雖然這篇高中數學公式統整鄉民發文沒有被收入到精華區:在高中數學公式統整這個話題中,我們另外找到其它相關的精選爆讚文章
在 高中數學公式統整產品中有2篇Facebook貼文,粉絲數超過4,514的網紅數學老師張旭,也在其Facebook貼文中提到, 【專欄】高中微積分和大學微積分的 6 個差別‼ 各位晚安 今天來寫一篇很久之前就想寫的文章 只是一直遲遲沒有動筆 「高中微積分和大學微積分有什麼差別?」 這個主題一定有其他老師寫過 但一樣地 我從來都不會因為別人做過了自己就不做 因為每個老師的歷練不同 所以講出來的就算有些地方是一樣的 ...
同時也有6部Youtube影片,追蹤數超過2萬的網紅數學老師張旭,也在其Youtube影片中提到,【摘要】 最近不少高中小朋友問我甚麼是平面系,我跟他們統整了一下平面系的概念以後,順便跟他們介紹了如何用平面系的思想來解費氏數列 【本系列其他影片】 上集 👉 韋達公式,不是根與係數的那個 (https://youtu.be/XJzgyTvKjYk) 下集 👉 從高中機率抽球問題,講到大學機率論的...
「高中數學公式統整」的推薦目錄
- 關於高中數學公式統整 在 Spark Light 工作坊 Instagram 的最佳解答
- 關於高中數學公式統整 在 高均數學/升學帳 Instagram 的最佳貼文
- 關於高中數學公式統整 在 高均數學/升學帳 Instagram 的最佳貼文
- 關於高中數學公式統整 在 數學老師張旭 Facebook 的最佳貼文
- 關於高中數學公式統整 在 C.C.M Math Facebook 的最佳解答
- 關於高中數學公式統整 在 數學老師張旭 Youtube 的最讚貼文
- 關於高中數學公式統整 在 寶妮老師 Bonnie Youtube 的最讚貼文
- 關於高中數學公式統整 在 數學老師張旭 Youtube 的最讚貼文
高中數學公式統整 在 Spark Light 工作坊 Instagram 的最佳解答
2021-08-18 20:27:06
|Spark Light 工作坊| 📍|主題| ▫️學測如何複習數學 📍|前情提要| ▫️相信不管是文組還是理組的學生,在準備學測時總是被每年「時難時簡單」,捉摸不定的數學搞得心慌,又或是因為找不到方法而一股腦往前衝卻發現努力付諸流水,今天就由S編來向你分享準備學測數學的大補帖! 📍|模擬...
高中數學公式統整 在 高均數學/升學帳 Instagram 的最佳貼文
2021-09-24 18:58:12
【關於111學測手寫筆記】 這篇要和大家分享的是手寫筆記 手寫筆記主要是收錄考點筆記的考點、1-4冊心智繪圖以及高中數學幾何代數統整架構 主要會分成三個部分和大家說明: 一、手寫筆記的特色 二、和110手寫筆記比較有什麼不同 三、手寫筆記的使用時機及方法 一、手寫筆記的特色 1. 收錄1-...
高中數學公式統整 在 高均數學/升學帳 Instagram 的最佳貼文
2021-09-24 18:58:12
【111學測筆記抽獎】 學測前後有同學及家長詢問老師 新版的108課綱學測筆記什麼時候會出版 歷經了幾個月的重新修訂 目前終於有了定稿預計下個禮拜送印 因為這幾個月忙於編寫筆記 所以文章也比較少跟大家說聲抱歉 在筆記上架前 舉辦一個筆記的抽獎活動 有興趣的同學可以看到最後 會有抽獎的規則 在抽...
-
高中數學公式統整 在 數學老師張旭 Youtube 的最讚貼文
2021-05-11 18:00:16【摘要】
最近不少高中小朋友問我甚麼是平面系,我跟他們統整了一下平面系的概念以後,順便跟他們介紹了如何用平面系的思想來解費氏數列
【本系列其他影片】
上集 👉 韋達公式,不是根與係數的那個 (https://youtu.be/XJzgyTvKjYk)
下集 👉 從高中機率抽球問題,講到大學機率論的二項分布與卜松分布,最後教你如何開除員工 (https://youtu.be/gN8TWD1hvfw)
【版權宣告】
本影片版權為張旭 (張舜為) 老師所有
嚴禁用於任何商業用途⛔
如果有學校老師在課堂使用我的影片的話
請透過以下聯絡方式通知我讓我知道,謝謝
FB:https://www.facebook.com/changhsumath
IG:https://www.instagram.com/changhsumath -
高中數學公式統整 在 寶妮老師 Bonnie Youtube 的最讚貼文
2021-01-18 21:00:12成為寶妮寶(頻道會員):
https://www.youtube.com/channel/UCFKb1EQ-cqXyqF2XEc7aCbw/join
...................................................
