是3ns。」台積電在3D堆疊方面的領先優勢其實也體現在hybrid bonding混合鍵合上,前文也提到了它具備更高的互連密度和效率。

    另外這套方案還將DRAM刷新頻率提高了一倍,從64ms提高至128ms,以降低功耗。「應對刷新率變慢出現拖尾bit,我們引入RRAM TCAM索引這些tail bits」劉明說。

    記憶體內運算方面,「傳統運算是用布林邏輯,一個4位元的乘法需要用到幾百個電晶體,這個過程中需要進行資料來回的移動。記憶體內運算是利用單一元件的歐姆定律來完成一次乘法,然後利用基爾霍夫定律完成列的累加。」劉明表示,「這對於今天深度學習的矩陣乘非常有利。它是原位的運算和儲存,沒有資料搬運。」這是記憶體內運算的常規思路。

    「無論是基於SRAM,還是基於新型記憶體,相比近記憶體運算都有明顯優勢,」劉明認為。下圖是記憶體內運算和近記憶體運算,精準度、能效等方面的對比,記憶體內運算架構對於低精準度運算有價值。

    下圖則總結了業內主要的一些記憶體內運算研究,在精確度和能效方面的對應關係。劉明表示,「需要高精確度、高運算力的情況下,近記憶體運算目前還是有優勢。不過記憶體內運算是更新的技術,這幾年的進步也非常快。」

    去年阿里達摩院發佈2020年十大科技趨勢中,有一個就是存算一體突破AI算力瓶頸。不過記憶體內運算面臨的商用挑戰也一點都不小。記憶體內運算的通常思路都是類比電路的運算方式,這對記憶體、運算單元設計都需要做工程上的考量。與此同時這樣的晶片究竟由誰來造也是個問題:是記憶體廠商,還是數文書處理器廠商?(三星推過記憶體內運算晶片,三星、Intel垂直整合型企業似乎很適合做記憶體內運算…)

    (2)神經型態運算:神經型態運算和記憶體內運算一樣,也是新興技術的熱門話題,這項技術有時也叫作compute in memory,可以認為它是記憶體內運算的某種發展方向。神經型態和一般神經網路AI晶片的差異是,這種結構更偏「類人腦」。

    進行神經型態研究的企業現在也逐漸變得多起來,劉明也提到了AI晶片「最終的理想是在結構層次模仿腦,元件層次逼近腦,功能層次超越人腦」的「類腦運算」。Intel是比較早關注神經型態運算研究的企業之一。

    傳說中的Intel Loihi就是比較典型存算一體的架構,「這片裸晶裡面包含128個小核心,每個核心用於模擬1,024個神經元的運算結構。」宋繼強說,「這樣一塊晶片大概可以類比13萬個神經元。我們做到的是把768個晶片再連起來,構成接近1億神經元的系統,讓學術界的夥伴去試用。」

    「它和深度學習加速器相比,沒有任何浮點運算——就像人腦裡面沒有乘加器。所以其學習和訓練方法是採用一種名為spike neutral network的路線,功耗很低,也可以訓練出做視覺辨識、語言辨識和其他種類的模型。」宋繼強認為,不採用同步時脈,「刺激的時候就是一個非同步電動勢,只有工作部分耗電,功耗是現在深度學習加速晶片的千分之一。」

    「而且未來我們可以對不同區域做劃分,比如這兒是視覺區、那兒是語言區、那兒是觸覺區,同時進行多模態訓練,互相之間產生關聯。這是現在的深度學習模型無法比擬的。」宋繼強說。這種神經型態運算晶片,似乎也是Intel在XPU方向上探索不同架構運算的方向之一。

    (2)微型化矽光:這個技術方向可能在層級上更偏高了一些,不再晶片架構層級,不過仍然值得一提。去年Intel在Labs Day上特別談到了自己在矽光(Silicon Photonics)的一些技術進展。其實矽光技術在連接資料中心的交換機方面,已有應用了,發出資料時,連接埠處會有個收發器把電訊號轉為光訊號,透過光纖來傳輸資料,另一端光訊號再轉為電訊號。不過傳統的光收發器成本都比較高,內部元件數量大,尺寸也就比較大。

    Intel在整合化的矽光(IIIV族monolithic的光學整合化方案)方面應該是商業化走在比較前列的,就是把光和電子相關的組成部分高度整合到晶片上,用IC製造技術。未來的光通訊不只是資料中心機架到機架之間,也可以下沉到板級——就跟現在傳統的電I/O一樣。電互連的主要問題是功耗太大,也就是所謂的I/O功耗牆,這是這類微型化矽光元件存在的重要價值。

    這其中存在的技術挑戰還是比較多,如做資料的光訊號調變的調變器調變器,據說Intel的技術使其實現了1,000倍的縮小;還有在接收端需要有個探測器(detector)轉換光訊號,用所謂的全矽微環(micro-ring)結構,實現矽對光的檢測能力;波分複用技術實現頻寬倍增,以及把矽光和CMOS晶片做整合等。

