雖然這篇SimCSE鄉民發文沒有被收入到精華區:在SimCSE這個話題中,我們另外找到其它相關的精選爆讚文章
[爆卦]SimCSE是什麼?優點缺點精華區懶人包
你可能也想看看
搜尋相關網站
-
//=++$i?>//="/exit/".urlencode($keyword)."/".base64url_encode($si['_source']['url'])."/".$_pttarticleid?>//=htmlentities($si['_source']['title'])?>
#1SimCSE: Simple Contrastive Learning of Sentence Embeddings
We propose a simple contrastive learning framework that works with both unlabeled and labeled data. Unsupervised SimCSE simply takes an input sentence and ...
//="/exit/".urlencode($keyword)."/".base64url_encode($si['_source']['url'])."/".$_pttarticleid?>//=htmlentities($si['_source']['domain'])?> -
//=++$i?>//="/exit/".urlencode($keyword)."/".base64url_encode($si['_source']['url'])."/".$_pttarticleid?>//=htmlentities($si['_source']['title'])?>
#2SimCSE: Simple Contrastive Learning of Sentence Embeddings
Abstract: This paper presents SimCSE, a simple contrastive learning framework that greatly advances the state-of-the-art sentence embeddings ...
//="/exit/".urlencode($keyword)."/".base64url_encode($si['_source']['url'])."/".$_pttarticleid?>//=htmlentities($si['_source']['domain'])?> -
//=++$i?>//="/exit/".urlencode($keyword)."/".base64url_encode($si['_source']['url'])."/".$_pttarticleid?>//=htmlentities($si['_source']['title'])?>
#3SimCSE:Contrastive Learning 在NLP 的應用 - 逢甲大學 ...
Introduction. 圖(1)SimCSE 成為新SOTA. SimCSE 關注的問題是universal sentence embeddings,這在NLP 領域 ...
//="/exit/".urlencode($keyword)."/".base64url_encode($si['_source']['url'])."/".$_pttarticleid?>//=htmlentities($si['_source']['domain'])?> -
//=++$i?>//="/exit/".urlencode($keyword)."/".base64url_encode($si['_source']['url'])."/".$_pttarticleid?>//=htmlentities($si['_source']['title'])?>
#4SimCSE: Simple Contrastive Learning of Sentence Embeddings
This paper presents SimCSE, a simple contrastive learning framework that greatly ... We evaluate SimCSE on standard semantic textual similarity (STS) tasks, ...
//="/exit/".urlencode($keyword)."/".base64url_encode($si['_source']['url'])."/".$_pttarticleid?>//=htmlentities($si['_source']['domain'])?> -
//=++$i?>//="/exit/".urlencode($keyword)."/".base64url_encode($si['_source']['url'])."/".$_pttarticleid?>//=htmlentities($si['_source']['title'])?>
#5SimCSE: Simple Contrastive Learning of Sentence Embeddings
Demo: SimCSE. TL;DR: 本文将对比学习的思想引入了sentence embedding,刷爆了无监督与有监督语义相似度计算任务SOTA,是一篇非常难得的高水平论文。
//="/exit/".urlencode($keyword)."/".base64url_encode($si['_source']['url'])."/".$_pttarticleid?>//=htmlentities($si['_source']['domain'])?> -
//=++$i?>//="/exit/".urlencode($keyword)."/".base64url_encode($si['_source']['url'])."/".$_pttarticleid?>//=htmlentities($si['_source']['title'])?>
#6SimCSE: Simple Contrastive Learning of Sentence Embeddings
We evaluate SimCSE on standard semantic textual similarity (STS) tasks, and our unsupervised and supervised models using BERTbase achieve an average of 74.5% ...
//="/exit/".urlencode($keyword)."/".base64url_encode($si['_source']['url'])."/".$_pttarticleid?>//=htmlentities($si['_source']['domain'])?> -
//=++$i?>//="/exit/".urlencode($keyword)."/".base64url_encode($si['_source']['url'])."/".$_pttarticleid?>//=htmlentities($si['_source']['title'])?>
#7【论文复现】SimCSE对比学习: 文本增广是什么牛马 - CSDN博客
而本篇文章的主角SimCSE: Simple Contrastive Learning of Sentence Embeddings,发现利用预训练模型中自带的Dropout mask作为“增广手段”得到 ...
//="/exit/".urlencode($keyword)."/".base64url_encode($si['_source']['url'])."/".$_pttarticleid?>//=htmlentities($si['_source']['domain'])?> -
//=++$i?>//="/exit/".urlencode($keyword)."/".base64url_encode($si['_source']['url'])."/".$_pttarticleid?>//=htmlentities($si['_source']['title'])?>
#8SimCSE — Sentence-Transformers documentation
Gao et al. present in SimCSE a simple method to train sentence embeddings without having training data. The idea is to encode the same sentence twice. Due to ...
//="/exit/".urlencode($keyword)."/".base64url_encode($si['_source']['url'])."/".$_pttarticleid?>//=htmlentities($si['_source']['domain'])?> -
//=++$i?>//="/exit/".urlencode($keyword)."/".base64url_encode($si['_source']['url'])."/".$_pttarticleid?>//=htmlentities($si['_source']['title'])?>
#9SimCSE: Simple Contrastive Learning of Sentence Embeddings
princeton-nlp/SimCSE, SimCSE: Simple Contrastive Learning of Sentence Embeddings This repository contains the code and pre-trained models ...