投稿信箱:
teachercharmingx3@gmail.com
...................................................
下周就要學測了
我們來幫大家統整算極值(最大值最小值)的各種方法吧!
讓成績也跟著變成最大值!!!
........................................
抖內連結:
https://p.ecpay.com.tw/04FD83A
........................................
Hello!我是Bonnie,大家最害怕的高中數學老師。
因為有感於現今網路多媒體遠比課本紙筆更有吸引力,所以決定除了在學校之外,也在網路上分享我的生活、教學、自修以及與學生相處的小心得。
如果你還是學生,你可以發現老師其實沒那麼討人厭😂如果你已經畢業,你可以在這裡找回一點青春回憶👩🎓👨🎓
Enjoy it and have a good time!
.........................................
IG: charmingteacherbonnie (Bonnie老師)
粉絲專頁: 寶妮老師
https://www.facebook.com/%E5%AF%B6%E5%A6%AE%E8%80%81%E5%B8%AB-Charming-Teacher-Bonnie-290462364959770/ -
高中數學公式統整 在 數學老師張旭 Youtube 的最讚貼文
2020-06-19 19:14:17【摘要】
從拉氏 (Laplace) 轉換的定義開始,然後計算了幾個基本函數的拉氏轉換的結果,並條列了拉氏轉換的重要運算律 (如函數微分、積分或折積以後的轉換公式),到特殊函數 (如單位脈衝函數,Dirac function) 的拉氏轉換,最後以兩個拉氏轉換再解微分方程上的應用作結
【加入會員】
歡迎加入張旭老師頻道會員
付費定閱支持張旭老師,讓張旭老師能夠拍更多的教學影片
https://www.youtube.com/channel/UCxBv4eDVLoj5XlRKM4iWj9g/join
【會員等級說明】
博士等級:75 元 / 月
- 支持我們拍攝更多教學影片
- 可在 YT 影片留言處或聊天室使用專屬貼圖
- 你的 YT 名稱前面會有專屬會員徽章
- 可觀看會員專屬影片 (張旭老師真實人生挑戰、許願池影片)
- 可加入張旭老師 YT 會員專屬 DC 群
碩士等級:300 元 / 月
- 享有博士等級所有福利
- 每個月可問 6 題高中或大學的數學問題 (沒問完可累積)
學士等級:750 元 / 月
- 享有博士等級所有福利
- 每個月可問 15 題高中或大學的數學問題 (沒問完可累積)
- 可許願希望我們拍攝講解的主題 (高中、大學數學)
- 可免費參加張旭老師線上考衝班 (名額不可轉讓)
家長會等級:1600 元 / 月
- 享有博士等級所有福利
- 沒有解題服務,如需要,得另外購入點數換取服務
- 可許願希望我們拍攝講解的主題 (高中、大學數學)
- 可免費參加張旭老師線上考衝班 (名額可轉讓)
- 可參與頻道經營方案討論
- 可免費獲得張旭老師實體產品
- 可以優惠價報名參加張旭老師所舉辦之活動
股東會等級:3200 元 / 月
- 享有家長會等級所有福利
- 一樣沒有解題服務,如需要,得另外購入點數換取服務
- 本頻道要募資時擁有優先入股權
- 可加入張旭老師商業結盟
- 可參加商業結盟餐會
- 繳滿六個月成為終生會員,之後可解除自動匯款
- 終生會員只需要餐會費用即可持續參加餐會
【勘誤】
2:15:00 分子算錯 是s^2+6s+9 by kuokuo kuo
有任何錯誤歡迎留言告知
【習題】
無
【講義】
無
【附註】
本系列影片僅限 YouTube 會員優先觀看
非會員僅開放「單數集」影片
若想看到所有許願池影片
請加入數學老師張旭 YouTube 會員
加入會員連結 👉 https://reurl.cc/Kj3x7m
【張旭的話】
你好,我是張旭老師
這是我為本頻道會員所專門拍攝的許願池影片
如果你喜歡我的教學影片
歡迎訂閱我的頻道🔔,按讚我的影片👍
並幫我分享給更多正在學大學數學的同學們,謝謝
【學習地圖】
