[爆卦]ai漸變是什麼?優點缺點精華區懶人包

雖然這篇ai漸變鄉民發文沒有被收入到精華區:在ai漸變這個話題中,我們另外找到其它相關的精選爆讚文章

在 ai漸變產品中有48篇Facebook貼文,粉絲數超過3,992的網紅台灣物聯網實驗室 IOT Labs,也在其Facebook貼文中提到, 摩爾定律放緩 靠啥提升AI晶片運算力? 作者 : 黃燁鋒,EE Times China 2021-07-26 對於電子科技革命的即將終結的說法,一般認為即是指摩爾定律的終結——摩爾定律一旦無法延續,也就意味著資訊技術的整棟大樓建造都將出現停滯,那麼第三次科技革命也就正式結束了。這種聲音似乎...

 同時也有26部Youtube影片,追蹤數超過11萬的網紅J是好玩,也在其Youtube影片中提到,Discord頻道: https://discord.gg/E8pxn6n 在Facebook上找到我:https://www.facebook.com/mrjgamer51/ 直播傳送們: https://www.twitch.tv/mrjgamer51 ------------------- ...

ai漸變 在 ALMA Instagram 的最佳貼文

2021-09-17 00:31:02

⁡ 貫策著『沒事別出門』,連工作都盡可能在家完成,我宅家整天最開心的應該就是貓咪們了,有個奴隨時伺候著😹 ⁡ 這幾天嘗試用OPPO Reno6 Pro 紀錄家居生活,最大的特色就是「光斑人像」功能,強大的背景虛化讓照片充滿了氛圍感,家裡亂沒關係,它可以幫你模糊掉,就連我們散步的繁雜街口都能拍出夢幻...

ai漸變 在 潘學觀 Instagram 的最佳貼文

2021-09-10 22:31:33

【Dark Side Of The Ball】 我已經逐日步入老年 看著自己漸漸變大的肥肚子 覺得噁心 所以準備發奮圖強 跑去買了一雙球鞋 和一顆籃球 當然,再買一個打氣筒 理所當然,之前看YouTube做一下功課 找一下MJ、AI、Stephen Curry...的影片 研究回憶一下基本動作 ...

ai漸變 在 Amy Ng ?? Instagram 的最佳貼文

2021-06-15 08:32:32

. 5G智能App 📱 染出精準靚色👩🏻‍🦰 ►Aroma Hair x E-saki 5G智能染髮 . 每次染髮,都想染返上次個靚色, 但每次都總係有色差,點算好⁉️ 原來 ✂️E-Saki 5G智能染髮 ✂️ 做得到👍🏻 我早前就喺Aroma Hair體驗咗 #漸變染髮 啦‼️ . 🔸🔸🔸🔷🔸🔸...

  • ai漸變 在 台灣物聯網實驗室 IOT Labs Facebook 的最佳貼文

    2021-07-27 11:56:34
    有 1 人按讚

    摩爾定律放緩 靠啥提升AI晶片運算力?

    作者 : 黃燁鋒,EE Times China
    2021-07-26

    對於電子科技革命的即將終結的說法,一般認為即是指摩爾定律的終結——摩爾定律一旦無法延續,也就意味著資訊技術的整棟大樓建造都將出現停滯,那麼第三次科技革命也就正式結束了。這種聲音似乎是從十多年前就有的,但這波革命始終也沒有結束。AI技術本質上仍然是第三次科技革命的延續……

    人工智慧(AI)的技術發展,被很多人形容為第四次科技革命。前三次科技革命,分別是蒸汽、電氣、資訊技術(電子科技)革命。彷彿這“第四次”有很多種說辭,比如有人說第四次科技革命是生物技術革命,還有人說是量子技術革命。但既然AI也是第四次科技革命之一的候選技術,而且作為資訊技術的組成部分,卻又獨立於資訊技術,即表示它有獨到之處。

    電子科技革命的即將終結,一般認為即是指摩爾定律的終結——摩爾定律一旦無法延續,也就意味著資訊技術的整棟大樓建造都將出現停滯,那麼第三次科技革命也就正式結束了。這種聲音似乎是從十多年前就有,但這波革命始終也沒有結束。

