[爆卦]高次多項式因式分解技巧是什麼?優點缺點精華區懶人包

雖然這篇高次多項式因式分解技巧鄉民發文沒有被收入到精華區:在高次多項式因式分解技巧這個話題中,我們另外找到其它相關的精選爆讚文章

在 高次多項式因式分解技巧產品中有2篇Facebook貼文,粉絲數超過4,514的網紅數學老師張旭,也在其Facebook貼文中提到, 【專欄】高中微積分和大學微積分的 6 個差別‼ 各位晚安 今天來寫一篇很久之前就想寫的文章 只是一直遲遲沒有動筆 「高中微積分和大學微積分有什麼差別?」 這個主題一定有其他老師寫過 但一樣地 我從來都不會因為別人做過了自己就不做 因為每個老師的歷練不同 所以講出來的就算有些地方是一樣的 ...

 同時也有6部Youtube影片,追蹤數超過8萬的網紅賭Sir【杜氏數學】HermanToMath,也在其Youtube影片中提到,?《我要數學大翻身》 4合1全套DSE速效課程: https://hermantomath.skx.io/courses/6328693527937024 ?優惠限定,敬請留意❗ ---------- #我要數學大翻身 #4合1全套DSE速效課程 #優惠限定 ---------- 杜氏數學 官方網站...

高次多項式因式分解技巧 在 高均數學/升學帳 Instagram 的精選貼文

2021-08-19 01:57:45

【提升數學敏感度、答題技巧】 這篇想跟大家分享三個部分: 一、數學敏感度 看到題目時往往會茫然的學生 可以利用關鍵字 幫助思考到如何切入題目 這題因為看到整數係數 就會想到牛頓一次因式檢驗法 (可參考拙作考點13) 法一也就是這樣想到的 第二、別忘了國中因式分解 這個方法需要能觀察的出來才行 ...

  • 高次多項式因式分解技巧 在 數學老師張旭 Facebook 的最讚貼文

    2020-06-26 05:33:18
    有 39 人按讚

    【專欄】高中微積分和大學微積分的 6 個差別‼
     
    各位晚安
    今天來寫一篇很久之前就想寫的文章
    只是一直遲遲沒有動筆
     
    「高中微積分和大學微積分有什麼差別?」
     
    這個主題一定有其他老師寫過
    但一樣地
    我從來都不會因為別人做過了自己就不做
    因為每個老師的歷練不同
    所以講出來的就算有些地方是一樣的
    但還是多多少少會有差異之處
     
    1⃣
     
    首先,絕對會被提到的
    就是高中微積分只教多項式函數的微積分
     
    也就是說
    高中三年級數甲就算認真學完以後
    還是不會算 2^x 的微分或 log(x) 的積分
    (以上是指普遍的應屆畢業生)
     
    當然有些物理老師可能會偷教三角函數的微積分啦
    所以我上面故意不提三角函數😅
     
    所以有些同學如果覺得高中微積分讀的好
    大學微積分就會躺著過的話
    那可能就想的太美好了
     
    因為大學微積分並不是只有多項式函數的微積分
    所以要補足所有基本函數的微積分
    還是需要花時間努力一下
     
    而各種基本函數的微分我的頻道目前都已經拍好了
    想看的同學可以透過這個連結:https://reurl.cc/Kknmln
     
    2⃣
     
    上面提到唸完高中微積分還是不會 log(x) 的積分
    這個除了因為高中的微積分只有多項式的微積分以外
    還有一個重點
    那就是高中微積分並沒有分部積分
     
    大學微積分中的積分技巧有很多種
    變數變換、三角置換、分部積分、部分分式...
     
