雖然這篇Chi-square test鄉民發文沒有被收入到精華區:在Chi-square test這個話題中,我們另外找到其它相關的精選爆讚文章
在 chi-square產品中有5篇Facebook貼文,粉絲數超過4萬的網紅มติพล ตั้งมติธรรม,也在其Facebook貼文中提到, คณิตศาสตร์ของ "หวย" "หวย" น่าจะเรียกได้ว่าเป็น "กิจกรรมประจำชาติ" ของไทยอย่างหนึ่งที่เรามาร่วมกันโอดครวญกันเป็นประจำกับการถูกหวยแ-ก หวยไม่เพียงแต่เป็...
同時也有1部Youtube影片,追蹤數超過8萬的網紅賭Sir【杜氏數學】HermanToMath,也在其Youtube影片中提到,?杜氏數學 官方網站: http://www.HermanToMath.com ?賭Sir 幫你急救 DSE 數學: https://hermantomath.skx.io/courses/6328693527937024 ---------- 賭Sir語錄?學習知識 不宜揀飲擇食 賭Sir語錄?...
-
chi-square 在 賭Sir【杜氏數學】HermanToMath Youtube 的最佳貼文
2020-04-11 18:00:09?杜氏數學 官方網站: http://www.HermanToMath.com
?賭Sir 幫你急救 DSE 數學: https://hermantomath.skx.io/courses/6328693527937024
----------
賭Sir語錄?學習知識 不宜揀飲擇食
賭Sir語錄?包拗頸法則 e.g. 唔恐慌!唔飲喜茶!唔睇賀歲片!
----------
⚡快速跳播目錄:
02:37 ?Hypothesis Testing原理?
11:42 ?戀愛統計學應用?
----------
?️賭Sir是杜氏數學Herman To Math的始創人
?全港唯一「完爆」【DSE Core+M1+M2】、【IAL 12科Maths】、【AL Pure+Applied】、【CE Maths+A.Maths】的數學導師
?全港第一最多訂閱粉絲的數學教育YouTuber
?YouTube觀看次數超越700萬、訂閱粉絲超過50000人
----------
? Mensa Club member
? 中文大學 數學碩士畢業(Big Data stream)
? 中文大學 風險管理學士畢業
----------
?流行文學作家,出版著作:
《賭波男人嫁得過》?(2018)
《碌葛男人嫁得過》?(2018)
《5**數學男人嫁得過》?(2019)
《YouTuber新手到網紅》?(2019)
《賭馬男人嫁得過》?(2020)
----------
?YouTuber Go網絡課程 全港最平+獨家 報讀優惠:
http://hermantomath.blogspot.com/2019/03/youtuber-go-link.html
?無限操數王(epractice) 全港最平+獨家 優惠(可同時使用):
?50%OFF 半價優惠碼:MC83-AI93-NFW0-331E
?25%OFF 額外邀請碼:J7N9-RDRP-NFAH-OH13
官方網頁:https://www.dsemth.com/
?教你「教外國人學廣東話」賺錢課程:https://forms.gle/BGEqVnSLcDr941HUA
?成為杜氏數學電視台的股東:https://www.youtube.com/channel/UCH2t6jvINIOeYzBQR0iI5kw/join
?跟我的靚女老師Abby學英文 + 送你USD$10優惠:https://italki.com/teacher/5422298?ref=6BDcd0
?跟我的靚仔老師Connor學英文 + 送你USD$10優惠:https://www.italki.com/teacher/5984357?ref=6BDcd0
?Tidebit全港最穩妥的比特幣(Bitcoin)交易所:http://bit.ly/2LIWA4J
?Uber免費送你$25優惠:https://www.uber.com/invite/2utyzr