    AI技術本質上仍然是第三次科技革命的延續,它的發展也依託於幾十年來半導體科技的進步。這些年出現了不少專門的AI晶片——而且市場參與者相眾多。當某一個類別的技術發展到出現一種專門的處理器為之服務的程度,那麼這個領域自然就不可小覷,就像當年GPU出現專門為圖形運算服務一樣。

    所以AI晶片被形容為CPU、GPU之後的第三大類電腦處理器。AI專用處理器的出現,很大程度上也是因為摩爾定律的發展進入緩慢期:電晶體的尺寸縮減速度,已經無法滿足需求,所以就必須有某種專用架構(DSA)出現,以快速提升晶片效率,也才有了專門的AI晶片。

    另一方面,摩爾定律的延緩也成為AI晶片發展的桎梏。在摩爾定律和登納德縮放比例定律(Dennard Scaling)發展的前期,電晶體製程進步為晶片帶來了相當大的助益,那是「happy scaling down」的時代——CPU、GPU都是這個時代受益,不過Dennard Scaling早在45nm時期就失效了。

    AI晶片作為第三大類處理器,在這波發展中沒有趕上happy scaling down的好時機。與此同時,AI應用對運算力的需求越來越貪婪。今年WAIC晶片論壇圓桌討論環節,燧原科技創始人暨CEO趙立東說:「現在訓練的GPT-3模型有1750億參數,接近人腦神經元數量,我以為這是最大的模型了,要千張Nvidia的GPU卡才能做。談到AI運算力需求、模型大小的問題,說最大模型超過萬億參數,又是10倍。」

    英特爾(Intel)研究院副總裁、中國研究院院長宋繼強說:「前兩年用GPU訓練一個大規模的深度學習模型,其碳排放量相當於5台美式車整個生命週期產生的碳排量。」這也說明了AI運算力需求的貪婪,以及提供運算力的AI晶片不夠高效。

    不過作為產業的底層驅動力,半導體製造技術仍源源不斷地為AI發展提供推力。本文將討論WAIC晶片論壇上聽到,針對這個問題的一些前瞻性解決方案——有些已經實現,有些則可能有待時代驗證。

    XPU、摩爾定律和異質整合

    「電腦產業中的貝爾定律,是說能效每提高1,000倍,就會衍生出一種新的運算形態。」中科院院士劉明在論壇上說,「若每瓦功耗只能支撐1KOPS的運算,當時的這種運算形態是超算;到了智慧型手機時代,能效就提高到每瓦1TOPS;未來的智慧終端我們要達到每瓦1POPS。 這對IC提出了非常高的要求,如果依然沿著CMOS這條路去走,當然可以,但會比較艱辛。」

    針對性能和效率提升,除了尺寸微縮,半導體產業比較常見的思路是電晶體結構、晶片結構、材料等方面的最佳化,以及處理架構的革新。

    (1)AI晶片本身其實就是對處理器架構的革新,從運算架構的層面來看,針對不同的應用方向造不同架構的處理器是常規,更專用的處理器能促成效率和性能的成倍增長,而不需要依賴於電晶體尺寸的微縮。比如GPU、神經網路處理器(NPU,即AI處理器),乃至更專用的ASIC出現,都是這類思路。

    CPU、GPU、NPU、FPGA等不同類型的晶片各司其職,Intel這兩年一直在推行所謂的「XPU」策略就是用不同類型的處理器去做不同的事情,「整合起來各取所需,用組合拳會好過用一種武器去解決所有問題。」宋繼強說。Intel的晶片產品就涵蓋了幾個大類,Core CPU、Xe GPU,以及透過收購獲得的AI晶片Habana等。

    另外針對不同類型的晶片,可能還有更具體的最佳化方案。如當代CPU普遍加入AVX512指令,本質上是特別針對深度學習做加強。「專用」的不一定是處理器,也可以是處理器內的某些特定單元,甚至固定功能單元,就好像GPU中加入專用的光線追蹤單元一樣,這是當代處理器普遍都在做的一件事。

    (2)從電晶體、晶片結構層面來看,電晶體的尺寸現在仍然在縮減過程中,只不過縮減幅度相比過去變小了——而且為緩解電晶體性能的下降,需要有各種不同的技術來輔助尺寸變小。比如說在22nm節點之後,電晶體變為FinFET結構,在3nm之後,電晶體即將演變為Gate All Around FET結構。最終會演化為互補FET (CFET),其本質都是電晶體本身充分利用Z軸,來實現微縮性能的提升。