    以上這些高中微積分頂多只會教變數變換
    但其實多項式的積分也用不太到
    所以事實上是沒有教什麼積分技巧的
    普遍都是逐項積分
    因此到了大學以後還是要花很多時間熟練這些技巧
     
    而關於各種積分技巧
    剛好我們丈哥有整理
    有興趣的話可以參考這部影片:https://reurl.cc/1xadXW
     
    如果你是高三應屆畢業生
    建議先看過所有基本函數的微分
    然後了解微積分基本定理
    再來看這個影片
    不然可能會看得有些吃力
     
    3⃣
     
    高中教過許多關於基本函數的公式
     
    對了,忘記說明什麼是基本函數
    基本函數就是形如常數函數、多項式函數
    指對數函數、三角函數、反三角函數
    以及以上這些函數在四則運算以下所產生出來的函數
     
    對於這些基本函數的公式
    到了大學,其實很多都用不到
     
    當然現在因為教改的關係
    用不到的公式已經越來越少了
     
    但到底最後在微積分裡面絕對要記起來的公式到底有哪些呢?
    我這邊簡單條列幾個
     
    例如:
    x^n ± y^n 的因式分解公式
    x = a^(log_a (x))
    log_a (x_1 + x_2) = (log_a (x_1)).(log_a (x_2))
    log_a (x_1 - x_2) = (log_a (x_1)) / (log_a (x_2))
    三角函數的和角公式
    cos^2 (x) = (1 + cos(2x)) / 2
    sin^2 (x) = (1 - cos(2x)) / 2
     
    以上這些都是在學習大學微積分時必備的
    當然還有其他的
    以後有機會在專門拍一部影片來統整
     
    至於其他如同 sin(x/2) 的公式
    或是 a^(log_b (x)) = b^(log_a (x)) 這種比較炫技的公式
    其實在大學微積分裡面都用不太到
    所以大概都可以忘掉沒有關係
     
    4⃣
     
    提到函數的公式
    就不得不提大學微積分多了哪些函數是高中沒講的
     
    首先,高斯函數 [x]
    這個在高中數學的正規教材裡面並沒有提到
    但有些補習班會在寒暑假時拿來當做一個專題
     
    另外是反三角函數
    這個在以前台灣的高中數學是有講的
    (大概民國 100 年以前都有講)
    但現在已經刪掉了
    所以這對現在的台灣高中生來說
    無疑是增添了一份學習上不可避免的負擔
     
    最後是形如 sinh(x) 和 cosh(x) 這類型的超越函數
    (所謂超越函數就是無法滿足任何多項式方程的函數)
    這些看起來跟 sin(x) 還有 cos(x) 的函數
    常常會讓本來就快忘光高中數學的大一學生搞得更混亂
     
    當然可能還有一些函數
    但我目前最有印象的就是這三個
     
    5⃣
     
    上面提到超越函數
    那接下來講講一個特別的超越函數:指對數函數
     
    在台灣的高中數學裡面
    早就透過描點和指對數運算律建立指對數函數的世界觀
    但到了大學
    大概會有一半的學校重來一次
     
    在大學微積分裡面
    會先透過極限定義 e 這個數字
    然後再用指數運算律建立 e^x 這個函數
    嚴格說起來應該是 exp(x) 這個函數
    最後再用反函數的概念定義 log(x) 這個函數
     
    講到這邊,不得不強調一點
    高中的 log(x) 是以 10 為底數
    而大學的 log(x) 則是以 e 為底數
    並且常常會把 log(x) 縮寫成 ln(x)
     
    所以在定義上的不同
    這也是在初學大學微積分時一定要注意的
     
    如果想知道 e 這個自然底數如何產生的話
    可以參考這個影片:https://reurl.cc/g7jORL
     
    6⃣
     
    以上講的都是大多數台灣的學生初學大學微積分時所會遭遇到的
    和高中微積分不同之處
     
    最後我想講一個只有理工學院的同學會遇到的差異之處
    那就是「極限的嚴格定義」
     
    高中微積分在教極限的時候
    通常只教直觀的極限
    也就是透過計算和觀察函數的左右極限來求極限
     
    但到了大學微積分
    特別是理工學院的學生
    就絕對逃不掉極限的嚴格定義
     
    這邊列一下定義內容:
     
    「lim_(x→a) f(x) = L」若且唯若
    「對任意 ε > 0 存在 δ > 0 使得凡 0 < |x - a| < δ 均有 |f(x) - L| < ε」
     
    噁心吧?
     
    這個是絕大數理工學院的學生不可避免的主題
    而且會出現在第一次小考或期中考裡面
    然後很多學生就送分了
    送還給教授分數
     
    雖然說就算整個大學微積分都學完了但極限的嚴格定義從未真正了解過也沒差
    但如果大學微積分一開始就考差
    那是不是表示期末考就得更努力才能把及格分數追回來呢?
     