?Trip.com送你酒店8%折扣優惠: http://t.trip.com/FTTE3b0
----------
賭Sir考試戰績:
新制中六DSE: (2016 M2 + 2017 M1)
?數學必修 (Mathematics) 一take過 奪5**
?數學延伸M1 (Calculus and Statistics) 一take過 奪5**
?數學延伸M2 (Algebra and Calculus) 一take過 奪5**
國際高考International Advanced Level: (2017 + 2018)
?Core Math 1 2 一take過 奪A
?Core Math 3 4 一take過 奪A
?Further Pure Math 1 一take過 奪A
?Further Pure Math 2 一take過 奪A
?Further Pure Math 3 一take過 奪A
?Mechanics 1 一take過 奪A
?Mechanics 2 一take過 奪A
?Mechanics 3 一take過 奪A
?Statistics 1 一take過 奪A
?Statistics 2 一take過 奪A
?Statistics 3 一take過 奪A
?Decision Math 1 一take過 奪A
舊制中七高考: (2011)
?純粹數學 (Pure Mathematics) 一take過 奪A
?應用數學 (Applied Mathematics) 一take過 奪A
舊制中五會考: (2009)
?數學 (Mathematics) 一take過 奪A
?附加數學 (Additional Mathematics) 一take過 奪A
#sorry廢up耐咗 #大學生必學 #室外補習都有錄影
chi-square 在 มติพล ตั้งมติธรรม Facebook 的精選貼文
คณิตศาสตร์ของ "หวย"
"หวย" น่าจะเรียกได้ว่าเป็น "กิจกรรมประจำชาติ" ของไทยอย่างหนึ่งที่เรามาร่วมกันโอดครวญกันเป็นประจำกับการถูกหวยแ-ก หวยไม่เพียงแต่เป็น national pastime ประจำชาติเพียงเท่านั้น แต่ยังมีอิทธิพลเป็นอย่างมากต่อวัฒนธรรม ศาสนา และความเชื่อของเรา และเนื่องจากนี่เป็นเพจวิทยาศาสตร์จึงไม่สามารถปฏิเสธได้ว่าหวยนั้นมีส่วนที่เหนี่ยวรั้งความพัฒนาสู่ scientific literacy ในประเทศเราไม่มากก็น้อย ดั่งที่เราทุกคนน่าจะคุ้นเคยกันดีกับลูกหมูพิการ ต้นกล้วยงอกกลางต้น รวมไปถึงท่อน้ำทิ้งจากส้วมที่แตกและผุดขึ้นมาบนดิน ที่แทบทุกเหตุการณ์ ทุกอุบัติเหตุ ทุกข่าว ทุกปรากฏการณ์ที่เกิดขึ้นในบ้านเมืองนี้จะถูกตีความไปเป็น "ตัวเลข" เสียทั้งหมด
ในวันนี้เราจะมาลองดู "หวย" จากในแง่มุมของคณิตศาสตร์กันดูบ้าง โดยเฉพาะในเรื่องของรางวัล "เลขท้ายสองตัว"
รางวัลเลขท้ายสองตัวนั้นมีความเป็นไปได้ทั้งหมดอยู่ด้วยกัน 100 แบบ โอกาสที่จะถูก จึงมีเพียงแค่หนึ่งในร้อย (ในขณะที่โอกาสที่จะถูกแดกกลับมีถึง 99%) ทั้งนี้ทั้งนั้น นี่มาจากสมมติฐานว่าหวยทุกเลขนั้นมีโอกาสออกเท่ากันหมด ว่าแต่ว่าสมมติฐานนี้เป็นจริงหรือไม่?