    劉明認為,「除了基礎元件的變革,IC現在的發展還是比較多元化,包括新材料的引進、元件結構革新,也包括微影技術。長期賴以微縮的基本手段,現在也在發生巨大的變化,特別是未來3D的異質整合。這些多元技術的協同發展,都為晶片整體性能提升帶來了很好的增益。」

    他並指出,「從電晶體級、到晶圓級,再到晶片堆疊、引線接合(lead bonding),精準度從毫米向奈米演進,互連密度大大提升。」從晶圓/裸晶的層面來看,則是眾所周知的朝more than moore’s law這樣的路線發展,比如把兩片裸晶疊起來。現在很熱門的chiplet技術就是比較典型的並不依賴於傳統電晶體尺寸微縮,來彈性擴展性能的方案。

    台積電和Intel這兩年都在大推將不同類型的裸晶,異質整合的技術。2.5D封裝方案典型如台積電的CoWoS,Intel的EMIB,而在3D堆疊上,Intel的Core LakeField晶片就是用3D Foveros方案,將不同的裸晶疊在一起,甚至可以實現兩片運算裸晶的堆疊、互連。

    之前的文章也提到過AMD剛發佈的3D V-Cache,將CPU的L3 cache裸晶疊在運算裸晶上方,將處理器的L3 cache大小增大至192MB,對儲存敏感延遲應用的性能提升。相比Intel,台積電這項技術的獨特之處在於裸晶間是以混合接合(hybrid bonding)的方式互連,而不是micro-bump,做到更小的打線間距,以及晶片之間數十倍通訊性能和效率提升。

    這些方案也不直接依賴傳統的電晶體微縮方案。這裡實際上還有一個方面,即新材料的導入專家們沒有在論壇上多說,本文也略過不談。

    1,000倍的性能提升

    劉明談到,當電晶體微縮的空間沒有那麼大的時候,產業界傾向於採用新的策略來評價技術——「PPACt」——即Powe r(功耗)、Performance (性能)、Cost/Area-Time (成本/面積-時間)。t指的具體是time-to-market,理論上應該也屬於成本的一部分。

    電晶體微縮方案失效以後,「多元化的技術變革,依然會讓IC性能得到進一步的提升。」劉明說,「根據預測,這些技術即使不再做尺寸微縮,也會讓IC的晶片性能做到500~1,000倍的提升,到2035年實現Zetta Flops的系統性能水準。且超算的發展還可以一如既往地前進;單裸晶儲存容量變得越來越大,IC依然會為產業發展提供基礎。」

    500~1,000倍的預測來自DARPA,感覺有些過於樂觀。因為其中的不少技術存在比較大的邊際遞減效應,而且有更實際的工程問題待解決,比如運算裸晶疊層的散熱問題——即便業界對於這類工程問題的探討也始終在持續。

    不過1,000倍的性能提升,的確說明摩爾定律的終結並不能代表第三次科技革命的終結,而且還有相當大的發展空間。尤其本文談的主要是AI晶片,而不是更具通用性的CPU。

    矽光、記憶體內運算和神經型態運算

    在非傳統發展路線上(以上內容都屬於半導體製造的常規思路),WAIC晶片論壇上宋繼強和劉明都提到了一些頗具代表性的技術方向(雖然這可能與他們自己的業務方向或研究方向有很大的關係)。這些技術可能尚未大規模推廣,或者仍在商業化的極早期。

    (1)近記憶體運算和記憶體內運算:處理器性能和效率如今面臨的瓶頸,很大程度並不在單純的運算階段,而在資料傳輸和儲存方面——這也是共識。所以提升資料的傳輸和存取效率,可能是提升整體系統性能時,一個非常靠譜的思路。

    這兩年市場上的處理器產品用「近記憶體運算」(near-memory computing)思路的,應該不在少數。所謂的近記憶體運算,就是讓儲存(如cache、memory)單元更靠近運算單元。CPU的多層cache結構(L1、L2、L3),以及電腦處理器cache、記憶體、硬碟這種多層儲存結構是常規。而「近記憶體運算」主要在於究竟有多「近」,cache記憶體有利於隱藏當代電腦架構中延遲和頻寬的局限性。