    Intel認為,把矽光模組與運算資源整合,就能打破必須帶更多I/O接腳做更大尺寸處理器的這種趨勢。矽光能夠實現的是更低的功耗、更大的頻寬、更小的接腳數量和尺寸。在跨處理器、跨伺服器節點之間的資料互動上,這類技術還是頗具前景,Intel此前說目標是實現每根光纖1Tbps的速率,並且能效在1pJ/bit,最遠距離1km,這在非本地傳輸上是很理想的數字。

    還有軟體…

    除了AI晶片本身,從整個生態的角度,包括AI感知到運算的整個鏈條上的其他組成部分,都有促成性能和效率提升的餘地。比如這兩年Nvidia從軟體層面,針對AI運算的中間層、庫做了大量最佳化。相同的底層硬體,透過軟體最佳化就能實現幾倍的性能提升。

    宋繼強說,「我們發現軟體最佳化與否,在同一個硬體上可以達到百倍的性能差距。」這其中的餘量還是比較大。

    在AI開發生態上,雖然Nvidia是最具發言權的;但從戰略角度來看,像Intel這種研發CPU、GPU、FPGA、ASIC,甚至還有神經型態運算處理器的企業而言,不同處理器統一開發生態可能更具前瞻性。Intel有個稱oneAPI的軟體平台,用一套API實現不同硬體性能埠的對接。這類策略對廠商的軟體框架構建能力是非常大的考驗——也極大程度關乎底層晶片的執行效率。

    在摩爾定律放緩、電晶體尺寸微縮變慢甚至不縮小的前提下,處理器架構革新、異質整合與2.5D/3D封裝技術依然可以達成1,000倍的性能提升;而一些新的技術方向,包括近記憶體運算、記憶體內運算和微型矽光,能夠在資料訪存、傳輸方面產生新的價值;神經型態運算這種類腦運算方式,是實現AI運算的目標;軟體層面的最佳化,也能夠帶動AI性能的成倍增長。所以即便摩爾定律嚴重放緩,AI晶片的性能、效率提升在上面提到的這麼多方案加持下,終將在未來很長一段時間內持續飛越。這第三(四)次科技革命恐怕還很難停歇。

    資料來源:https://www.eettaiwan.com/20210726nt61-ai-computing/?fbclid=IwAR3BaorLm9rL2s1ff6cNkL6Z7dK8Q96XulQPzuMQ_Yky9H_EmLsBpjBOsWg

  • cpu過熱解決 在 楓葉綠茶 Facebook 的最佳解答

    2021-07-16 15:15:08
    有 174 人按讚

    Valve宣布將推出自家的掌上遊戲電腦Steam Deck
    起始售價僅399USD
    我看有不少人開始躁動想要掏錢了
    但是麻煩等等,修但幾勒,看完這篇再決定也不遲
    先說結論,Steam Deck很有競爭力
    但體現他競爭力的市場目前簡直小到一個不行
    如果你連壹號本One XPLAYER、AYA NEO或GPD Win 3都沒聽說過
    那我建議是不要淌這個渾水

    首先,Steam Deck雖然是掌上型遊戲機
    但它對標的平台絕對、絕對不是NS
    的確NS跟它價格接近,效能也更孱弱
    但NS的封閉生態圈是他最大的價值所在
    講難聽點,就算NS性能再弱上一倍
    只要老任能夠在這樣的平台上推出對應的馬利歐跟薩爾達
    那這個平台就會成功
    這種品牌優勢是其他任何掌上遊戲平台所無法比擬的
    相較之下,運行Steam OS的Steam Deck更接近上述的Windows掌機
    至少他們的目標是一致的,就是在掌機上跑PC遊戲

    然而,要讓掌機跑PC遊戲其實並不容易
    要在那個體積裡塞入一顆低壓CPU
    不能使用獨立顯卡,只能使用內顯
    還要慎重調整功耗策略
    在散熱、噪音、續行、重量多個面向裡取得一個比較合理的平衡
    這還沒完,就算把機子做好了
    其基底為PC的特性,又會使得玩家在玩任何新遊戲前
    都得自己手動反覆調整遊戲內的畫質選項
    用自己的眼睛去確認哪個畫質檔位、在哪個解析度下
    掌機可以穩定運行這款遊戲
    沒錯,調整設定是PC遊戲的醍醐味,我完全可以理解
    但這是一台掌機,一個隨身攜帶的裝置
    它只有僅僅2~4小時的續航
    這種一邊倒數計時一邊調設定的感覺滿可怕的其實
    而最重要的是,這些號稱可以跑AAA遊戲的掌機
    最終能順暢運行的畫質設定,往往都是低畫質+720p+30fps
    (老一點的遊戲或許有60fps,但一樣是低畫質720p)

