[爆卦]111分科測驗數學題目是什麼?優點缺點精華區懶人包

為什麼這篇111分科測驗數學題目鄉民發文收入到精華區:因為在111分科測驗數學題目這個討論話題中,有許多相關的文章在討論,這篇最有參考價值!作者MathWang (數學王)看板SENIORHIGH標題111分科測驗數學題目時間Mon Jul...

111分科測驗數學題目 在 大考超詳解 KOL (C.C. Workshop) Instagram 的最佳解答

2021-09-10 21:54:15

🔎 超詳解 🔎 主題:分科測驗學得好,學測範圍沒煩惱 🔎 108課綱學測考試範圍 國文:高一、高二、高三上 英文:高一、高二、高三上 數學A:高一、高二必修數A 數學B:高一、高二必修數B 社會:高一二必修歷史、地理、公民與社會 自然:高一必修物理、化學、生物、地球科學 (皆含探索與實作) ...


14
用切片法用黎曼和表示體積並且用定積分算出答案

大家有在高中課程學過這個嗎?

https://www.ceec.edu.tw

--
※ 發信站: 批踢踢實業坊(ptt.cc), 來自: 42.77.68.141 (臺灣)
※ 文章網址: https://www.ptt.cc/bbs/SENIORHIGH/M.1657526072.A.933.html
sunlar: 問就是有07/11 16:12
yan9: 有阿07/11 16:19
spen2005: 有07/11 16:23
AtDe: 有吧07/11 16:25
kougousei: 黎曼和95課綱就有囉07/11 16:28
Aequanimitas: 積分都不會跟人家考什麼分科07/11 16:35
哇,你好嗆喔!14題的題目你看得懂嗎?
MathWang: 喔,我之前看到的大考題都是旋轉體的體積考法耶07/11 16:46
※ 編輯: MathWang (42.77.68.141 臺灣), 07/11/2022 16:59:38
kougousei: 高中定積分就是從黎曼和出發去定義的 我覺得這題出得07/11 16:58
kougousei: 很好啊07/11 16:58
llww: 求立體體積的式子:積分(a,b)A(x)dx,就是切片法,只是高中07/11 17:02
llww: 數學課本(龍騰)並沒有明確寫出,這叫做"切片法"....07/11 17:03

謝謝兩位回應,
我之前看的題目都是切片法求旋轉體的體積,
pix^2dy或piy^2dx
這一題不是旋轉體。
所以來請教各位,在高三有沒有學過
“使用切片法求非旋轉體體積”
※ 編輯: MathWang (42.77.68.141 臺灣), 07/11/2022 17:11:22
llww: https://reurl.cc/M0aREL 借用某教授網頁,第1頁開頭就是 07/11 17:14
llww: 龍騰數學課本就是這樣寫的,只是沒有說這叫做 "切片法" 07/11 17:15

謝謝,切片法是108課綱的文字
我也沒有說不能考
只是想請問高三學生
有沒有學過這樣的題目…

qazxsw123: 建議你去抗議大考不公 07/11 17:19
我不知道你在氣什麼耶
理性討論,很難嗎?
※ 編輯: MathWang (42.77.68.141 臺灣), 07/11/2022 17:24:25
messi5566: 高中有畢業都不至於這樣 07/11 17:22
你連說話都不會說,高中沒畢業嗎?
※ 編輯: MathWang (42.77.68.141 臺灣), 07/11/2022 17:25:32
moptt9316: 概念一樣吧,用截面積公式求體積07/11 17:26
shoeming: 觀念一樣啊 剛好今年北模就有一題07/11 17:29
g36maid: 就函數面積07/11 17:33
david850914: 這題還好 cos那題還比較難做07/11 18:06
globejoy: 認真回,立體體積是新課綱加進去的(包含最後07/11 20:05
globejoy: 一題的一次近似也是),北模也有類似題,沒學07/11 20:05
globejoy: 過可能要懷疑學校老師是不是照舊鋼教07/11 20:05

謝謝你的認真回覆,
我知道108課綱有提到切片法與旋轉體體積
只是身邊聽到有一些高三生說沒學過
所以到高中版問

LawLombie: 推推 高一生路過 07/11 22:01
lovehan: 強烈懷疑最後一題近似值是在偷渡國編本的數值方法... 07/11 22:08

新課綱高一的三次函數一次近似,
搭配微分求切線

lovehan: 圓盤法、剝殼法 課本有 只是沒有特別提名詞07/11 22:09
lovehan: 所以課本的名詞索引是找不到的07/11 22:09
lovehan: 題目敘述看起來 應該不是抄原文書的07/11 22:11
lovehan: 而是很有台灣味的獨特敘述07/11 22:12
※ 編輯: MathWang (42.77.68.137 臺灣), 07/11/2022 22:52:59
Nono5269: 我覺得就算看不懂切片法,這題敘述還算完整,一樣能做吧 07/12 16:24
userlance: 沒有切片法你做不出第三題 07/12 22:25

你可能也想看看

搜尋相關網站