    這兩年在近記憶體運算方面比較有代表性的,一是AMD——比如前文提到3D V-cache增大處理器的cache容量,還有其GPU不僅在裸晶內導入了Infinity Cache這種類似L3 cache的結構,也更早應用了HBM2記憶體方案。這些實踐都表明,儲存方面的革新的確能帶來性能的提升。

    另外一個例子則是Graphcore的IPU處理器:IPU的特點之一是在裸晶內堆了相當多的cache資源,cache容量遠大於一般的GPU和AI晶片——也就避免了頻繁的訪問外部儲存資源的操作,極大提升頻寬、降低延遲和功耗。

    近記憶體運算的本質仍然是馮紐曼架構(Von Neumann architecture)的延續。「在做處理的過程中,多層級的儲存結構,資料的搬運不僅僅在處理和儲存之間,還在不同的儲存層級之間。這樣頻繁的資料搬運帶來了頻寬延遲、功耗的問題。也就有了我們經常說的運算體系內的儲存牆的問題。」劉明說。

    構建非馮(non-von Neumann)架構,把傳統的、以運算為中心的馮氏架構,變換一種新的運算範式。把部分運算力下推到儲存。這便是記憶體內運算(in-memory computing)的概念。

    記憶體內運算的就現在看來還是比較新,也有稱其為「存算一體」。通常理解為在記憶體中嵌入演算法,儲存單元本身就有運算能力,理論上消除資料存取的延遲和功耗。記憶體內運算這個概念似乎這在資料爆炸時代格外醒目,畢竟可極大減少海量資料的移動操作。

    其實記憶體內運算的概念都還沒有非常明確的定義。現階段它可能的內涵至少涉及到在儲記憶體內部,部分執行資料處理工作;主要應用於神經網路(因為非常契合神經網路的工作方式),以及這類晶片具體的工作方法上,可能更傾向於神經型態運算(neuromorphic computing)。

    對於AI晶片而言,記憶體內運算的確是很好的思路。一般的GPU和AI晶片執行AI負載時,有比較頻繁的資料存取操作,這對性能和功耗都有影響。不過記憶體內運算的具體實施方案,在市場上也是五花八門,早期比較具有代表性的Mythic導入了一種矩陣乘的儲存架構,用40nm嵌入式NOR,在儲記憶體內部執行運算,不過替換掉了數位週邊電路,改用類比的方式。在陣列內部進行模擬運算。這家公司之前得到過美國國防部的資金支援。

    劉明列舉了近記憶體運算和記憶體內運算兩種方案的例子。其中,近記憶體運算的這個方案應該和AMD的3D V-cache比較類似,把儲存裸晶和運算裸晶疊起來。

    劉明指出,「這是我們最近的一個工作,採用hybrid bonding的技術,與矽通孔(TSV)做比較,hybrid bonding功耗是0.8pJ/bit,而TSV是4pJ/bit。延遲方面,hybrid bonding只有0.5ns,而TSV方案是3ns。」台積電在3D堆疊方面的領先優勢其實也體現在hybrid bonding混合鍵合上,前文也提到了它具備更高的互連密度和效率。

    另外這套方案還將DRAM刷新頻率提高了一倍,從64ms提高至128ms,以降低功耗。「應對刷新率變慢出現拖尾bit,我們引入RRAM TCAM索引這些tail bits」劉明說。

    記憶體內運算方面,「傳統運算是用布林邏輯,一個4位元的乘法需要用到幾百個電晶體,這個過程中需要進行資料來回的移動。記憶體內運算是利用單一元件的歐姆定律來完成一次乘法,然後利用基爾霍夫定律完成列的累加。」劉明表示,「這對於今天深度學習的矩陣乘非常有利。它是原位的運算和儲存,沒有資料搬運。」這是記憶體內運算的常規思路。

    「無論是基於SRAM,還是基於新型記憶體,相比近記憶體運算都有明顯優勢,」劉明認為。下圖是記憶體內運算和近記憶體運算,精準度、能效等方面的對比,記憶體內運算架構對於低精準度運算有價值。

    下圖則總結了業內主要的一些記憶體內運算研究,在精確度和能效方面的對應關係。劉明表示,「需要高精確度、高運算力的情況下,近記憶體運算目前還是有優勢。不過記憶體內運算是更新的技術,這幾年的進步也非常快。」