//="/exit/".urlencode($keyword)."/".base64url_encode($si['_source']['url'])."/".$_pttarticleid?>//=htmlentities($si['_source']['domain'])?> -
//=++$i?>//="/exit/".urlencode($keyword)."/".base64url_encode($si['_source']['url'])."/".$_pttarticleid?>//=htmlentities($si['_source']['title'])?>
#10SimCSE - a Hugging Face Space by akhaliq
SimCSE. demo for Princeton-NLP SimCSE. To use it, simply add your text, or click one of the examples to load them. Read more at the links below.
//="/exit/".urlencode($keyword)."/".base64url_encode($si['_source']['url'])."/".$_pttarticleid?>//=htmlentities($si['_source']['domain'])?> -
//=++$i?>//="/exit/".urlencode($keyword)."/".base64url_encode($si['_source']['url'])."/".$_pttarticleid?>//=htmlentities($si['_source']['title'])?>
#11SimCSE: Simple Contrastive Learning of ... - Tianyu Gao's Blog
Our unsupervised SimCSE simply predicts the input sentence itself, with only dropout (Srivastava et al., 2014) used as noise (Figure 1(a)). In other words, we ...
//="/exit/".urlencode($keyword)."/".base64url_encode($si['_source']['url'])."/".$_pttarticleid?>//=htmlentities($si['_source']['domain'])?> -
//=++$i?>//="/exit/".urlencode($keyword)."/".base64url_encode($si['_source']['url'])."/".$_pttarticleid?>//=htmlentities($si['_source']['title'])?>
#12中文任务还是SOTA吗?我们给SimCSE补充了一些实验- 科学空间
2、由于SimCSE没有标签数据,所以把每个句子自身视为相似句传入。 说白了,本质上来说就是(自己,自己)作为正例、(自己,别人)作为负例来训练对比学习 ...
//="/exit/".urlencode($keyword)."/".base64url_encode($si['_source']['url'])."/".$_pttarticleid?>//=htmlentities($si['_source']['domain'])?> -
//=++$i?>//="/exit/".urlencode($keyword)."/".base64url_encode($si['_source']['url'])."/".$_pttarticleid?>//=htmlentities($si['_source']['title'])?>
#13SimCSE _ 搜索结果
从另一个角度理解SimCSE. 638 0 2021-05-07 日常半躺 · 50:41. 计算机技术【Whalepaper】NLP论文研读:SimCSE: Simple Contrastive Learning of Sentence Embeddings.
//="/exit/".urlencode($keyword)."/".base64url_encode($si['_source']['url'])."/".$_pttarticleid?>//=htmlentities($si['_source']['domain'])?> -
//=++$i?>//="/exit/".urlencode($keyword)."/".base64url_encode($si['_source']['url'])."/".$_pttarticleid?>//=htmlentities($si['_source']['title'])?>
#14【NLP论文笔记】SimCSE: Simple Contrastive Learning ... - 简书
【NLP论文笔记】SimCSE: Simple Contrastive Learning of Sentence Embeddings--random dropout mask(SimCSE).
//="/exit/".urlencode($keyword)."/".base64url_encode($si['_source']['url'])."/".$_pttarticleid?>//=htmlentities($si['_source']['domain'])?> -
//=++$i?>//="/exit/".urlencode($keyword)."/".base64url_encode($si['_source']['url'])."/".$_pttarticleid?>//=htmlentities($si['_source']['title'])?>
#15SimCSE: Simple Contrastive Learning of ... - ResearchGate
We evaluate SimCSE on standard semantic textual similarity (STS) tasks, and our unsupervised and supervised models using BERT-base achieve an average of 74.5% ...
//="/exit/".urlencode($keyword)."/".base64url_encode($si['_source']['url'])."/".$_pttarticleid?>//=htmlentities($si['_source']['domain'])?> -
//=++$i?>//="/exit/".urlencode($keyword)."/".base64url_encode($si['_source']['url'])."/".$_pttarticleid?>//=htmlentities($si['_source']['title'])?>
#16SimCSE:对比学习,只需要Dropout - 摸鱼派
要说2021年上半年NLP最火的论文,想必非《SimCSE: Simple Contrastive Learning of Sentence Embeddings》莫属。SimCSE的全称是Simple Contrastive Sentence Embedding ...
//="/exit/".urlencode($keyword)."/".base64url_encode($si['_source']['url'])."/".$_pttarticleid?>//=htmlentities($si['_source']['domain'])?> -
//=++$i?>//="/exit/".urlencode($keyword)."/".base64url_encode($si['_source']['url'])."/".$_pttarticleid?>//=htmlentities($si['_source']['title'])?>
#17论文解读:EMNLP 2021-SimCSE - 博客园
论文解读:EMNLP 2021-SimCSE: Simple Contrastive Learning of Sentence Embeddings · 各向异性说明 · 琴生不等式(Jensen's Inequality) · alignment和 ...
//="/exit/".urlencode($keyword)."/".base64url_encode($si['_source']['url'])."/".$_pttarticleid?>//=htmlentities($si['_source']['domain'])?> -
//=++$i?>//="/exit/".urlencode($keyword)."/".base64url_encode($si['_source']['url'])."/".$_pttarticleid?>//=htmlentities($si['_source']['title'])?>
#18Sentence Embeddings: Not enough data? Just apply dropout ...
SimCSE as a contrastive learning model needs positive pairs and negative pairs of input sentences to train. The author simply used dropout ...
//="/exit/".urlencode($keyword)."/".base64url_encode($si['_source']['url'])."/".$_pttarticleid?>//=htmlentities($si['_source']['domain'])?> -
//=++$i?>//="/exit/".urlencode($keyword)."/".base64url_encode($si['_source']['url'])."/".$_pttarticleid?>//=htmlentities($si['_source']['title'])?>
#19SimCSE: Simple Contrastive Learning of Sentence Embeddings
SimCSE : Simple Contrastive Learning of Sentence Embeddings. 2021.12.20. 발표자: 김호승 발표일자: 2021-12-21 저자: Tianyu Gao, Xingcheng Yao, ...