EP01:向量微積分重點整理 (https://youtu.be/x9Z23o_Z5sQ)
EP02:泰勒展開式說明與應用 (https://youtu.be/SByv7fMtMTY)
EP03:級數審斂法統整與習題 (https://youtu.be/qXCdZF8CV7o)
EP04:積分技巧統整 (https://youtu.be/Ioxd9eh6ogE)
EP05:極座標統整與應用 (https://youtu.be/ksy3siNDzH0)
EP06:極限嚴格定義題型 + 讀書方法分享 (https://youtu.be/9ItI09GTtNQ)
EP07:常見的一階微分方程題型及解法 (https://youtu.be/I8CJhA6COjk)
EP08:重製中
EP09:反函數定理與隱函數定理 (https://youtu.be/9CPpcIVLz7c)
EP10:多變數求極值與 Lagrange 乘子法 (https://youtu.be/XsOmQOTzdSA)
EP11:Laplace 轉換 👈 目前在這裡
EP12:Fourier 級數與 Fourier 轉換 (https://youtu.be/85q-2nInw7Y)
EP13:換變數定理與 Jacobian 行列式 (https://youtu.be/7z4ad1I0b7o)
EP14:Cayley-Hamilton 定理 & 極小多項式 (https://youtu.be/9c-lCLV4F0M)
EP15:極限、微分和積分次序交換的條件 (https://youtu.be/QRkGLK7Iw4c)
EP16:機率密度函數 (上) (https://youtu.be/PR1NSAOP_Z0)
EP17:機率密度函數 (下) (https://youtu.be/tDQ3o8uQ_Ks)
持續更新中...
【版權宣告】
本影片版權為張旭 (張舜為) 老師所有
嚴禁用於任何商業用途⛔
如果有學校老師在課堂使用我的影片的話
請透過以下聯絡方式通知我讓我知道,謝謝
【張旭老師其他頻道或社群平台】
FB:https://www.facebook.com/changhsu.math
IG:https://www.instagram.com/changhsu.math
Twitch:https://www.twitch.tv/changhsu_math
Bilibili:https://space.bilibili.com/521685904
【其他贊助管道】
歐付寶:https://payment.opay.tw/Broadcaster/Donate/E1FDE508D6051EA8425A8483ED27DB5F (台灣境內用這個)
綠界:https://p.ecpay.com.tw/B3A1E (台灣境外用這個)
#拉氏轉換 #拉氏反轉換 #解微分方程
高中數學公式統整 在 數學老師張旭 Facebook 的最佳貼文
【專欄】高中微積分和大學微積分的 6 個差別‼
各位晚安
今天來寫一篇很久之前就想寫的文章
只是一直遲遲沒有動筆
「高中微積分和大學微積分有什麼差別?」
這個主題一定有其他老師寫過
但一樣地
我從來都不會因為別人做過了自己就不做
因為每個老師的歷練不同
所以講出來的就算有些地方是一樣的
但還是多多少少會有差異之處
1⃣
首先,絕對會被提到的
就是高中微積分只教多項式函數的微積分
也就是說
高中三年級數甲就算認真學完以後
還是不會算 2^x 的微分或 log(x) 的積分
(以上是指普遍的應屆畢業生)
當然有些物理老師可能會偷教三角函數的微積分啦
所以我上面故意不提三角函數😅
所以有些同學如果覺得高中微積分讀的好
大學微積分就會躺著過的話
那可能就想的太美好了
因為大學微積分並不是只有多項式函數的微積分
所以要補足所有基本函數的微積分
還是需要花時間努力一下
而各種基本函數的微分我的頻道目前都已經拍好了
想看的同學可以透過這個連結:https://reurl.cc/Kknmln
2⃣
上面提到唸完高中微積分還是不會 log(x) 的積分
這個除了因為高中的微積分只有多項式的微積分以外
還有一個重點
那就是高中微積分並沒有分部積分
大學微積分中的積分技巧有很多種
變數變換、三角置換、分部積分、部分分式...