จากกราฟบนในภาพ แสดงถึงการกระจายตัวของหวยเลขท้ายสองตัวตลอด 20 ปีที่ผ่านมา[1] ทั้ง "ตัวบน" และ "ตัวล่าง" รวมกันทั้งสิ้น 477 งวด จากการดูคร่าวๆ เราจะพบว่ารางวัลนั้นมีการกระจายตัวที่ค่อนข้างสม่ำเสมอ ไม่มีตัวเลขใดที่เด่นกว่าอย่างเห็นได้ชัดอาจจะมีบางตัวเลขที่ออกเยอะกว่าเลขอื่นบ้างเล็กน้อย แต่ก็ดูเหมือนจะไม่ได้มากจนเกินไป
ในทางสถิตินั้น หากเราต้องการจะทราบว่าข้อมูลชุดหนึ่งมีการกระจายตัวที่สอดคล้องกับการกระจายตัวอย่างสม่ำเสมอ (uniform distribution) หรือไม่ เราสามารถทำได้โดยการคำนวณค่า Pearson's chi-squared test ซึ่งหากเรานำข้อมูลรางวัลเลขท้ายสองตัวตลอด 20 ปีนี้มาคำนวณดู เราจะพบว่า ข้อมูลที่ได้นั้น มีค่า chi-squared อยู่ต่ำกว่า Upper-tail critical values of chi-square distribution ทั้งที่ 95% และ 99% confidence interval สำหรับทั้งตัวบนและตัวล่าง นี่หมายความว่า เราไม่สามารถ reject null hypothesis ได้ และไม่มีหลักฐานเพียงพอที่จะยืนยันว่าข้อมูลชุดนี้มีการกระจายตัวที่ต่างออกไปจาก uniform distribution ด้วยความมั่นใจกว่า 99%
ทั้งนี้ทั้งนั้น นี่ไม่ได้เป็นการยืนยันหรือปฏิเสธว่าหวยมีการล๊อคหรือไม่ เราบอกได้เพียงแค่ว่า เลขที่ออกนั้นมีการกระจายตัวที่ค่อนข้าง uniform และมีโอกาสลงทุกเลขอย่างใกล้เคียงกัน อยู่ที่ว่าเราจะเลือกเลขที่ถูกหรือเปล่า
วิธีหนึ่งที่เราอาจจะเลือกเลขที่จะแทง "หวย" ก็คือการ "สุ่ม" ด้วยตัวเราเองโดยการนึกเลขมั่วๆ ขึ้นมาหนึ่งตัวเลข อย่างไรก็ตาม วิธีนี้นั้นมีปัญหาเป็นอย่างมาก เนื่องจากมีการศึกษามายืนยันเป็นอย่างมาก ว่าสมองของมนุษย์นั้นทำการสุ่มตัวเลขได้ค่อนข้างแย่ และตัวเลขที่เรา "สุ่ม" ขึ้นมาจากหัวนั้น ไม่สามารถเป็นเลขที่เกิดจากการ "สุ่ม" ได้อย่างแท้จริง
กราฟล่างซ้ายของภาพ เป็นกราฟที่ได้มาจาก reddit ที่เก็บข้อมูลที่ผู้เข้าร่วมมา "สุ่ม" ตัวเลขลงบนโซเชียลมีเดียกว่า 6750 ครั้ง จากกราฟเราจะพบว่ากราฟนี้ไม่ได้มีการกระจายตัวที่สม่ำเสมอทุกตัวเลขเท่ากัน ตัวเลขที่ได้รับการ "สุ่ม" มากที่สุดนั้นได้แก่เลข "69" (ด้วยเหตุผลบางประการ) "77" และ "7" ตามลำดับ ซึ่งมากกว่าตัวเลขอื่นอย่างเห็นได้ชัด นอกไปจากนี้ ตัวเลขระหว่าง 1-10 ถูกเลือกมากกว่าตัวเลขอื่นอย่างมีนัยะสำคัญ ซึ่งนี่สอดคล้องกับการศึกษาทางจิตวิทยา และอีกการเก็บข้อมูลหนึ่งที่พบว่าเลข 7 จะถูกเลือกบ่อยที่สุดถึงกว่า 28% เมื่อเราให้คน "สุ่ม" เลขระหว่าง 1-10 ขึ้นมากว่า 8500 ครั้ง[5] เนื่องจากสมองของเรานั้นมีความรู้สึกว่าเลข "7" นั้นควรจะเป็นเลขที่ "สุ่ม" ที่สุด เราจึงเลือกกันแต่เลข 7 จนกลายเป็นเลขที่ไม่สุ่มอีกต่อไป
