雖然這篇高斯物理鄉民發文沒有被收入到精華區:在高斯物理這個話題中,我們另外找到其它相關的精選爆讚文章
在 高斯物理產品中有22篇Facebook貼文,粉絲數超過2萬的網紅Fiona法國代購網,也在其Facebook貼文中提到, 💖2月份 日本好物開團 2/28收單💖 日本製易利氣磁石貼Max200 高斯加強版 一盒24枚入 有降價嘍! 日本境內版的唷 🎀粉絲優惠價 480元 #強大到開第五團了 #前四次都爆單 #回購率超高 #正日本境內款 一枚可貼2~5天很划算 繼易利氣的磁力項圈後 這次更出了超強MAX20...
同時也有2部Youtube影片,追蹤數超過2,230的網紅David Yu,也在其Youtube影片中提到,...
「高斯物理」的推薦目錄
高斯物理 在 BusinessFocus | 商業、投資、創科平台 Instagram 的最佳貼文
2021-09-17 19:39:18
【@businessfocus.io】希臘奧運舉重選手因「太窮」被迫退役 NBA字母哥承諾提供資金援助 . 希臘舉重選手耶高維迪斯(Thodoros Iakovidis)於7月31日在東京奧運男子舉重96公斤級賽事拿下第11名後,在賽後受訪時突然宣佈退役消息,坦言自己因經濟困難無法再延續運動員生涯。...
高斯物理 在 一六 · 台北 Instagram 的精選貼文
2021-08-19 01:02:09
《量子電腦的興起以及所帶來的影響》(上)⠀ ⠀ 本文編輯 | 張泳泰⠀ ⠀ 專欄文章 | 完稿日期2021/2/27⠀ ⠀ ❐前言⠀ 自古以來科技的進步時常為我們的社會帶來巨大的變革,從第一台電腦到人工智能,從利用細菌生產胰島素到器官移植,科技的突破都實實在在的影響著我們的生活與社會,那麼這篇文章希...
高斯物理 在 物理&日常迷因 Instagram 的精選貼文
2020-04-28 07:59:48
貓斯常態分布 Source:FB 物理迷因 Physics Meme #高斯 #數學 #math #gaussian #貓 #貓咪 #迷因 #meme #梗圖...
高斯物理 在 Fiona法國代購網 Facebook 的精選貼文
💖2月份 日本好物開團 2/28收單💖
日本製易利氣磁石貼Max200 高斯加強版 一盒24枚入 有降價嘍!
日本境內版的唷
🎀粉絲優惠價 480元
#強大到開第五團了 #前四次都爆單
#回購率超高
#正日本境內款
一枚可貼2~5天很划算
繼易利氣的磁力項圈後
這次更出了超強MAX200加強版啦🔥
而且是貼片❗️更方便現代人使用唷~
磁石加大、磁力加倍
現代人生活文明病
通常都讓肌肉長時間呈現一個固定狀況
😴身體都非常硬梆梆😔
磁力貼片真的超神奇~~
神奇小物只要在肩頸.腰部等部位貼上
利用物理磁力原理.就能讓疲憊的感覺鬆一下💪🏻
🔥MAX 200 是目前磁力數最強
使用大型錐狀磁石
磁力更能滲透較大範圍唷~~
❾大特點
✔️一盒24枚入/超划算
✔️促進血液循環、肌肉放鬆
✔️貼著的期間,磁力持續作用
✔️利用自然磁力原理,不含化藥成分
✔️黏力持久,一片可使用2~5天
✔️使用有彈性、透氣,對肌膚溫和的貼布
✔️使用方便,無異味
✔️一次部位使用2-3片即可達到促進血液循環效果
✔️小腿,底版都可使用/消除水腫胖胖腿
高斯物理 在 銀色快手(Silverquick) Facebook 的最讚貼文
我不敢說我看懂了天能
(以下重雷劇透,請斟酌觀看)
TENET 這個字是信條、原則、宗旨
在本片中它更呈現出一種「狀態」,關於時間的狀態。
就如同 INCEPTION 在英文原來的意思是一個組織或活動的開端
在全面啟動中它被賦予的意涵是「意念植入」,原意卻與天能組織有所呼應
大家都知道 TENET 這個詞彙源於薩托魔方陣 Sator Square
它倒著念也行,正著念也行,恰好符合時間狀態的順向和逆行同時存在的矛盾時空
接下來我們來看女主 Kat 的兒子 MAX
MAX 在法文名字裡是 MAXIMILIEN
這個名字是它由佛利德里希三世(Friedrich III)在1459年為他的兒子創造,並解釋說是由兩位羅馬將軍麥西姆斯(Maximus)和西皮奧·艾米利亞努斯(Scipio Aemilianus)的名字組合而成,有許多早期基督徒的名字是 Maximilianus,MAXIMILIEN 這個名字可能源自 Maximilianus。