    去年阿里達摩院發佈2020年十大科技趨勢中,有一個就是存算一體突破AI算力瓶頸。不過記憶體內運算面臨的商用挑戰也一點都不小。記憶體內運算的通常思路都是類比電路的運算方式,這對記憶體、運算單元設計都需要做工程上的考量。與此同時這樣的晶片究竟由誰來造也是個問題:是記憶體廠商,還是數文書處理器廠商?(三星推過記憶體內運算晶片,三星、Intel垂直整合型企業似乎很適合做記憶體內運算…)

    (2)神經型態運算:神經型態運算和記憶體內運算一樣,也是新興技術的熱門話題,這項技術有時也叫作compute in memory,可以認為它是記憶體內運算的某種發展方向。神經型態和一般神經網路AI晶片的差異是,這種結構更偏「類人腦」。

    進行神經型態研究的企業現在也逐漸變得多起來,劉明也提到了AI晶片「最終的理想是在結構層次模仿腦,元件層次逼近腦,功能層次超越人腦」的「類腦運算」。Intel是比較早關注神經型態運算研究的企業之一。

    傳說中的Intel Loihi就是比較典型存算一體的架構,「這片裸晶裡面包含128個小核心,每個核心用於模擬1,024個神經元的運算結構。」宋繼強說,「這樣一塊晶片大概可以類比13萬個神經元。我們做到的是把768個晶片再連起來,構成接近1億神經元的系統,讓學術界的夥伴去試用。」

    「它和深度學習加速器相比,沒有任何浮點運算——就像人腦裡面沒有乘加器。所以其學習和訓練方法是採用一種名為spike neutral network的路線,功耗很低,也可以訓練出做視覺辨識、語言辨識和其他種類的模型。」宋繼強認為,不採用同步時脈,「刺激的時候就是一個非同步電動勢,只有工作部分耗電,功耗是現在深度學習加速晶片的千分之一。」

    「而且未來我們可以對不同區域做劃分,比如這兒是視覺區、那兒是語言區、那兒是觸覺區,同時進行多模態訓練,互相之間產生關聯。這是現在的深度學習模型無法比擬的。」宋繼強說。這種神經型態運算晶片,似乎也是Intel在XPU方向上探索不同架構運算的方向之一。

    (2)微型化矽光:這個技術方向可能在層級上更偏高了一些,不再晶片架構層級,不過仍然值得一提。去年Intel在Labs Day上特別談到了自己在矽光(Silicon Photonics)的一些技術進展。其實矽光技術在連接資料中心的交換機方面,已有應用了,發出資料時,連接埠處會有個收發器把電訊號轉為光訊號,透過光纖來傳輸資料,另一端光訊號再轉為電訊號。不過傳統的光收發器成本都比較高,內部元件數量大,尺寸也就比較大。

    Intel在整合化的矽光(IIIV族monolithic的光學整合化方案)方面應該是商業化走在比較前列的,就是把光和電子相關的組成部分高度整合到晶片上,用IC製造技術。未來的光通訊不只是資料中心機架到機架之間,也可以下沉到板級——就跟現在傳統的電I/O一樣。電互連的主要問題是功耗太大,也就是所謂的I/O功耗牆,這是這類微型化矽光元件存在的重要價值。

    這其中存在的技術挑戰還是比較多,如做資料的光訊號調變的調變器調變器,據說Intel的技術使其實現了1,000倍的縮小;還有在接收端需要有個探測器(detector)轉換光訊號,用所謂的全矽微環(micro-ring)結構,實現矽對光的檢測能力;波分複用技術實現頻寬倍增,以及把矽光和CMOS晶片做整合等。

    Intel認為,把矽光模組與運算資源整合,就能打破必須帶更多I/O接腳做更大尺寸處理器的這種趨勢。矽光能夠實現的是更低的功耗、更大的頻寬、更小的接腳數量和尺寸。在跨處理器、跨伺服器節點之間的資料互動上,這類技術還是頗具前景,Intel此前說目標是實現每根光纖1Tbps的速率,並且能效在1pJ/bit,最遠距離1km,這在非本地傳輸上是很理想的數字。