//="/exit/".urlencode($keyword)."/".base64url_encode($si['_source']['url'])."/".$_pttarticleid?>//=htmlentities($si['_source']['domain'])?> -
//=++$i?>//="/exit/".urlencode($keyword)."/".base64url_encode($si['_source']['url'])."/".$_pttarticleid?>//=htmlentities($si['_source']['title'])?>
#20【论文复现】SimCSE对比学习: 文本增广是什么牛马 - 程序员秘密
而本篇文章的主角SimCSE: Simple Contrastive Learning of Sentence Embeddings,发现利用预训练模型中自带的Dropout mask作为“增广手段”得到的Sentence Embeddings, ...
//="/exit/".urlencode($keyword)."/".base64url_encode($si['_source']['url'])."/".$_pttarticleid?>//=htmlentities($si['_source']['domain'])?> -
//=++$i?>//="/exit/".urlencode($keyword)."/".base64url_encode($si['_source']['url'])."/".$_pttarticleid?>//=htmlentities($si['_source']['title'])?>
#21bojone/SimCSE - Giters
SimCSE 中文测试. SimCSE在常见中文数据集上的测试,包含ATEC、BQ、LCQMC、PAWSX、STS-B共5个任务。 介绍. 博客:https://kexue.fm/archives/8348; 论文:《SimCSE: ...
//="/exit/".urlencode($keyword)."/".base64url_encode($si['_source']['url'])."/".$_pttarticleid?>//=htmlentities($si['_source']['domain'])?> -
//=++$i?>//="/exit/".urlencode($keyword)."/".base64url_encode($si['_source']['url'])."/".$_pttarticleid?>//=htmlentities($si['_source']['title'])?>
#22PromptBERT|結合Prompt+對比學習,超越SimCSE兩個多點
這篇文章名叫PromptBERT,無監督直接在SimCSE的基礎上提了2個多點: PromptBERT: Improving BERT Sentence Embeddings with Prompts ...
//="/exit/".urlencode($keyword)."/".base64url_encode($si['_source']['url'])."/".$_pttarticleid?>//=htmlentities($si['_source']['domain'])?> -
//=++$i?>//="/exit/".urlencode($keyword)."/".base64url_encode($si['_source']['url'])."/".$_pttarticleid?>//=htmlentities($si['_source']['title'])?>
#23SimCSE: Simple Contrastive Learning of Sentence Embeddings
论文目的SimCSE:simple contrastive sentence embedding framework 首先提出一种无监督的方法,仅使用dropout作为噪声,进行对比训练。
//="/exit/".urlencode($keyword)."/".base64url_encode($si['_source']['url'])."/".$_pttarticleid?>//=htmlentities($si['_source']['domain'])?> -
//=++$i?>//="/exit/".urlencode($keyword)."/".base64url_encode($si['_source']['url'])."/".$_pttarticleid?>//=htmlentities($si['_source']['title'])?>
#24S-SimCSE:用于句子嵌入对比学习的采样子网络,arXiv - CS
已经研究了对比学习以提高句子嵌入学习的性能。当前最先进的方法是SimCSE,它采用dropout 作为数据增强方法,并两次将相同的输入句子馈送给预训练 ...
//="/exit/".urlencode($keyword)."/".base64url_encode($si['_source']['url'])."/".$_pttarticleid?>//=htmlentities($si['_source']['domain'])?> -
//=++$i?>//="/exit/".urlencode($keyword)."/".base64url_encode($si['_source']['url'])."/".$_pttarticleid?>//=htmlentities($si['_source']['title'])?>
#25SimCSE: Simple Contrastive Learning of Sentence Embeddings
This paper presents SimCSE, a simple contrastive learning ... We evaluate SimCSE on standard semantic textual similarity (STS) tasks, ...
//="/exit/".urlencode($keyword)."/".base64url_encode($si['_source']['url'])."/".$_pttarticleid?>//=htmlentities($si['_source']['domain'])?> -
//=++$i?>//="/exit/".urlencode($keyword)."/".base64url_encode($si['_source']['url'])."/".$_pttarticleid?>//=htmlentities($si['_source']['title'])?>
#26SimCSE:对比学习,只需要Dropout (1) - 掘金
这是我参与11月更文挑战的第25天,活动详情查看:2021最后一次更文挑战要说2021年上半年NLP最火的论文,想必非《SimCSE: Simple Contrastive Learning ...
//="/exit/".urlencode($keyword)."/".base64url_encode($si['_source']['url'])."/".$_pttarticleid?>//=htmlentities($si['_source']['domain'])?> -
//=++$i?>//="/exit/".urlencode($keyword)."/".base64url_encode($si['_source']['url'])."/".$_pttarticleid?>//=htmlentities($si['_source']['title'])?>
#27Implementation of SimCSE for unsupervised approach in ...
Hi Everyone ! Welcome to my blog. In this blog, I am going to show a simple implementation of SimCSE: Simple Contrastive Learning of Sentence Embeddings for ...
//="/exit/".urlencode($keyword)."/".base64url_encode($si['_source']['url'])."/".$_pttarticleid?>//=htmlentities($si['_source']['domain'])?> -
//=++$i?>//="/exit/".urlencode($keyword)."/".base64url_encode($si['_source']['url'])."/".$_pttarticleid?>//=htmlentities($si['_source']['title'])?>
#28How does SimCSE do dropout twice indepently - Stack Overflow
How can I pass an input sentence into bert with dropout twice independently? here is what i try so far, the outputs are identical.