以上這些高中微積分頂多只會教變數變換
但其實多項式的積分也用不太到
所以事實上是沒有教什麼積分技巧的
普遍都是逐項積分
因此到了大學以後還是要花很多時間熟練這些技巧
而關於各種積分技巧
剛好我們丈哥有整理
有興趣的話可以參考這部影片:https://reurl.cc/1xadXW
如果你是高三應屆畢業生
建議先看過所有基本函數的微分
然後了解微積分基本定理
再來看這個影片
不然可能會看得有些吃力
3⃣
高中教過許多關於基本函數的公式
對了,忘記說明什麼是基本函數
基本函數就是形如常數函數、多項式函數
指對數函數、三角函數、反三角函數
以及以上這些函數在四則運算以下所產生出來的函數
對於這些基本函數的公式
到了大學,其實很多都用不到
當然現在因為教改的關係
用不到的公式已經越來越少了
但到底最後在微積分裡面絕對要記起來的公式到底有哪些呢?
我這邊簡單條列幾個
例如:
x^n ± y^n 的因式分解公式
x = a^(log_a (x))
log_a (x_1 + x_2) = (log_a (x_1)).(log_a (x_2))
log_a (x_1 - x_2) = (log_a (x_1)) / (log_a (x_2))
三角函數的和角公式
cos^2 (x) = (1 + cos(2x)) / 2
sin^2 (x) = (1 - cos(2x)) / 2
以上這些都是在學習大學微積分時必備的
當然還有其他的
以後有機會在專門拍一部影片來統整
至於其他如同 sin(x/2) 的公式
或是 a^(log_b (x)) = b^(log_a (x)) 這種比較炫技的公式
其實在大學微積分裡面都用不太到
所以大概都可以忘掉沒有關係
4⃣
提到函數的公式
就不得不提大學微積分多了哪些函數是高中沒講的
首先,高斯函數 [x]
這個在高中數學的正規教材裡面並沒有提到
但有些補習班會在寒暑假時拿來當做一個專題
另外是反三角函數
這個在以前台灣的高中數學是有講的
(大概民國 100 年以前都有講)
但現在已經刪掉了
所以這對現在的台灣高中生來說
無疑是增添了一份學習上不可避免的負擔
最後是形如 sinh(x) 和 cosh(x) 這類型的超越函數
(所謂超越函數就是無法滿足任何多項式方程的函數)
這些看起來跟 sin(x) 還有 cos(x) 的函數
常常會讓本來就快忘光高中數學的大一學生搞得更混亂
當然可能還有一些函數
但我目前最有印象的就是這三個
5⃣
上面提到超越函數
那接下來講講一個特別的超越函數:指對數函數
在台灣的高中數學裡面
早就透過描點和指對數運算律建立指對數函數的世界觀
但到了大學
大概會有一半的學校重來一次
在大學微積分裡面
會先透過極限定義 e 這個數字
然後再用指數運算律建立 e^x 這個函數
嚴格說起來應該是 exp(x) 這個函數
最後再用反函數的概念定義 log(x) 這個函數
講到這邊,不得不強調一點
高中的 log(x) 是以 10 為底數
而大學的 log(x) 則是以 e 為底數
並且常常會把 log(x) 縮寫成 ln(x)
所以在定義上的不同
這也是在初學大學微積分時一定要注意的
如果想知道 e 這個自然底數如何產生的話
可以參考這個影片:https://reurl.cc/g7jORL
6⃣
以上講的都是大多數台灣的學生初學大學微積分時所會遭遇到的
和高中微積分不同之處
最後我想講一個只有理工學院的同學會遇到的差異之處
那就是「極限的嚴格定義」
高中微積分在教極限的時候
通常只教直觀的極限
也就是透過計算和觀察函數的左右極限來求極限
但到了大學微積分
特別是理工學院的學生
就絕對逃不掉極限的嚴格定義
這邊列一下定義內容:
「lim_(x→a) f(x) = L」若且唯若
「對任意 ε > 0 存在 δ > 0 使得凡 0 < |x - a| < δ 均有 |f(x) - L| < ε」
噁心吧?
這個是絕大數理工學院的學生不可避免的主題
而且會出現在第一次小考或期中考裡面
然後很多學生就送分了
送還給教授分數
雖然說就算整個大學微積分都學完了但極限的嚴格定義從未真正了解過也沒差
但如果大學微積分一開始就考差
那是不是表示期末考就得更努力才能把及格分數追回來呢?