    很多人都講反正十年後也用不到微積分
    現在這麼努力幹嘛
     
    其實我從來都沒有要所有人都要努力
    我只要求想跟我學微積分的學生要努力
     
    但說真的
    就算十年以後用不到
    但如果在學微積分時不努力
    導致隔一年又要在重來一次
    那不是把自己的人生拖延住了嗎?
     
    學生階段的學習老實說很多都不是為了未來是否實用
    而是為了當下
    為了證明自己是一個能夠安裝任何知識的頭腦
    證明自己是能夠撐過各種無聊和困難習題考試的人
    然後透過這一次又一次的證明
    去證明自己是一個可以理解問題並解決問題的人
    如此而已
     
    至於講未來會不會用到的那些人
    我認為都只是想為自己當下的逃避找一個藉口而已
     
    不然我也可以這樣想
    反正我總有一天會死
    我的教學影片總有一天會因為沒有人推廣而再也沒人看
    那我幹嘛拍?
     
    有時做一件事情或是學習
    真的只是為了解決當下的其他問題而已
     
    不用為每一件事情都去思考他的未來
    特別是在學生時期
    既然到了這間學校這個科系
    就好好學習,累積漂亮的 GPA
     
    當然不只學業要顧
    如果行有餘力,也應該找公司實習累積經驗
    不過這都是在大三大四以後才要思考的事
     
    在面對「極限的嚴格定義」的當下
    我強烈建議學生就是一個想法
    不要想太多
    試著盡自己最大的努力,在進入下一個章節以前
    能把這個學的多透澈就多透澈
     
    當然也要考量目前手上所有科目的重量
    不能顧此失彼
    但就盡最大努力
    顧好所有科目
     
    以後如果有機會
    我會再拍影片或寫文章講講大學生如何取捨目前手上的學科還有大學如何選課比較聰明
     
    嗯... 我又離題了
     
    總之「極限的嚴格定義」對剛上大學的理工學院學生來說
    絕對是大學生涯第一次試煉
     
    如果想趁著開學前先偷念一點的同學
    可以反覆觀看這部影片:https://reurl.cc/oLonv5
     
    ///
     
    好啦,講了這麼多
    不知道認真看完的有幾個
     
    但就如同我上面講的一樣
    很多事情做下去是不太會去想太多未來會不會怎樣的
    當然這是建立在這件事不會傷害到自己且對他人有幫助的情況之下
     
    這次大概就分享到這邊
    如果迴響還不錯的話應該很快就會有下一篇
    所以如果有認真看完的朋友們
    覺得認同的話幫我按個讚或分享
    覺得有話想對我說的話就在下面留言
    有認真看完不知道要講什麼但想表示一下支持的
    可以在下面留言「我有看完!」
     
    其實我都蠻佩服關注我粉專的朋友們
    也佩服有在看我頻道的同學們
    因為我的貼文大多都很長
    影片也都是超硬核教學影片
     
    感謝支持我們的人們
    因為有這些支持
    我們才能繼續走下去😀
     
    ▋歡迎用訂閱行動支持數學老師張旭 YT 頻道‼
    ▋連結:https://reurl.cc/KkL3Vy
     
    ▋張旭老師大一微積分先修線上直播課程開課了🔥
    ▋連結:https://reurl.cc/Njol7x
     
    ▋歡迎參加許願池活動,留下你想聽我們講解的主題!
    ▋最新連結請到置頂文章:https://reurl.cc/WdZQDx
     
    ▋贊助支持我們
    ▋歐付寶:https://reurl.cc/vD401k (台灣境內請用這個)
    ▋綠界:https://reurl.cc/3Dp7Ll (台灣境外用這個)
    ▋flyingV:https://reurl.cc/g7p48N (2020/7/17 結束)