//="/exit/".urlencode($keyword)."/".base64url_encode($si['_source']['url'])."/".$_pttarticleid?>//=htmlentities($si['_source']['domain'])?> -
//=++$i?>//="/exit/".urlencode($keyword)."/".base64url_encode($si['_source']['url'])."/".$_pttarticleid?>//=htmlentities($si['_source']['title'])?>
#29恒源云_[SimCSE]:对比学习,只需要Dropout? - SegmentFault
要说2021年上半年NLP最火的论文,想必非《SimCSE: Simple Contrastive Learning of Sentence Embeddings》莫属。SimCSE的全称是Simple Contrastive ...
//="/exit/".urlencode($keyword)."/".base64url_encode($si['_source']['url'])."/".$_pttarticleid?>//=htmlentities($si['_source']['domain'])?> -
//=++$i?>//="/exit/".urlencode($keyword)."/".base64url_encode($si['_source']['url'])."/".$_pttarticleid?>//=htmlentities($si['_source']['title'])?>
#30无监督对比学习SIMCSE理解和中文实验操作_HUSTHY的博客
一、SIMCSE原理理解论文的背景、核心思想、如何构建正样本对——为何这样就能构造一个很好的样本对(bert模型中dropout的理解)、损失函数的理解,错误负样本对结果的影响 ...
//="/exit/".urlencode($keyword)."/".base64url_encode($si['_source']['url'])."/".$_pttarticleid?>//=htmlentities($si['_source']['domain'])?> -
//=++$i?>//="/exit/".urlencode($keyword)."/".base64url_encode($si['_source']['url'])."/".$_pttarticleid?>//=htmlentities($si['_source']['title'])?>
#31超越SimCSE两个多点,Prompt+对比学习的文本表示新SOTA
这篇文章名叫PromptBERT,无监督直接在SimCSE的基础上提了2个多点:. PromptBERT: Improving BERT Sentence Embeddings with Prompts.
//="/exit/".urlencode($keyword)."/".base64url_encode($si['_source']['url'])."/".$_pttarticleid?>//=htmlentities($si['_source']['domain'])?> -
//=++$i?>//="/exit/".urlencode($keyword)."/".base64url_encode($si['_source']['url'])."/".$_pttarticleid?>//=htmlentities($si['_source']['title'])?>
#32【好文分享】SimCSE---简单有效的对比学习 - 腾讯云
【好文分享】SimCSE---简单有效的对比学习 ... “问渠那得清如许,为有源头活水来”,通过前沿领域知识的学习,从其他研究领域得到启发,对研究问题的本质有更 ...
//="/exit/".urlencode($keyword)."/".base64url_encode($si['_source']['url'])."/".$_pttarticleid?>//=htmlentities($si['_source']['domain'])?> -
//=++$i?>//="/exit/".urlencode($keyword)."/".base64url_encode($si['_source']['url'])."/".$_pttarticleid?>//=htmlentities($si['_source']['title'])?>
#33中文任务还是SOTA吗?我们给SimCSE补充了一些实验
1、SimCSE去掉了SimBERT的生成部分,仅保留检索模型;. 2、由于SimCSE没有标签 ... 不管怎样比,SimCSE还是明显优于BERT-flow和BERT-whitening的。
//="/exit/".urlencode($keyword)."/".base64url_encode($si['_source']['url'])."/".$_pttarticleid?>//=htmlentities($si['_source']['domain'])?> -
//=++$i?>//="/exit/".urlencode($keyword)."/".base64url_encode($si['_source']['url'])."/".$_pttarticleid?>//=htmlentities($si['_source']['title'])?>
#34Tianyu Gao on Twitter: " to share “SimCSE: Simple ...
to share “SimCSE: Simple Contrastive Learning of Sentence Embeddings”. We show that a contrastive objective can be VERY effective with right ...
//="/exit/".urlencode($keyword)."/".base64url_encode($si['_source']['url'])."/".$_pttarticleid?>//=htmlentities($si['_source']['domain'])?> -
//=++$i?>//="/exit/".urlencode($keyword)."/".base64url_encode($si['_source']['url'])."/".$_pttarticleid?>//=htmlentities($si['_source']['title'])?>
#35SimCSE - githubmemory
Questions about the supervised SimCSE settings · The alignment computed with function implemented by Wang and Isola differs a lot with the paper.
//="/exit/".urlencode($keyword)."/".base64url_encode($si['_source']['url'])."/".$_pttarticleid?>//=htmlentities($si['_source']['domain'])?> -
//=++$i?>//="/exit/".urlencode($keyword)."/".base64url_encode($si['_source']['url'])."/".$_pttarticleid?>//=htmlentities($si['_source']['title'])?>
#36SimCSE 分类初始化相关
如果采用simCSE进行初始化,训练query-reply 二分类任务(softmax作为损失)会有提升吗(之前是采用google的bert初始化的)?目前是正例稍多,负例少,试 ...
//="/exit/".urlencode($keyword)."/".base64url_encode($si['_source']['url'])."/".$_pttarticleid?>//=htmlentities($si['_source']['domain'])?> -
//=++$i?>//="/exit/".urlencode($keyword)."/".base64url_encode($si['_source']['url'])."/".$_pttarticleid?>//=htmlentities($si['_source']['title'])?>
#37预训练模型语义相似性计算(四)--SimCSE - CodeAntenna
接着之前的句向量表示模型进行相似句计算的方法,这篇接着介绍一种新的方法-SimCSE。文章来自普林斯顿陈丹琦,引入了对比学...,CodeAntenna技术文章技术问题代码片段及 ...