ซึ่งหากเรานำ Pearson chi-square test มาทดสอบกับข้อมูลชุดนี้ เราจะพบว่าค่า chi-square ที่ได้นั้นเกิน Upper-tail critical values of chi-square distribution ที่ระดับความเชื่อมั่น 90% ไปอย่างไม่เห็นฝุ่น ซึ่งเป็นการแสดงให้เห็นว่าเลขท้ายสองตัวที่ได้จากสมองมนุษย์นั้น ไม่ได้มีการกระจายตัวอย่างสม่ำเสมอเหมือนอย่างที่หวยออกมาจริงๆ
แล้วการที่สมองมนุษย์ไม่สามารถ random เลขออกมาได้อย่างสม่ำเสมอนั้นมันสำคัญตรงไหน? เมื่อสมองมนุษย์ไม่สามารถ generate distribution แบบเดียวกันกับหวยได้ ก็ย่อมหมายความว่าต่อให้คนที่เชื่อว่ามี "สัญชาติญาณ" ดีที่สุดในการ "เดา" หวย ก็เป็นไปไม่ได้ที่จะถูกหวยอย่างต่อเนื่อง เพราะว่าเราไม่มีทางที่จะเดาหวยได้ถูกอย่างต่อเนื่องอย่างสม่ำเสมอ ในเมื่อหวยนั้นออกทุกเลขอย่างสม่ำเสมอ แต่สมองของเรานั้นไม่สามารถสม่ำเสมอได้
ซึ่งนี่นำไปสู่กลวิธีทุดท้ายที่เรามักจะนำมาเป็น "แรงบรรดาลใจ" ในการแทงหวย นั่นก็คือ การมองหาตัวเลขรอบๆ ข้างที่ไม่เกี่ยวกับตัวเราเอง ไม่ว่าจะเป็นจำนวนผู้เสียชีวิต ลำดับประธานาธิปดี เวลาท้องถิ่นขณะที่นายกทุ่มโพเดี้ยม ฯลฯ
อย่างไรก็ตาม วิธีนี้ก็มีปัญหาอีกเช่นกัน.... โดยเจ้าปัญหาที่ว่านี้ รู้จักกันในนามของ Benford's Law[6]
Benford's Law นั้นถูกค้นพบโดยบังเอิญโดย Simon Newcomb ในปี 1881 และอีกครั้งโดย Frank Benford ในปี 1938 โดยในยุคก่อนที่จะมีเครื่องคิดเลขของพวกเขานั้น การหาค่า Logarithm ทำได้โดยการเปิดสมุดเล่มหนาๆ เพื่อหาค่าจากในตาราง โดยนายทั้งสองคนนี้พบว่าหน้าแรกๆ ของสมุด logarithm table ของพวกเขานั้นเปื่อยเร็วกว่าหน้าหลังๆ เป็นอย่างมาก นาย Benford จึงตั้งสมมติฐานว่า ตัวเลขหลักหน้าของค่าที่พบในธรรมชาตินั้นอาจจะมีการกระจายตัวที่ไม่สม่ำเสมอกัน โดยที่ตัวเลขน้อยๆ ควรจะมีการพบได้บ่อยกว่า ตามกราฟแท่งสีน้ำเงินที่ด้านล่างขวาของภาพ และเขาได้ทดสอบกับตัวเลขในธรรมชาติที่ไม่ควรจะมีความเกี่ยวข้องกัน ตั้งแต่ พื้นที่ผิวของแม่น้ำ 335 สาย, ประชากรของเมืองในสหรัฐ 3259 เมือง, ค่าคงที่สากลทางฟิสิกส์กว่า 104 ค่า มวลโมเลกุลกว่า 1800 โมเลกุล, ตัวเลขที่ได้จากคู่มือคณิตศาสตร์กว่า 5000 ตัวเลข, ตัวเลขที่พบในนิตยสาร Reader's Digest กว่า 308 เลข, บ้านเลขที่ของคนกว่า 342 คนที่พบใน American Men of Science และอัตราการเสียชีวิตกว่า 418 อัตรา รวมทั้งหมดนาย Benford ได้นำตัวเลขที่ได้มาแบบสุ่มกว่า 20,229 เลข และพบว่าเลขเหล่านั้นมีตัวเลขหลักหน้ากระจายตัวตาม Benford's Law