    還有軟體…

    除了AI晶片本身,從整個生態的角度,包括AI感知到運算的整個鏈條上的其他組成部分,都有促成性能和效率提升的餘地。比如這兩年Nvidia從軟體層面,針對AI運算的中間層、庫做了大量最佳化。相同的底層硬體,透過軟體最佳化就能實現幾倍的性能提升。

    宋繼強說,「我們發現軟體最佳化與否,在同一個硬體上可以達到百倍的性能差距。」這其中的餘量還是比較大。

    在AI開發生態上,雖然Nvidia是最具發言權的;但從戰略角度來看,像Intel這種研發CPU、GPU、FPGA、ASIC,甚至還有神經型態運算處理器的企業而言,不同處理器統一開發生態可能更具前瞻性。Intel有個稱oneAPI的軟體平台,用一套API實現不同硬體性能埠的對接。這類策略對廠商的軟體框架構建能力是非常大的考驗——也極大程度關乎底層晶片的執行效率。

    在摩爾定律放緩、電晶體尺寸微縮變慢甚至不縮小的前提下,處理器架構革新、異質整合與2.5D/3D封裝技術依然可以達成1,000倍的性能提升;而一些新的技術方向,包括近記憶體運算、記憶體內運算和微型矽光,能夠在資料訪存、傳輸方面產生新的價值;神經型態運算這種類腦運算方式,是實現AI運算的目標;軟體層面的最佳化,也能夠帶動AI性能的成倍增長。所以即便摩爾定律嚴重放緩,AI晶片的性能、效率提升在上面提到的這麼多方案加持下,終將在未來很長一段時間內持續飛越。這第三(四)次科技革命恐怕還很難停歇。

    資料來源:https://www.eettaiwan.com/20210726nt61-ai-computing/?fbclid=IwAR3BaorLm9rL2s1ff6cNkL6Z7dK8Q96XulQPzuMQ_Yky9H_EmLsBpjBOsWg

  • ai漸變 在 資生堂東京櫃 Facebook 的最佳貼文

    2021-07-25 20:00:00
    有 107 人按讚

    【日本蟬聯14年銷售冠軍!使用2週有感】
    2週可以做什麼?學習新技能?追完想看的劇?
    從現在開始 #彈潤時控精粹 讓你變美 💪
     
    經受試者連續2週試用,有感緊實肌膚
    連續4週試用,檢測儀實證,肌膚含水量增加38%,彈性增加19%!
    緊緻緊實GET!光澤彈力UP!
    乾荒老化就此截止,每天逐漸變美ing😍
     
    📣專櫃/屈臣氏/寶雅同步火熱供應現貨中
    📣watashi+全館限時9折👉 https://jbeauty.com.tw/149cPm
    下單即贈彈潤體驗包2入組
    指定分類滿$3,800即贈彈潤保濕組
    *數量有限,送完為止 ⏰

    #怡麗絲爾 #澎彈亮 #水玉光 #膠原蛋白專家 #日本連續14年保養品牌銷售NO1 #2周有感緊實肌膚 #AI小白金

    數據來源: 測試結果出自第三方機構, 30-40歲的34名亞洲女性, 每日早晚使用各一次
    -------------------------------
    到Watashi+ 美妝網把美麗帶回家
    https://jbeauty.com.tw/85N8zZ
    -------------------------------
    到IG體驗〝2周有感 緊實肌膚〞
    https://jbeauty.com.tw/rz41c5
    -------------------------------
    在YouTube看更多精彩影片
    https://jbeauty.com.tw/btYfCi
    -------------------------------
    加入LINE 掌握最新優惠好康
    https://jbeauty.com.tw/nh7gf6
    -------------------------------