如果依據迴文(palindrome)的書寫設定,把 MAXIMILIEN 倒過來看,你就會發現 NEIL 始終出現在身邊。中間的 IMI 像是一座橋樑,把 MAX 和 LIEN 連結起來,產生了類似於迴文的趣味,也同時暗示了片尾尼爾NEIL 的真實身分其實就是 MAX。
不單只是這樣,ROTAS 旋轉門分成藍色與紅色的設定,解謎的關鍵在影片中主角前往秘密實驗室實驗室,Clémence Poésy 所飾演的那個女性科學家在她身後的白板上清楚的解說「麥克威爾方程組 Maxwell's equations」的原理與操作。
根據維基百科的介紹它是一組描述電場、磁場與電荷密度、電流密度之間關係的偏微分方程式。該方程組由四個方程式組成,分別是描述電荷如何產生電場的高斯定律、表明磁單極子不存在的高斯磁定律、解釋時變磁場如何產生電場的法拉第感應定律,以及說明電流和時變電場怎樣產生磁場的麥克威爾-安培定律。
想要看懂天能,你除了要瞭解「熵」和「熱力學第二定律」之外,還要認識一個叫做「麥克威爾惡魔」Maxwell's demon 的概念(就是文章中的這張圖片)它是在物理學中假想的惡魔,它能監測並控制單個分子的運動,於1871年由英國物理學家詹姆斯·麥克威爾為了說明違反熱力學第二定律的可能性而設想的。
Maxwell's demon 基本上就是諾蘭設計旋轉門的理論基礎,藍色和紅色分別代表順向時間流與逆向時間流,惡魔控制並監測不同的流向的分子,但是當惡魔之門打開的時候,分子會混亂的移動,直到它們本身維持著某種矛盾與平衡,諾蘭藉由這個設定,創造了反向熵的全新視界,並且藉由使用旋轉門來演示反向熵的分子運動效果,而最終的核戰廢墟大戰,紅隊士兵與藍隊士兵的進攻與掩護,就好像Maxwell's demon 模型當中,紅色分子與藍色分子的運動方向模擬,沒有正確的解答,只有可能的混沌、混亂、衝突和矛盾,這才是反向熵的物理世界與順向時間流的現實世界彼此碰撞的結果。
安德烈薩托Andrei Sator在塔林碼頭的倉庫拿著槍威脅妻子Kat時,就說出了這句話"This is where our worlds collide"我們的世界就在這裡彼此碰撞,於是帶出了高速公路追逐戰以及反向熵物理世界呈現的混亂感,這些劇情正是Maxwell's demon 在天能世界觀當中的具象化呈現,導演運用演出的方式把艱深的理論模型幻化成我們肉眼看得見的故事劇情,而且視覺效果相當震撼,高速公路追逐戰那場戲在愛沙尼亞首都塔林市主要幹道派爾努公路進行,並關閉了鄰近的街道以便拍攝,特別情商塔林市長支持,足足封路了33天才完成所有的拍攝作業。
當你理解了Maxwell's demon 的物理假想模型,以及旋轉門的秘密之後,再回過頭來看 MAXIMILIEN 這個隱藏的迴文字謎,你會發現IMI就像左右兩邊的旋轉門,它架設起一座時間的橋樑,通過它可以來到順向時間流的現實世界和反向熵的物理平行世界,而 MAX 和 NEIL 也在這座橋上來來去去,展開他充滿傳奇冒險的人生旅程。
原題:天能電影隱藏的字謎與姓名學聯想
文 / 銀色快手(Silverquick) 昨晚完成天能二刷的人
20200903 PM 03:19 桃園 寫作的房間
高斯物理 在 數學老師張旭 Facebook 的最佳貼文
【專欄】高中微積分和大學微積分的 6 個差別‼
各位晚安
今天來寫一篇很久之前就想寫的文章
只是一直遲遲沒有動筆
「高中微積分和大學微積分有什麼差別?」
這個主題一定有其他老師寫過
但一樣地
我從來都不會因為別人做過了自己就不做
因為每個老師的歷練不同
所以講出來的就算有些地方是一樣的
但還是多多少少會有差異之處
1⃣
首先,絕對會被提到的
就是高中微積分只教多項式函數的微積分
也就是說
高中三年級數甲就算認真學完以後
還是不會算 2^x 的微分或 log(x) 的積分
(以上是指普遍的應屆畢業生)
當然有些物理老師可能會偷教三角函數的微積分啦
所以我上面故意不提三角函數😅
所以有些同學如果覺得高中微積分讀的好
大學微積分就會躺著過的話
那可能就想的太美好了
因為大學微積分並不是只有多項式函數的微積分
所以要補足所有基本函數的微積分
還是需要花時間努力一下
而各種基本函數的微分我的頻道目前都已經拍好了
想看的同學可以透過這個連結:https://reurl.cc/Kknmln
2⃣
上面提到唸完高中微積分還是不會 log(x) 的積分
這個除了因為高中的微積分只有多項式的微積分以外
還有一個重點
那就是高中微積分並沒有分部積分
大學微積分中的積分技巧有很多種
變數變換、三角置換、分部積分、部分分式...