กราฟด้านล่างขวา แสดงถึง Benford's Law เทียบกับการกระจายตัวของตัวเลขหลักหน้าของค่าคงที่ทางฟิสิกส์ ซึ่งจะเห็นได้ว่ามีการกระจายตัวสอดคล้องกับ Benford's Law เป็นอย่างมาก นอกไปจากนี้ Benford's Law ยังใช้ได้อยู่ ไม่ว่าเราจะแปลงค่าต่างๆ ที่พบไปเป็นเลขฐานใดๆ หรือหน่วยใดๆ ก็ตาม ตัวอย่างเช่น Benford's Law ทำนายเอาไว้ว่า ตัวเลขกว่า 30.1% จะขึ้นต้นด้วยเลข 1 ซึ่งหากเรานำความสูงของตึกที่สูงที่สุดในโลก 58 ตึก เราจะพบว่าตึกกว่า 41% นั้นมีความสูงในหน่วยเมตรขึ้นต้นด้วยเลข 1 และแม้ว่าเราจะเปลี่ยนหน่วยเป็นหน่วยฟุต เราก็ยังจะพบว่าตึกกว่า 28% นั้นมีความสูงในหน่วยฟุตขึ้นต้นด้วยเลข 1 ซึ่งมากกว่าเลขอื่นใดๆ
แล้วเพราะเหตุใดเราจึงไม่พบเลขในธรรมชาติในจำนวนที่เท่าๆ กันทุกเลข? คำอธิบายที่ง่ายที่สุดก็คงจะเป็นเพราะว่า สิ่งต่างๆ หลายสิ่งในธรรมชาตินั้นมีความสัมพันธ์เชิง logarithm ซึ่งหากเราแปลงเลขในฐานสิบให้อยู่ในสเกลของ logarithm เราจะได้เส้นจำนวนดังภาพล่างขวาในภาพ จากเส้นจำนวนนี้ เราจะพบว่าหากเราจิ้มตำแหน่งโดยสุ่มบนเส้นจำนวนนี้ โอกาสส่วนมากที่สุดนั้นจะตกอยู่ในเลขที่มีหลักนำหน้าเป็น 1 ตามด้วย 2,3,4 ลดหลั่นลงไป ตาม Benford's Law
Benford's Law นี้มีประโยชน์เป็นอย่างยิ่ง ในการตรวจจับการโกง เนื่องจากสมองของมนุษย์นั้นมีความคาดหวังที่จะให้ทุกตัวเลขตกลงเท่าๆ กัน ตัวเลขที่ได้จากการเมคข้อมูลของคนจึงไม่เป็นไปตาม Benford's Law ซึ่งสามารถใช้เป็นหลักฐานบ่งบอกว่ามีอะไรบางอย่างตุกติกเกิดขึ้นในข้อมูล
ตัวอย่างที่ชัดเจนที่สุดตัวอย่างหนึ่งก็คือ ข้อมูลของจำนวนผู้ติดเชื้อ COVID-19 เนื่องจากการติดเชื้อนั้นมีการแพร่กระจายตัวแบบ exponential ตัวเลขจำนวนผู้ติดเชื้อนั้นจึงควรจะเป็นไปตาม Benford's Law ทีมนักวิจัยจึงได้มีการนำตัวเลขจำนวนผู้ติดเชื้อที่รายงานในแต่ละประเทศมาเปรียบเทียบกับ Benford's Law[7] และพบว่าข้อมูลจากประเทศรัสเซียและอิหร่านนั้นไม่เป็นไปตาม Benford's Law ในขณะที่จำนวนผู้ติดเชื้อจาก สหรัฐ บราซิล อินเดีย เปรู อาฟริกาใต้ โคลอมเบีย เม็กซิโก สเปน อาร์เจนตินา ชิลี อังกฤษ ฝรั่งเศส ซาอุ จีน ฟิลิปปินส์ เบลเยี่ยม ปากีสถาน และอิตาลี เป็นไปตาม Benford's Law ไม่ผิดเพี้ยน
ทั้งหมดนี้ก็วกกลับมาที่ปัญหาหลักของการนำค่าที่พบในธรรมชาติมาทำนายหวย: ค่าที่พบในธรรมชาตินั้นไม่ได้มีการกระจายตัวอย่างสม่ำเสมอ แต่หวยนั้นกระจายตัวอย่างสม่ำเสมอ (ซึ่งยังไม่นับกรณีเช่นเอาวันที่ซึ่งไม่มีทางเกิน 31 มาแทง) ตัวเลขที่เราพบในธรรมชาตินั้นจึงเปรียบได้กับลูกเต๋าที่ถูกถ่วงน้ำหนักเอาไว้ให้ได้ค่าต่ำๆ คำถามก็คือ ลูกเต๋าที่ถ่วงน้ำหนักเอาไว้นั้น จะเป็นตัวแทนที่จะทำนายผลของลูกเต๋าที่มาตรฐานได้แม่นจำจริงหรือ?