  • ai漸變 在 Amy's Beauty Facebook 的精選貼文

    2021-06-14 23:38:44
    有 110 人按讚

    5G智能App 📱 染出精準靚色👩🏻‍🦰
    ►Aroma Hair x E-saki 5G智能染髮
    .
    每次染髮,都想染返上次個靚色,
    但每次都總係有色差,點算好⁉️
    原來 ✂️E-Saki 5G智能染髮 ✂️ 做得到👍🏻
    我早前就喺Aroma Hair體驗咗 #漸變染髮 啦‼️
    .
    🔸🔸🔸🔷🔸🔸🔸🔷🔸🔸🔸🔷
    .
    ✂️ E-Saki #5G智能染髮 ✂️
    🔅 透過5G智能App📱x 9支染膏
    🔅 可精準快速運算出過千種顏色/Color🎨
    🔅 智能color系列🎨
    🔅 成份「安全」,通過SGS檢驗
    ❌PPD ❌矽靈
    ❌MPD ❌八大重金屬
    🔅 染髮過程加入多個護髮步驟:
    淨化 ➡️ 修護 ➡️ 染髮
    可令髮絲越染越健康‼️
    .
    🔰🔰🔰🔰🔰🔰🔰🔰🔰🔰🔰🔰
    .
    漸變染髮期間,無臭、無味、
    唔刺激,亦冇出現敏感情況。
    .
    染髮後,髮色鮮艷、滋潤有光澤✨
    .
    離開前,靚靚髮型師仲為我配埋
    一套E-Saki嘅家用護髮系列,
    讓我嘅髮色及髮絲keep住靚👩🏻‍🦰
    .
    🔰🔰🔰🔰🔰🔰🔰🔰🔰🔰🔰🔰
    .
    Aroma Hair-Spa&Salon
    #aromahair #esaki #thebestsalon
    #霧灰 #漂染 #霧感髮色 #漸變色
    #特殊色 #HKcolor #智能染髮
    #esakicolor #女神染 #網美染
    #5G #Ai #hairstyles #hkblogger
    #coolhkg #hkkol #hkinfluencer
    #hkbeautyblogger #AmysBeauty

  • ai漸變 在 J是好玩 Youtube 的最讚貼文

    2021-07-22 02:12:00

    Discord頻道: https://discord.gg/E8pxn6n
    在Facebook上找到我:https://www.facebook.com/mrjgamer51/
    直播傳送們: https://www.twitch.tv/mrjgamer51
    -------------------

    遊戲故事由「AI講述者」驅動。玩家操控殖民者在「邊緣世界」建造基地、抵禦入侵並應對突發事件,同時管理殖民者的需求、心情以及社交關係。隨著遊戲進行,事件漸漸變得更難,並且玩家能藉著研發,解鎖更進階的科技。

    不要忘記留言分享按喜歡喔!!

  • ai漸變 在 邦尼幫你 Youtube 的最讚貼文

    2021-04-21 20:47:11

    realme GT 開箱短評測系列,邦尼將實測 Snapdragon 888 性能 發熱 功耗表現 , 快充、續航力、日夜拍照實測、評價、推薦、值不值得買?除了告訴你 realme GT上採用 FHD+ 120Hz Super AMOLED 外,realme GT 採用三鏡頭相機 F2.3 800 萬超廣角、F1.8 6400 萬 主鏡頭,F2.4 200 萬 微距鏡頭

    支援包括 4K 60fps , 超級防手震、夜間夜景模式、 AI 智慧場景辨識,邦尼將會實測包括超廣角相機 、日拍、夜拍 AI 相機、錄影防手震,搭載 6.43 吋 120Hz 螢幕刷新率 360Hz 觸控採樣率,音效上搭載雙喇叭,效能上搭載 Qualcomm SnapDragon 888 + LPDDR5 RAM , UFS3.1 ROM,實測跑分 , PUBG Mobile , 原神 溫度 幀數實測 ;續航搭載 4500 mAh ,支援最高 65W 快充,通訊上將會推出 5G 版本,關於上市版本、售價,邦尼將於後續帶來快充效能等超完整實機實際測評。

    立即加入邦尼頻道會員計畫:https://www.youtube.com/c/isbonny/join
    (#你的恐龍會隨著你的會員等級一起成長哦!)
    ------
    邦尼找重點:

    外觀設計 Unbox & Industrial Design:
    0:00 邦尼幫你 開場
    00:19 外觀設計 / 亮面機身 / 黑色矩形鏡組
    00:26 光線漸變設計 / 曲面背蓋 / 手感
    00:42 不支援防水防塵
    00:45 機身配置 / 3.5mm 耳機接孔 / 隨附配件