很多人都講反正十年後也用不到微積分
現在這麼努力幹嘛
其實我從來都沒有要所有人都要努力
我只要求想跟我學微積分的學生要努力
但說真的
就算十年以後用不到
但如果在學微積分時不努力
導致隔一年又要在重來一次
那不是把自己的人生拖延住了嗎?
學生階段的學習老實說很多都不是為了未來是否實用
而是為了當下
為了證明自己是一個能夠安裝任何知識的頭腦
證明自己是能夠撐過各種無聊和困難習題考試的人
然後透過這一次又一次的證明
去證明自己是一個可以理解問題並解決問題的人
如此而已
至於講未來會不會用到的那些人
我認為都只是想為自己當下的逃避找一個藉口而已
不然我也可以這樣想
反正我總有一天會死
我的教學影片總有一天會因為沒有人推廣而再也沒人看
那我幹嘛拍?
有時做一件事情或是學習
真的只是為了解決當下的其他問題而已
不用為每一件事情都去思考他的未來
特別是在學生時期
既然到了這間學校這個科系
就好好學習,累積漂亮的 GPA
當然不只學業要顧
如果行有餘力,也應該找公司實習累積經驗
不過這都是在大三大四以後才要思考的事
在面對「極限的嚴格定義」的當下
我強烈建議學生就是一個想法
不要想太多
試著盡自己最大的努力,在進入下一個章節以前
能把這個學的多透澈就多透澈
當然也要考量目前手上所有科目的重量
不能顧此失彼
但就盡最大努力
顧好所有科目
以後如果有機會
我會再拍影片或寫文章講講大學生如何取捨目前手上的學科還有大學如何選課比較聰明
嗯... 我又離題了
總之「極限的嚴格定義」對剛上大學的理工學院學生來說
絕對是大學生涯第一次試煉
如果想趁著開學前先偷念一點的同學
可以反覆觀看這部影片:https://reurl.cc/oLonv5
///
好啦,講了這麼多
不知道認真看完的有幾個
但就如同我上面講的一樣
很多事情做下去是不太會去想太多未來會不會怎樣的
當然這是建立在這件事不會傷害到自己且對他人有幫助的情況之下
這次大概就分享到這邊
如果迴響還不錯的話應該很快就會有下一篇
所以如果有認真看完的朋友們
覺得認同的話幫我按個讚或分享
覺得有話想對我說的話就在下面留言
有認真看完不知道要講什麼但想表示一下支持的
可以在下面留言「我有看完!」
其實我都蠻佩服關注我粉專的朋友們
也佩服有在看我頻道的同學們
因為我的貼文大多都很長
影片也都是超硬核教學影片
感謝支持我們的人們
因為有這些支持
我們才能繼續走下去😀
▋歡迎用訂閱行動支持數學老師張旭 YT 頻道‼
▋連結:https://reurl.cc/KkL3Vy
▋張旭老師大一微積分先修線上直播課程開課了🔥
▋連結:https://reurl.cc/Njol7x
▋歡迎參加許願池活動,留下你想聽我們講解的主題!
▋最新連結請到置頂文章:https://reurl.cc/WdZQDx
▋贊助支持我們
▋歐付寶:https://reurl.cc/vD401k (台灣境內請用這個)
▋綠界:https://reurl.cc/3Dp7Ll (台灣境外用這個)
▋flyingV:https://reurl.cc/g7p48N (2020/7/17 結束)
高中數學公式統整 在 C.C.M Math Facebook 的最佳解答
分享一下:#靠北中女中 (中女中的藍老師)
#靠北中女中6437
【數學學測準備方向分享】
1、前言:
高中數學簡單嗎?高中階段的數學,要問倒一些所謂的名師甚至是教授其實是很容易的(比如說IMO等級的題目),但是學測所要考數學,因為有範圍與限制,
準備就不是那難了。通常沒辦法考好的原因,都是準備方式出了問題。
2、學測的考題方向:
學測的範圍是依據103課綱微調(http://www.ceec.edu.tw/ 99課綱微調/99課綱微調-學測數學考試說明.pdf)。
不像是段考或是模考有時會有超出課綱範圍的題目。但是許多題目是經過教授精心設計過,要見過與講義參考書類似的題目機率很低。
以下是大考中心公布的測驗目標:
(1)測驗概念性知識:
能確認基本的數學原理與概念。(約考4題)