ทั้งนี้ทั้งนั้น การเล่นหวยหรือไม่เป็นเรื่องของแต่ละบุคคล และถึงแม้ว่าส่วนตัวในฐานะนักวิทยาศาสตร์นั้นจะไม่เห็นด้วยกับเรื่องงมงาย แต่การลงทุนหวยเพียงไม่กี่ร้อย และกับเสี้ยวเวลาเล็กๆ ที่จะได้ลุ้นถึงอนาคตที่ดีขึ้น บางทีก็อาจจะเป็นการลงทุนที่คุ้มค่าสำหรับคนหลายๆ คนก็ได้
หมายเหตุ: บทความนี้เราไม่ได้พูดถึง "โต๊ด" และ Benford's Law นั้นมีผลกับเลขหลักหน้าๆ มากกว่าหลักท้ายๆ แต่คำเตือนนี้ไม่ใช่การใบ้หวย...
อ้างอิง/อ่านเพิ่มเติม:
[1] https://horoscope.thaiorc.com/lottery/stats/lotto-years20.php
[2] https://en.wikipedia.org/wiki/Pearson%27s_chi-squared_test
[3] https://www.ncbi.nlm.nih.gov/pmc/articles/PMC3632045/
[4] https://www.reddit.com/r/dataisbeautiful/comments/88m2mj/pick_a_number_from_1100_results_from_6750/
[5] https://www.reddit.com/r/dataisbeautiful/comments/acow6y/asking_over_8500_students_to_pick_a_random_number/
[6] https://en.wikipedia.org/wiki/Benford%27s_law
[7] https://www.researchgate.net/publication/344164702_Is_COVID-19_data_reliable_A_statistical_analysis_with_Benford's_Law
chi-square 在 新思惟國際 Facebook 的最佳貼文
課程內容不只教你如何寫,更好的是還教你統計。
一直以來,我對統計都有畏懼,Excel 中的統計公式太多,用哪一個都要去找 G 神解釋半天。
之前有過不好的經驗,雖有 data 數字,但是要四處找人幫忙,看人臉色,內心總想,是要去念碩士,念公衛研究所嗎?
若是能自立自強自己操作,這堂課真是太切中所需。
▒ 統計生手也能輕鬆面對
最期待也最困難的統計,真的短短幾十分鐘,讓我理解、讓我會實作。一直以來,使用 Excel 中的公式,總是陷入五里霧之中。
一銘醫師提出「我也記不住這麼多,遇到再查表」的方式,讓我清楚理解、放鬆不少;在說明連續變項,類別變項、independent t、pair t、chi-square,以寶可夢舉例更是讓人理解且難以忘記,瞬間變簡單了。
藉由實作課程,一步一步完成漂亮的圖表,令我心滿意足。
#會寫又肯教的老師相當稀缺
內科陳一銘醫師、復健科吳爵宏醫師、放射科蔡依橙醫師,與您一樣的世代,超過 200 篇 SCI 發表經驗,給您最實用的建議。
#針對新手規劃的研究入門課程
不限醫師背景,不限研究資歷,沒有擋修問題,實作統計讓完全無經驗者也能上手,並在「您自己的電腦」實際完成,製成可投稿數據圖。
#限量開班
檔期安排不易,三位講師一起開班授課,越發難得,很多內容是外頭聽不到的,錯過就要等年中。
新年新希望,學術起步就在今年!
開班課程 ➠3/24(日)醫學論文與寫作工作坊
立即報名 ➠ https://mepa2014.innovarad.tw/event/
chi-square 在 幽樹的療癒客棧 Facebook 的最佳貼文
<好文轉貼>
中午吃飽飯後,來點有趣的吧!
如果你自認為是個心理人,歡迎看看以下47點裡中了幾招XD
如果你對心理學有些興趣,
也歡迎來檢視一下,文中運用了哪些心理學概念呢XD
要寫一篇如何分辨心理人嗎?