//="/exit/".urlencode($keyword)."/".base64url_encode($si['_source']['url'])."/".$_pttarticleid?>//=htmlentities($si['_source']['domain'])?> -
//=++$i?>//="/exit/".urlencode($keyword)."/".base64url_encode($si['_source']['url'])."/".$_pttarticleid?>//=htmlentities($si['_source']['title'])?>
#38SIMCSE learning - Programmer Sought
2. What is SIMCSE? 2.1 Regardless Training Method. A sentence, encoder gets Embedding, Embedding obtained by Dropout as a normal example, other sentence ...
//="/exit/".urlencode($keyword)."/".base64url_encode($si['_source']['url'])."/".$_pttarticleid?>//=htmlentities($si['_source']['domain'])?> -
//=++$i?>//="/exit/".urlencode($keyword)."/".base64url_encode($si['_source']['url'])."/".$_pttarticleid?>//=htmlentities($si['_source']['title'])?>
#39vdogmcgee/SimCSE-Chinese-Pytorch - Github Plus
SimCSE -Chinese-Pytorch. SimCSE在中文上的复现,无监督+ 有监督. 1. 背景. 最近看了SimCSE这篇论文,便对论文做了pytorch版的复现和评测.
//="/exit/".urlencode($keyword)."/".base64url_encode($si['_source']['url'])."/".$_pttarticleid?>//=htmlentities($si['_source']['domain'])?> -
//=++$i?>//="/exit/".urlencode($keyword)."/".base64url_encode($si['_source']['url'])."/".$_pttarticleid?>//=htmlentities($si['_source']['title'])?>
#40NLP场景中的对比学习模型SimCSE - 技术圈
同时,苏剑林也在文献3中的中文数据集上进行了完整的实验,证明SimCSE模型的确优于其他语义相似度模型。所以调研SimCSE希望能作为SimBERT的升级版本用于线 ...
//="/exit/".urlencode($keyword)."/".base64url_encode($si['_source']['url'])."/".$_pttarticleid?>//=htmlentities($si['_source']['domain'])?> -
//=++$i?>//="/exit/".urlencode($keyword)."/".base64url_encode($si['_source']['url'])."/".$_pttarticleid?>//=htmlentities($si['_source']['title'])?>
#41对比学习|SimCSE:句子嵌入的简单对比学习 - 智源社区
【论文标题】SimCSE: Simple Contrastive Learning of Sentence Embeddings 【对比学习】SimCSE:句子嵌入的简单对比学习【论坛 ...
//="/exit/".urlencode($keyword)."/".base64url_encode($si['_source']['url'])."/".$_pttarticleid?>//=htmlentities($si['_source']['domain'])?> -
//=++$i?>//="/exit/".urlencode($keyword)."/".base64url_encode($si['_source']['url'])."/".$_pttarticleid?>//=htmlentities($si['_source']['title'])?>
#42Load SimCSE Models - princeton-nlp/SimCSE Wiki - GitHub ...
Load SimCSE Models - princeton-nlp/SimCSE Wiki. Importing our pre-trained SimCSE models just takes two lines of code: from simcse import SimCSE model = SimCSE(" ...
//="/exit/".urlencode($keyword)."/".base64url_encode($si['_source']['url'])."/".$_pttarticleid?>//=htmlentities($si['_source']['domain'])?> -
//=++$i?>//="/exit/".urlencode($keyword)."/".base64url_encode($si['_source']['url'])."/".$_pttarticleid?>//=htmlentities($si['_source']['title'])?>
#43模型详情页-SimCSE - 极链AI 云
模型介绍:SIMCSE是一种用于生成句子嵌入的对比学习框架。它利用了无监督的方法,该方法采用输入句,并以对比目标预测本身,只有标准dropout用作噪声 ...
//="/exit/".urlencode($keyword)."/".base64url_encode($si['_source']['url'])."/".$_pttarticleid?>//=htmlentities($si['_source']['domain'])?> -
//=++$i?>//="/exit/".urlencode($keyword)."/".base64url_encode($si['_source']['url'])."/".$_pttarticleid?>//=htmlentities($si['_source']['title'])?>
#44超細節的對比學習和SimCSE知識點 - 每日頭條
2020年的Moco和SimCLR等,掀起了對比學習在CV領域的熱潮,2021年的SimCSE,則讓NLP也乘上了對比學習的東風。下面就嘗試用QA的形式挖掘其中一些細節 ...
//="/exit/".urlencode($keyword)."/".base64url_encode($si['_source']['url'])."/".$_pttarticleid?>//=htmlentities($si['_source']['domain'])?> -
//=++$i?>//="/exit/".urlencode($keyword)."/".base64url_encode($si['_source']['url'])."/".$_pttarticleid?>//=htmlentities($si['_source']['title'])?>
#45细节满满!理解对比学习和SimCSE,就看这6个知识点
SimCSE 中的dropout mask 指的是什么,dropout rate 的大小影响的是什么? SimCSE 无监督模式下的具体实现流程是怎样的,标签生成和loss 计算如何实现 ...
//="/exit/".urlencode($keyword)."/".base64url_encode($si['_source']['url'])."/".$_pttarticleid?>//=htmlentities($si['_source']['domain'])?> -
//=++$i?>//="/exit/".urlencode($keyword)."/".base64url_encode($si['_source']['url'])."/".$_pttarticleid?>//=htmlentities($si['_source']['title'])?>
#46SimCSE的loss实现源码解读 - 墨天轮
前段时间SimCSE刷爆NLP圈,想法简单、效果惊艳。对比学习的核心就是loss的编写,官方给出的源码,lo.