  • 高次多項式因式分解技巧 在 Herman Yeung Facebook 的最讚貼文

    2014-04-13 02:13:49
    有 49 人按讚


    有報到 big lemon coke 的同學︰
    這個課程已經詳盡講曬所有 section A1, A2 的出法
    但要明白,哪些出法其實對 MC 或較淺的 Section B 皆有其作用,
    所以目標唔係太高的同學於最後一天可全力溫這四堂的內容。
    首先第一堂我所 review 的 index rule 溫熟未?
    唔係淨背,係要理解每一種 rule 都係雙向式的用法,
    了解其用法後就可以睇 A1 果條,當日我嚮題目 highlight 左d重要野,
    記住實戰都要小心 highlight 左的部分
    第二點就係 make subject 主項的問題,
    只係要重溫我話 2012 past paper 當天有人犯左一個錯誤而失分,
    記翻呢個失分位。
    之後就係 B5 果條,對於 (b) part,如果係 MC 的考法唔難,
    但 paper 1 考到就要理解一下如果 present 你的答案。
    跟住就係 factorize 因式分解,
    我有教3種方法,以及我有好 detail 分左
    第二個方法中的第二招 與 第三招 的使用訊號,
    你仲記唔記得,有關於數字0既呢。
    之後就係 %,要理解最典型果幾句翻譯
    以及你記唔記得我地對於賺賠的問題,
    通常都係用某個 term 做中介人 (詳情可看 D2)
    記住點樣用佢黎貫通各個 term
    你亦可以看看 D5 (b) 同埋 D7 (b)(ii) 這些有點像 IQ 題的問法。
    第一堂的最尾時份,我地用左張紙將所有 二次方程式 quadratic equation 的考法歸納曬出黎,讀熟呢張紙會令你好多個範疇都可以奪分。
    跟住就係 E3 的圖像題,好多同學做呢D失敗係因為佢無將發現到的劃在圖上,
    但要緊記要劃的話一定係鉛筆劃,萬一花曬都可以刷過。
    至於 E4(c) 呢類身處 section A2 但難度到左 Section B 的出法,
    如果真係唔識就可以唔太理會。
    之後要溫翻 E5 的兩種切法,記唔記得我地一個切法係計唔到,了解佢計唔到的理由,仲有 (c) 部分的符號應用,幾時要等如、幾時唔等如?

    F1 就係要你記得我地剪野的技巧,MC, Paper I 都用得。
    F3 要明白兩個圖之間有咩係相同?同埋兩個圖的基本公式你背好未?
    公式方面可看
    https://www.facebook.com/media/set/…
    F4 要了解 3D 相似與 2D 相似的分別。
    而 F10 就係要學球體半徑可以於哪裡發揮的技巧 (b)(ii)

    跟住就係第3堂啦,
    概率有淺有深,太淺唔洗溫,
    但要溫 J4 果條,理解要唔要分抽哪一個先的重要性,
    如果唔太清楚,只背第一個方法的做法就 OK。
    跟住就係 J2,明白 nCr 同 nPr 的分別同埋 (b) part 通常係點計話?我上堂有講過。
    Statistics 統計方面,將 K2 同 K7 一齊溫,
    一個係問你得唔得 K2 (b)(ii),一個係話一定要得 K7(b)(ii),睇睇兩者的做法上的不同。

    坐標幾何方面,了解翻 d 初中野可看 L1, L4
    而 polar coordinate 極坐標就讀 L2 就 OK
    軌跡真係唔太掂的朋友,先放棄有關的考法。

    到了第四堂的內容,
    N1要溫的是圓內的相似可能,
    其實要 detail d 知道圓形內相似的可能可以參考翻 F 天書的 P.45
    而不等式 inequality 方面,其實唔算太難,找一條 review 就 ok。

    Variation 變份的變化會大一點,
    先看 P1 中的 (b) part,相似對個成本的變化是什麼?
    以及 P4 (b)(ii) part,重溫短除的方法。
    同埋 P6 二次圖像 Cross-over 的考法。

    Q2方面,其實係想話你知要預測第 n 項的最有效方法
    就係要列翻首三項出黎,
    呢招我地經常都有用,包括 tips class plan A 養豬果條
    一天衝 的借錢果題之類。

    最後 R1 就係要教你 (a), (b) 的緊扣性問題,
    當你做 (b) part 時,你要時時刻刻都留意住 (a) part 為你帶黎的貢獻。
    而 R3 的題目,如果沒有補過奪保其星的同學,暫時放棄吧。

    希望幫到大家溫下一些必讀公式,
    星期一決戰 DSE 數學, 加油 !!
    by Herman Yeung

你可能也想看看

搜尋相關網站