以上這些高中微積分頂多只會教變數變換
但其實多項式的積分也用不太到
所以事實上是沒有教什麼積分技巧的
普遍都是逐項積分
因此到了大學以後還是要花很多時間熟練這些技巧
而關於各種積分技巧
剛好我們丈哥有整理
有興趣的話可以參考這部影片:https://reurl.cc/1xadXW
如果你是高三應屆畢業生
建議先看過所有基本函數的微分
然後了解微積分基本定理
再來看這個影片
不然可能會看得有些吃力
3⃣
高中教過許多關於基本函數的公式
對了,忘記說明什麼是基本函數
基本函數就是形如常數函數、多項式函數
指對數函數、三角函數、反三角函數
以及以上這些函數在四則運算以下所產生出來的函數
對於這些基本函數的公式
到了大學,其實很多都用不到
當然現在因為教改的關係
用不到的公式已經越來越少了
但到底最後在微積分裡面絕對要記起來的公式到底有哪些呢?
我這邊簡單條列幾個
例如:
x^n ± y^n 的因式分解公式
x = a^(log_a (x))
log_a (x_1 + x_2) = (log_a (x_1)).(log_a (x_2))
log_a (x_1 - x_2) = (log_a (x_1)) / (log_a (x_2))
三角函數的和角公式
cos^2 (x) = (1 + cos(2x)) / 2
sin^2 (x) = (1 - cos(2x)) / 2
以上這些都是在學習大學微積分時必備的
當然還有其他的
以後有機會在專門拍一部影片來統整
至於其他如同 sin(x/2) 的公式
或是 a^(log_b (x)) = b^(log_a (x)) 這種比較炫技的公式
其實在大學微積分裡面都用不太到
所以大概都可以忘掉沒有關係
4⃣
提到函數的公式
就不得不提大學微積分多了哪些函數是高中沒講的
首先,高斯函數 [x]
這個在高中數學的正規教材裡面並沒有提到
但有些補習班會在寒暑假時拿來當做一個專題
另外是反三角函數
這個在以前台灣的高中數學是有講的
(大概民國 100 年以前都有講)
但現在已經刪掉了
所以這對現在的台灣高中生來說
無疑是增添了一份學習上不可避免的負擔
最後是形如 sinh(x) 和 cosh(x) 這類型的超越函數
(所謂超越函數就是無法滿足任何多項式方程的函數)
這些看起來跟 sin(x) 還有 cos(x) 的函數
常常會讓本來就快忘光高中數學的大一學生搞得更混亂
當然可能還有一些函數
但我目前最有印象的就是這三個
5⃣
上面提到超越函數
那接下來講講一個特別的超越函數:指對數函數
在台灣的高中數學裡面
早就透過描點和指對數運算律建立指對數函數的世界觀
但到了大學
大概會有一半的學校重來一次
在大學微積分裡面
會先透過極限定義 e 這個數字
然後再用指數運算律建立 e^x 這個函數
嚴格說起來應該是 exp(x) 這個函數
最後再用反函數的概念定義 log(x) 這個函數
講到這邊,不得不強調一點
高中的 log(x) 是以 10 為底數
而大學的 log(x) 則是以 e 為底數
並且常常會把 log(x) 縮寫成 ln(x)
所以在定義上的不同
這也是在初學大學微積分時一定要注意的
如果想知道 e 這個自然底數如何產生的話
可以參考這個影片:https://reurl.cc/g7jORL
6⃣
以上講的都是大多數台灣的學生初學大學微積分時所會遭遇到的
和高中微積分不同之處
最後我想講一個只有理工學院的同學會遇到的差異之處
那就是「極限的嚴格定義」
高中微積分在教極限的時候
通常只教直觀的極限
也就是透過計算和觀察函數的左右極限來求極限
但到了大學微積分
特別是理工學院的學生
就絕對逃不掉極限的嚴格定義
這邊列一下定義內容:
「lim_(x→a) f(x) = L」若且唯若
「對任意 ε > 0 存在 δ > 0 使得凡 0 < |x - a| < δ 均有 |f(x) - L| < ε」
噁心吧?