    當然,Steam Deck實際表現會如何沒人知道
    或許RDNA2架構的它可以在能耗比上有更出色的表現
    或許SteamOS的它能比Windos10有更好的幀數表現
    (然後不能跑不支援SteamOS的遊戲)
    但老實說,從它搭載的硬體規格上來看
    它的效能是很難在其他的Window掌機競爭中脫穎而出的
    不過這不代表它沒有競爭力
    以掌上電腦來說,Steam Deck是真的很便宜
    至少64G($399 USD)跟256G($529 USD)在那個價格上是沒有對手的
    不過如果你真的想買,我會建議從256G開始看
    64G版不是NVMe SSD,這對高階遊戲讀取會造成很大的問題

    最後,如我開頭說的
    如果你沒有對掌上電腦有足夠的認知跟...覺悟?
    那我是真的建議不要去淌這個渾水
    Windows掌機目前仍然是一個專屬於愛折騰的發燒友領域
    Steam Deck雖然不是Windows
    但它確實是用來進入這個領域的一個不錯的敲門磚
    對於一般人來說
    如果要在客廳找一個遊戲解決方案
    直接組一台ITX小主機怎麼樣都比這台好
    如果要一個能帶著走的作業系統,直接選輕薄遊戲筆電吧
    Steam Deck只有一個USB-C
    需要準備的配件或許會比你想像得更多

    如果想要知道更多Windows掌機的資訊,可以去看看红酒汤姆一世
    他基本上就是這個領域的支持者
    但我正在打這篇的同時他好像發影片噴了Steam Deck
    hmmmm

  • cpu過熱解決 在 攝影獨白Alex NG Youtube 的最佳解答

    2021-02-21 03:47:38

    影片網址:https://youtu.be/-vz7dTJSX0o
    足本長30多分鐘,請加入會員
    或Patreon收看免廣告足本
    https://www.patreon.com/photonews

    1. Z6II更偏重視頻?原來好人誤會了!
    2. 點解旗艦機Z7II低光AF性能差過Z6II?
    3. 點解D780低光AF性能贏晒Z7II及Z6II?
    4. Nikon有沒有考慮過側面反mon呢?
    5. 點解Z7II自動對焦快過以前呢?
    6. 點解D850色彩還原唔夠Z7/Z7II好?
    7. Nikon話Z7/Z7II的色彩針對人攝影設計
    8. Nikon會否解決Z系列的Jelly effect問題?
    9. 為何Z7II快過Z6II可以拍4K/60p?
    10. 為何Nikon不開發全新CPU而採用雙CPU?
    11. Nikon人眼/動物檢測功能是否會加強?
    12. 會否開發象素偏移技術合成高解像?
    13. Nikon會否加強拍片功能?對手影8K片啦!
    14. 點解Z7II/Z6II並未更換採用新CMOS?
    15. 點解Z7II/Z6II並未提升EVF和LCD?
    16. 影風景買Z7II會否浪費了的眼部对焦?
    17. 點解係Z7II/Z6II唔係Z7s/Z6s呢?
    18. 點解Z7II摄的JPEG正過Z7的JPEG?
    19. Z7II的AF快了是否雙EXPEED 6的關係?
    20. 記者又問點解Z7II拍片正過Z6II!竟然!
    21. 會否用內置陀螺儀數據做後期防震?
    22. 點解Z7II跟Z7相同像素,沒有提升呢?
    23. 有可能固件升級提高Z7II電子快門連拍嗎?
    24. Z7II用FTZ的通訊速度是否比Z7快?
    25. Z6及Z7會固件更新Z7II的自動區域AF嗎?
    26. Z7II泰國生產,工藝跟MIJ的Z7相同麼?
    27. 現在Nikkor鏡頭能夠滿足多少像素?
    28. Nikon應對拍片發熱有什麼解決方案?



    加入會籍:http://bit.ly/32owcTq
    【會員版】影片完全沒有廣告!
    請看我的Patreon:https://www.patreon.com/photonews
    記得【訂閱】按鐘仔ICON、分享本片
    新聞稿、採訪通知:[email protected]
    頻道 : https://www.youtube.com/攝影獨白AlexNG
    資助我的頻道:https://www.paypal.me/alexngchannel

    【Photonews】http://photo.popart.hk
    【Photonews Fan Page】http://bit.ly/2XhptHe
    【AlexNG fan page】http://bit.ly/2DjiYfk
    【攝影課程】http://bit.ly/2V57F4K
    【香港攝影同學會】http://bit.ly/2VQosFT
    【香港二手相機】http://bit.ly/2GraEfI

    #攝影教學 #攝影 #粵語YOUTUBER #攝影獨白 #伍振榮 #Alex_NG #香港

你可能也想看看

搜尋相關網站