1. 看到電視在報導「明明很多人看見或經過,卻沒有出手相救」的新聞時,並不會對人性感到絕望。
2. 對於給越多錢,員工會越有士氣或動機的想法感到嗤之以鼻。
3. 如果有人引述佛洛伊德來說明人類的行為,他們會笑著搖搖頭。
4. 走吊橋的時候會慎選跟他一起走的對象。
5. 不會跟你辯駁內涵比外貌重要,因為人本來就是以貌取人的。
6. 誇獎你的臉長得很平均,雖然你會聽不出來這是褒獎。
7. 當你覺得沒有人陪的時候,他會叫你多洗一點熱水澡。
8. 他如果想跟你借100元時,他會先跟你借60元。
9. 他想跟陌生人要電話之前,可能會先告白。
10. 覺得所有的人的記憶都是靠不住的。
11. 能正確分辨精神分裂跟多重人格。
12. 聽到「你知道我現在在想什麼嗎?」會很生氣。
13. 知道常玩暴力電玩不一定會造成暴力人格。
14. 聽到別人在聊奇怪的心理測驗的時候,心裡會冷笑三聲。
15. 即使新聞大肆報導飛機墜毀的新聞,還是會放心搭飛機。
16. 知道一群蟑螂跑得比一隻蟑螂還要快。
17. 看到媒體把殺人兇手跟「宅男、精神疾病、反社會人格」等詞語扯上邊會感到無奈或無力。
18. 聽到你說要用一輩子的時間才能忘掉某段傷心難過時,他們會立刻吐槽你說:「你太抬舉自己了!」。
19. 深覺上帝不是用.05創造這個世界的。
20. 跟他講心事的時候,他會微微點著頭回你:「嗯、嗯、嗯」或停頓一下說:「所以你的意思是......這樣嗎?」或重複剛才你講的話裡面的其中一個部分。
21. 遇到小孩會喜歡摸他的腳,觀察他的腳的反應來確認他年紀有多大。
22. 跟一般人不一樣,他們會勸你:「心動的,不一定是真愛」。
23. 看兩個不一樣長的線段,會直覺地說它們是一樣長的。
24. 對於一件明明極度不合理卻有人深信不疑的情況感到習以為常。
25. 聽到別人說到潛意識的時後,會主動確認講的是「潛意識」還是「前意識」;更誇張一點的話,還會問你是冷的還是熱的。
26. 會用很篤定的眼神告訴你R在單字的第三個字母的單字,比以R為開頭的單字要來的多。
27. 罵人的方式很奇怪,比如他們可能會說某某人前額葉受損。
28. 看電影或生活中,如果有出現窗簾或布幕,會不自覺地觀察它有沒有偷偷改變顏色。
29. 能夠指出除了佛洛伊德和榮格以外的心理學家。
30. 會把X²,念成 Chi-square。
31. 聽到有人說心理學不是科學,反應會很激動。
32. 會告訴你地平線上的月亮,跟天頂上的月亮是一樣大的;如果遇到行動派的話,他會直接拿尺量給你看。
33. 吃早午餐到一半,會把一杯長得比較高的水杯裡的水,倒進一杯比較胖的水杯裡,然後問小孩子哪一個杯子裡面的水比較多。
34. 老婆會問老公說:「如果我病危的話,你會不會去偷醫生的密藥來救我?」。
35. 可以確正指出段這文字有點奇怪的人。
36. 所講的因為和所以常常是同一件事,比如他們會說:「因為我要影印,所以請先讓我影印」。
37. 跟別人借錢的時候,數目的尾數不會是零或五的整數,而是零散的數值。
38. 跟心儀的對象出去,會堅持自己身上穿的服飾至少有一樣是紅色的。
39. 中毒比較深者,能夠一邊從隨便一個數字開始以遞減三的方式往下倒數,一邊將手頭的另一件事情做好。
40. 背課文或數字的時候,會先將要背的材料切割成七個為一組的單位,然後才會開始背。
41. 聽演講或論證的時候,不敢隨便點頭或搖頭。
42. 知道誰是林清山跟張春興。
43. 會把鬼壓床講成:「腦子是醒了,但身體還在睡」。
44. 要叫室友起床的時候,會先觀察室友的眼睛有沒有在快速移動來決定叫醒他的方式。
45. 覺得什麼事都可能忘記,就是忘不掉白色的熊。
46. 他說你是A型人格時,並不是在猜你的血型。
47. 說話時,會用「是什麼原因」取代「為什麼」。
48. 去電影院看喜劇怕不好笑,會嘴咬著一隻筆入場觀影。
........