//="/exit/".urlencode($keyword)."/".base64url_encode($si['_source']['url'])."/".$_pttarticleid?>//=htmlentities($si['_source']['domain'])?> -
//=++$i?>//="/exit/".urlencode($keyword)."/".base64url_encode($si['_source']['url'])."/".$_pttarticleid?>//=htmlentities($si['_source']['title'])?>
#47simcse - PyPI
simcse 0.4. pip install simcse. Copy PIP instructions. Latest version. Released: May 11, 2021. A sentence embedding tool based on SimCSE ...
//="/exit/".urlencode($keyword)."/".base64url_encode($si['_source']['url'])."/".$_pttarticleid?>//=htmlentities($si['_source']['domain'])?> -
//=++$i?>//="/exit/".urlencode($keyword)."/".base64url_encode($si['_source']['url'])."/".$_pttarticleid?>//=htmlentities($si['_source']['title'])?>
#48SimCSE有监督与无监督实验复现- GitHub - Yuuza
SimCSE 复现. 项目描述. SimCSE是一种简单但是很巧妙的NLP对比学习方法,创新性地引入Dropout的方式,对样本添加噪声,从而达到对正样本增强的目的。
//="/exit/".urlencode($keyword)."/".base64url_encode($si['_source']['url'])."/".$_pttarticleid?>//=htmlentities($si['_source']['domain'])?> -
//=++$i?>//="/exit/".urlencode($keyword)."/".base64url_encode($si['_source']['url'])."/".$_pttarticleid?>//=htmlentities($si['_source']['title'])?>
#49Full of details! To understand comparative learning and ...
SimCSE Medium dropout mask What does it mean ,dropout rate What is the effect of the size of ? SimCSE What is the specific implementation ...
//="/exit/".urlencode($keyword)."/".base64url_encode($si['_source']['url'])."/".$_pttarticleid?>//=htmlentities($si['_source']['domain'])?> -
//=++$i?>//="/exit/".urlencode($keyword)."/".base64url_encode($si['_source']['url'])."/".$_pttarticleid?>//=htmlentities($si['_source']['title'])?>
#50SimCSE:对比学习,只需要Dropout | 恒源云论坛
要说2021年上半年NLP最火的论文,想必非《SimCSE: Simple Contrastive Learning of Sentence Embeddings》莫属。SimCSE的全称是Simple Contrastive Sentence Embedding ...
//="/exit/".urlencode($keyword)."/".base64url_encode($si['_source']['url'])."/".$_pttarticleid?>//=htmlentities($si['_source']['domain'])?> -
//=++$i?>//="/exit/".urlencode($keyword)."/".base64url_encode($si['_source']['url'])."/".$_pttarticleid?>//=htmlentities($si['_source']['title'])?>
#51SimCSE:用于句子嵌入的对比学习 - 文章整合
SimCSE 来自论文:SimCSE: Simple Contrastive Learning of Sentence Embeddings,将对比学习思想引入了sentence embedding,并超过了同年很多无监督或 ...
//="/exit/".urlencode($keyword)."/".base64url_encode($si['_source']['url'])."/".$_pttarticleid?>//=htmlentities($si['_source']['domain'])?> -
//=++$i?>//="/exit/".urlencode($keyword)."/".base64url_encode($si['_source']['url'])."/".$_pttarticleid?>//=htmlentities($si['_source']['title'])?>
#52詳解萬方學術檢索:SimCSE、Sentence-BERT等模型如何落地?
我們通過PaddleNLP 提供的高質量中文預訓練Word Embedding 構造訓練數據標籤,結合SimCSE 以及飛槳深度優化過的文本匹配預訓練模型Sentence-BERT, ...
//="/exit/".urlencode($keyword)."/".base64url_encode($si['_source']['url'])."/".$_pttarticleid?>//=htmlentities($si['_source']['domain'])?> -
//=++$i?>//="/exit/".urlencode($keyword)."/".base64url_encode($si['_source']['url'])."/".$_pttarticleid?>//=htmlentities($si['_source']['title'])?>
#53SimCSE: Simple Contrastive Learning of Sentence ... - velog
Contribution. 간단한 contrastive sentence embedding framework인 SimCSE를 제안하였다. unsupervised approach : standard dropout을 noise로 사용 ...
//="/exit/".urlencode($keyword)."/".base64url_encode($si['_source']['url'])."/".$_pttarticleid?>//=htmlentities($si['_source']['domain'])?> -
//=++$i?>//="/exit/".urlencode($keyword)."/".base64url_encode($si['_source']['url'])."/".$_pttarticleid?>//=htmlentities($si['_source']['title'])?>
#54(论文阅读笔记) SimCSE: Simple Contrastive Learning of ...
论文地址:https://arxiv.org/pdf/2104.08821.pdf 论文源码:https://github.com/princeton-nlp/SimCSE 摘要本文提出了简单的对比学习框架SimCSE, ...
//="/exit/".urlencode($keyword)."/".base64url_encode($si['_source']['url'])."/".$_pttarticleid?>//=htmlentities($si['_source']['domain'])?> -
//=++$i?>//="/exit/".urlencode($keyword)."/".base64url_encode($si['_source']['url'])."/".$_pttarticleid?>//=htmlentities($si['_source']['title'])?>
#55SimCSE: Simple Contrastive Learning of ... - ReposHub
This repository contains the code and pre-trained models for our paper SimCSE: Simple Contrastive Learning of Sentence Embeddings.,SimCSE.