這個是絕大數理工學院的學生不可避免的主題
而且會出現在第一次小考或期中考裡面
然後很多學生就送分了
送還給教授分數
雖然說就算整個大學微積分都學完了但極限的嚴格定義從未真正了解過也沒差
但如果大學微積分一開始就考差
那是不是表示期末考就得更努力才能把及格分數追回來呢?
很多人都講反正十年後也用不到微積分
現在這麼努力幹嘛
其實我從來都沒有要所有人都要努力
我只要求想跟我學微積分的學生要努力
但說真的
就算十年以後用不到
但如果在學微積分時不努力
導致隔一年又要在重來一次
那不是把自己的人生拖延住了嗎?
學生階段的學習老實說很多都不是為了未來是否實用
而是為了當下
為了證明自己是一個能夠安裝任何知識的頭腦
證明自己是能夠撐過各種無聊和困難習題考試的人
然後透過這一次又一次的證明
去證明自己是一個可以理解問題並解決問題的人
如此而已
至於講未來會不會用到的那些人
我認為都只是想為自己當下的逃避找一個藉口而已
不然我也可以這樣想
反正我總有一天會死
我的教學影片總有一天會因為沒有人推廣而再也沒人看
那我幹嘛拍?
有時做一件事情或是學習
真的只是為了解決當下的其他問題而已
不用為每一件事情都去思考他的未來
特別是在學生時期
既然到了這間學校這個科系
就好好學習,累積漂亮的 GPA
當然不只學業要顧
如果行有餘力,也應該找公司實習累積經驗
不過這都是在大三大四以後才要思考的事
在面對「極限的嚴格定義」的當下
我強烈建議學生就是一個想法
不要想太多
試著盡自己最大的努力,在進入下一個章節以前
能把這個學的多透澈就多透澈
當然也要考量目前手上所有科目的重量
不能顧此失彼
但就盡最大努力
顧好所有科目
以後如果有機會
我會再拍影片或寫文章講講大學生如何取捨目前手上的學科還有大學如何選課比較聰明
嗯... 我又離題了
總之「極限的嚴格定義」對剛上大學的理工學院學生來說
絕對是大學生涯第一次試煉
如果想趁著開學前先偷念一點的同學
可以反覆觀看這部影片:https://reurl.cc/oLonv5
///
好啦,講了這麼多
不知道認真看完的有幾個
但就如同我上面講的一樣
很多事情做下去是不太會去想太多未來會不會怎樣的
當然這是建立在這件事不會傷害到自己且對他人有幫助的情況之下
這次大概就分享到這邊
如果迴響還不錯的話應該很快就會有下一篇
所以如果有認真看完的朋友們
覺得認同的話幫我按個讚或分享
覺得有話想對我說的話就在下面留言
有認真看完不知道要講什麼但想表示一下支持的
可以在下面留言「我有看完!」
其實我都蠻佩服關注我粉專的朋友們
也佩服有在看我頻道的同學們
因為我的貼文大多都很長
影片也都是超硬核教學影片
感謝支持我們的人們
因為有這些支持
我們才能繼續走下去😀
▋歡迎用訂閱行動支持數學老師張旭 YT 頻道‼
▋連結:https://reurl.cc/KkL3Vy
▋張旭老師大一微積分先修線上直播課程開課了🔥
▋連結:https://reurl.cc/Njol7x
▋歡迎參加許願池活動,留下你想聽我們講解的主題!
▋最新連結請到置頂文章:https://reurl.cc/WdZQDx
▋贊助支持我們
▋歐付寶:https://reurl.cc/vD401k (台灣境內請用這個)
▋綠界:https://reurl.cc/3Dp7Ll (台灣境外用這個)
▋flyingV:https://reurl.cc/g7p48N (2020/7/17 結束)