    性能電力測試 Performance & Battery:
    01:01 效能規格 Snapdragon 888 / 12GB RAM+ 256GB ROM
    01:14 安兔兔跑分 / 3DMark 測試
    01:27 處理器 調校策略分析
    01:43 遊戲旗艦 調校方式
    01:57 CP 值旗艦 調校方式
    02:23 頂級旗艦 調校方式
    02:54 PUBG M 測試結果
    03:23 原神 測試結果
    03:52 realme GT 調校方式
    04:13 Snapdragon 888 / 調校策略 / 調校方向
    05:27 電池 / 4500mAh / 支援 65W 有線快充
    05:33 電力續航實測 / 快充實測

    影音娛樂 Display & Speakers:
    06:03 螢幕規格 / 三星 Super AMOLED / 120Hz
    06:27 雙喇叭 / 外放實測

    相機規格 Camera Review:
    07:04 相機規格
    07:32 日拍實測 / 夜拍實測
    08:13 夜間模式 / 超廣角可用
    09:09 錄影 / 4K 60fps
    09:19 AI 影片增強 / 1080p 30fps
    09:37 錄影 / 浮水印
    09:54 指紋辨識 / 臉部辨識 / 實測

    立即加入邦尼社團挖好康:https://fb.com/groups/isbonny

    #邦尼評測:超深入 3C 科技使用體驗
    #邦尼LOOK:3C 科技產品開箱快速動手玩
    #邦尼LIFE:屬於邦尼幫你團隊的私密生活玩樂
    #邦尼TALK:有內容的聊聊科技資訊吧!

    你訂閱了這麼多頻道,就是少了一個幫你評測幫你了解科技生活的科技頻道,立即訂閱「邦尼幫你」吧!
    訂閱邦尼幫你:https://lnk.pics/isbonnyYT
    邦尼社團:https://fb.com/groups/isbonny
    邦尼幫你 FB:https://www.fb.me/isbonny
    邦尼幫你 IG:https://www.instagram.com/isbonny/
    邦尼 Telegram:https://t.me/isbonny
    邦尼Line官方帳號:@isbonny(http://line.me/ti/p/%40isbonny
    邦尼信箱:service@iwaishin.com
    邦尼評測(產品合作):me@iwaishin.com
    快來找我們玩!!!!

    本期卡濕:
    露點的:realme GT
    主謀(製作人):邦尼
    內容創造者:威信
    影像創造者:驢子
    麥聲人:歐登
    內容夥伴:IWAISHIN 愛威信 3C 科技生活
    特別感謝:每一個看影片的「你」

    我們是邦尼幫你:
    以「邦尼幫你」為出發點,秉持著「科技很簡單,新奇可以好好玩」的初衷,以更多實境使用場景及戲劇內容豐富以往艱澀難懂的科技資訊,回歸消費者角度思考產品價值,並以「幫你玩、幫你測、幫你試」等實測內容給予產品評價,此外更期許能夠成為「更貼近消費者觀點」的內容創作者及具有媒體影響力的科技內容創造團隊。

  • ai漸變 在 夏榮慶Jimmy Youtube 的最佳貼文

    2020-09-18 22:08:16

    當我接到一個大型的廣告行銷活動,例如說百貨公司週年慶,我希望做一個特殊的標題文字,創造吸睛效果,這段影片將用Illustrator的漸變工具快速製作彩色漸層文字標題!

    🎬 熱門影片
    👉用Photoshop做出3D示意圖-https://youtu.be/6SPYc8i664w
    👉 Photoshop 2020 六月版髮絲去背-https://youtu.be/AqNqa8nBNA8
    👉 Photoshop CC 2020 十五大新功能- https://youtu.be/_VmxpcjHEfM
    👉 Spark Post 2020 貼圖自動產生器六大新功能- https://youtu.be/QaUQjc3PSf8
    👉 Premiere Rush 2020 縮時影片慢動作- https://youtu.be/aYLRFVqkZiU

    錄影版本:Adobe Illustrator 2020 Mac繁體中文版
    #漸層文字 #Illustrator2020 #立體標題

    | 訂閱頻道 |
    https://goo.gl/NZzSgM 只要有新影片上架,你就會收到通知,立刻可以觀賞內容。

    | FB | https://www.facebook.com/jimmyh519/ 這裡有Adobe軟體使用技巧、設計精采案例

    | 好學校 Hahow |【Photoshop最重要的基本課】 https://hahow.in/cr/jhsiapscc

你可能也想看看

搜尋相關網站