//="/exit/".urlencode($keyword)."/".base64url_encode($si['_source']['url'])."/".$_pttarticleid?>//=htmlentities($si['_source']['domain'])?> -
//=++$i?>//="/exit/".urlencode($keyword)."/".base64url_encode($si['_source']['url'])."/".$_pttarticleid?>//=htmlentities($si['_source']['title'])?>
#56分享一个SimCSE unsupervised部分的实现 - AI Studio - 百度
首页 PaddleNLP 帖子详情. 分享一个SimCSE unsupervised部分的实现. 收藏. 快速回复. PaddleNLP 其他NLP 284 1.
//="/exit/".urlencode($keyword)."/".base64url_encode($si['_source']['url'])."/".$_pttarticleid?>//=htmlentities($si['_source']['domain'])?> -
//=++$i?>//="/exit/".urlencode($keyword)."/".base64url_encode($si['_source']['url'])."/".$_pttarticleid?>//=htmlentities($si['_source']['title'])?>
#57princeton-nlp/SimCSE - Samaya Tech
SimCSE : Simple Contrastive Learning of Sentence Embeddings - princeton-nlp/SimCSE.
//="/exit/".urlencode($keyword)."/".base64url_encode($si['_source']['url'])."/".$_pttarticleid?>//=htmlentities($si['_source']['domain'])?> -
//=++$i?>//="/exit/".urlencode($keyword)."/".base64url_encode($si['_source']['url'])."/".$_pttarticleid?>//=htmlentities($si['_source']['title'])?>
#58广告行业中那些趣事系列35:NLP场景中的对比学习模型SimCSE
同时,苏剑林也在文献3中的中文数据集上进行了完整的实验,证明SimCSE模型的确优于其他语义相似度模型。所以调研SimCSE希望能作为SimBERT的升级版本用于线 ...
//="/exit/".urlencode($keyword)."/".base64url_encode($si['_source']['url'])."/".$_pttarticleid?>//=htmlentities($si['_source']['domain'])?> -
//=++$i?>//="/exit/".urlencode($keyword)."/".base64url_encode($si['_source']['url'])."/".$_pttarticleid?>//=htmlentities($si['_source']['title'])?>
#59Tag: SimCSE | Yam
简单的对比学习框架:SimCSE · 2021-07-10 •. Feeling. •. Contrastive-Learning · Embedding · NLP · SimCSE. Categories. Coding69; Feeling88; Thinking19 ...
//="/exit/".urlencode($keyword)."/".base64url_encode($si['_source']['url'])."/".$_pttarticleid?>//=htmlentities($si['_source']['domain'])?> -
//=++$i?>//="/exit/".urlencode($keyword)."/".base64url_encode($si['_source']['url'])."/".$_pttarticleid?>//=htmlentities($si['_source']['title'])?>
#60SimCSE: Simple Contrastive Learning of Sentence Embeddings
SimCSE : Simple Contrastive Learning of Sentence Embeddings. Click To Get Model/Code. This paper presents SimCSE, a simple contrastive ...
//="/exit/".urlencode($keyword)."/".base64url_encode($si['_source']['url'])."/".$_pttarticleid?>//=htmlentities($si['_source']['domain'])?> -
//=++$i?>//="/exit/".urlencode($keyword)."/".base64url_encode($si['_source']['url'])."/".$_pttarticleid?>//=htmlentities($si['_source']['title'])?>
#61SimCSE: Simple Contrastive Learning of Sentence Embeddings
Universal sentence embedding is much more robust than supervised semantic textual similarity as it is not bounded to the…
//="/exit/".urlencode($keyword)."/".base64url_encode($si['_source']['url'])."/".$_pttarticleid?>//=htmlentities($si['_source']['domain'])?> -
//=++$i?>//="/exit/".urlencode($keyword)."/".base64url_encode($si['_source']['url'])."/".$_pttarticleid?>//=htmlentities($si['_source']['title'])?>
#62丹琦女神新作:对比学习,简单到只需要Dropout两下 - 矩池云
SimCSE : Simple Contrastive Learning of Sentence Embeddings. https://arxiv.org/pdf/2104.08821.pdf. SimCSE开篇讨论的问题是:对比学习为何work?
//="/exit/".urlencode($keyword)."/".base64url_encode($si['_source']['url'])."/".$_pttarticleid?>//=htmlentities($si['_source']['domain'])?> -
//=++$i?>//="/exit/".urlencode($keyword)."/".base64url_encode($si['_source']['url'])."/".$_pttarticleid?>//=htmlentities($si['_source']['title'])?>
#63Sentence similarity kaggle - Red Zone Running
The idea behind the unsupervised SimCSE is to simply predicts the input sentence Introduction. Hence it makes it different from other machine learning ...
//="/exit/".urlencode($keyword)."/".base64url_encode($si['_source']['url'])."/".$_pttarticleid?>//=htmlentities($si['_source']['domain'])?> -
//=++$i?>//="/exit/".urlencode($keyword)."/".base64url_encode($si['_source']['url'])."/".$_pttarticleid?>//=htmlentities($si['_source']['title'])?>
#64Natural Language Processing and Chinese Computing
[23] present a framework SimCSE, introducing the idea of comparative learning into sentence embedding, which greatly advances the stateof-the-art sentence ...
//="/exit/".urlencode($keyword)."/".base64url_encode($si['_source']['url'])."/".$_pttarticleid?>//=htmlentities($si['_source']['domain'])?> -
//=++$i?>//="/exit/".urlencode($keyword)."/".base64url_encode($si['_source']['url'])."/".$_pttarticleid?>//=htmlentities($si['_source']['title'])?>
#65Intelligent Systems - 第 114 頁 - Google 圖書結果
SimCSE is based on Huggingface's transformers package14, and we take 5e−5 as the learning rate with the unsupervised learning approach.
//="/exit/".urlencode($keyword)."/".base64url_encode($si['_source']['url'])."/".$_pttarticleid?>//=htmlentities($si['_source']['domain'])?> -
//=++$i?>//="/exit/".urlencode($keyword)."/".base64url_encode($si['_source']['url'])."/".$_pttarticleid?>//=htmlentities($si['_source']['title'])?>
#66Sentence transformer similarity
Unsup-SimCSE takes dropout as a minimal data augmentation method, and passes the same input sentence to a pre-trained Transformer encoder (with dropout …
//="/exit/".urlencode($keyword)."/".base64url_encode($si['_source']['url'])."/".$_pttarticleid?>//=htmlentities($si['_source']['domain'])?> -
//=++$i?>//="/exit/".urlencode($keyword)."/".base64url_encode($si['_source']['url'])."/".$_pttarticleid?>//=htmlentities($si['_source']['title'])?>
#67对比学习应用最新进展 - 新闻红
SimCSE. 链接:https://arxiv.org/abs/2104.08821背景:直接用BERT句向量做无监督语义相似度计算效果会很差,任意两个句子的BERT句向量的相似度都相当 ...
//="/exit/".urlencode($keyword)."/".base64url_encode($si['_source']['url'])."/".$_pttarticleid?>//=htmlentities($si['_source']['domain'])?> -
//=++$i?>//="/exit/".urlencode($keyword)."/".base64url_encode($si['_source']['url'])."/".$_pttarticleid?>//=htmlentities($si['_source']['title'])?>
#68Climatological Data, Washington - 第 96 頁 - Google 圖書結果
... St. Heleno Toppenisho Northy Heads O Sunnyside ° Ft . Simcse Cranger o Cas : ecck Huntsville Cathlamet Kona iLongplay WALLA WALLA As : o : a iTouche ...
//="/exit/".urlencode($keyword)."/".base64url_encode($si['_source']['url'])."/".$_pttarticleid?>//=htmlentities($si['_source']['domain'])?> -
//=++$i?>//="/exit/".urlencode($keyword)."/".base64url_encode($si['_source']['url'])."/".$_pttarticleid?>//=htmlentities($si['_source']['title'])?>
#69Future Data and Security Engineering. Big Data, Security and ...
Gao, T., Yao, X., Chen, D.: Simcse: simple contrastive learning of sentence embeddings (2021). arXiv preprint arXiv:2104.08821 5.
//="/exit/".urlencode($keyword)."/".base64url_encode($si['_source']['url'])."/".$_pttarticleid?>//=htmlentities($si['_source']['domain'])?> -
//=++$i?>//="/exit/".urlencode($keyword)."/".base64url_encode($si['_source']['url'])."/".$_pttarticleid?>//=htmlentities($si['_source']['title'])?>
#70What is umap clustering
The idea behind the unsupervised SimCSE is to simply predicts the input sentence Unsupervised Learning – Interdependence Methods (ULIM) The process of ...
//="/exit/".urlencode($keyword)."/".base64url_encode($si['_source']['url'])."/".$_pttarticleid?>//=htmlentities($si['_source']['domain'])?> -
//=++$i?>//="/exit/".urlencode($keyword)."/".base64url_encode($si['_source']['url'])."/".$_pttarticleid?>//=htmlentities($si['_source']['title'])?>
#71APE APE エイプカーディガンセーターBAPE セーター ...
有意思的是,最近dropout有点“老树发新芽”的感觉,出现了一些有趣的新玩法,比如最近引起过热议的simcse 和r-drop ,尤其是在文章《又是dropout两次!
//="/exit/".urlencode($keyword)."/".base64url_encode($si['_source']['url'])."/".$_pttarticleid?>//=htmlentities($si['_source']['domain'])?> -
//=++$i?>//="/exit/".urlencode($keyword)."/".base64url_encode($si['_source']['url'])."/".$_pttarticleid?>//=htmlentities($si['_source']['title'])?>
#72Text classification with simple transformers
The idea behind the unsupervised SimCSE is to simply predicts the input sentence Text classification is the task of assigning a sentence or document an ...
//="/exit/".urlencode($keyword)."/".base64url_encode($si['_source']['url'])."/".$_pttarticleid?>//=htmlentities($si['_source']['domain'])?> -
//=++$i?>//="/exit/".urlencode($keyword)."/".base64url_encode($si['_source']['url'])."/".$_pttarticleid?>//=htmlentities($si['_source']['title'])?>
#73Objektorientierte Informationssysteme II: Neue Trends und ...
SIMCSE IAODOC OSPEN NED Integrierte Infor-tionsverarbeitung Aber objektorientierte DatenbankMethoden AOWS FIKS AOSSAS WSYK9N WooEDMs 2 Entwicklung ...
//="/exit/".urlencode($keyword)."/".base64url_encode($si['_source']['url'])."/".$_pttarticleid?>//=htmlentities($si['_source']['domain'])?> -
//=++$i?>//="/exit/".urlencode($keyword)."/".base64url_encode($si['_source']['url'])."/".$_pttarticleid?>//=htmlentities($si['_source']['title'])?>
#74年末年始に振り返る 2021年の人工知能10大トレンドと必読論文
... 2020)、エンコーダーに2回入力するだけのシンプルかつ効果的な文埋め込み手法 SimCSE (Gao et al., 2021) など、対照学習に基づく表現学習手法が ...
//="/exit/".urlencode($keyword)."/".base64url_encode($si['_source']['url'])."/".$_pttarticleid?>//=htmlentities($si['_source']['domain'])?>
simcse 在 コバにゃんチャンネル Youtube 的精選貼文
simcse 在 大象中醫 Youtube 的最佳解答
simcse 在 大象中醫 Youtube 的最讚貼文