(2)測驗程序性知識:
能讀圖、查表或運用適當的公式與解題步驟。 (約考10題)
(3)測驗解決問題的能力:
能應用數學知識、選擇有效策略及推理能力解決問題,並能檢驗結果的合理性與正確性。(約考6題)
因此,把自己的觀念弄清楚,學習想問題的思路,是想拿高分最重要需要培養的方法。
3、準備時常陷入的迷思:
(1)做大量題目就有效。
做題目再準備時很重要,但是在觀念還沒讀通之前,做題目所得到的知識是很零碎的。
(2)做過多與課綱外(舊課綱)的難題。
學測命題有課綱當依據,這樣有些是在做無效的練習。
(3)記憶過多的速解與妙解。
學測考題經過教授精心設計,速解法通常無用武之地,題目是需要用課本的基本定義與定理去思考。
最經典的一個例子是104年學測正八邊形線性規劃那一題,在市面上的所有參考書與講義不會有這題,
如果你沒有把平行線法的概念弄的很清楚,是不可能把這一題解出來。每年都會有幾題這樣的題目,
高手的決勝之處通常也在這幾題。
4、準備方式:
(1)將課綱內的定義、定理的來龍去脈弄清楚。
建議:找一本將觀念說明很清楚的書籍下手,最方便取得就是課本,因為課綱之外的內容不會出現在課本。課本的內容是主幹,先有主幹再加枝葉。
課本的內容、每個定義、定理、例題、習題應該要讀到滾瓜爛熟,每個概念都要想清楚。
(2)選一本好的複習參考書(講義),做到爛熟。
建議:好的參考書一本就夠了。有觀念分析、解題思路分析,以及題目難度分級的最好。如果對於一個題目,莫名其妙就迸出答案而沒有講解,
那可能不太適合。對照書中的內容可當作課本重點的整理,然後把其中的題目當作補充。
(3)歷屆的大考題,好好一題一題想完做完。做題目先不求快,先求懂。
(4)歷屆的模考題。
建議:模考題每份命題水準的落差可能極大,到接近學測時可以定期給自己計時模擬考,沒考好不用灰心,好好的檢討。
(5)自己做筆記,統整的自己不熟悉的概念,別人整理的,永遠是別人的東西。
5、注意事項:
(1)養成畫正確圖形的習慣。將函數的圖形與幾何的題目依照正確的比例作圖。同學大部分只畫略圖,以為沒什麼關係。
但只要看看這幾年學測及指考對畫圖的要求,就知道正確畫圖的重要,有時候從正確的圖就可以觀察出答案,不合的比例可能會讓你答錯。
(2)不可瞧不起基本操作。有小聰明的同學,總是很不想放下身段去做一些基本的操作,比如:勘根、數學歸納法、數列算幾項等等。
很多同學在複習這幾個章節都是用看的,而不動手。但事實上,對概念的體會,經常是從基本操作來的。不動手的結果是:經常自以為會了,其實並不會。
(3)製作屬於自己的錯誤訂正筆記本。分析自己的錯誤類型,將不會寫(或寫錯)的題目記在的筆記本上,並將他對應的數學概念、解題的思路、關鍵步驟一同
記錄。
(4)答題順序建議是單選,選題,多選(期望值最低)。千萬不要從第一題埋頭做下去,先把比較簡單的做出來,再做比較困難的題目。
(5)學校停課這段時間可以開始做模考題計時訓練。
(a)時間宜選擇在學測考試時段。(b) 計時80或90分鐘的時間。(少於學測時間)(c)培養耐力與訓練如何分配時間【要認真】
(6) 「永遠來得及,千萬不要放棄」高三愈到後來,愈是人心惶惶。所有意識到壓力和想考好的考生都會萌生放棄的念頭。
但是大考真的是在比耐力,沒有人是唸完才去參加大考的!
6、後記:
自然組同學下學期開始學微積分,除了指考比重占很大外(接近30%),也是高中數學銜接大學最重要的課程,值得大家好好花時間研讀。微積分把同學高中學
的一些數學問題做了統合,比如以前我們求極值,大概就是用配方法、不等式,但學會微分後,只要去討論臨界點就可以了。社會組同學也不用太害怕指
考,因為這幾年數乙的題目都很簡單,自然組跨考已經沒優勢了。
數學其實是一門很有趣的學科,但是在中學階段太多機械式與速度的訓練,又有不少打擊信心的考試,讓不少人失去信心與樂趣。一些有理想的老師
會盡力的去讓同學體會數學之美,但是在大環境之下也不免要妥協一些事,祝福所有考生學測考試順利。
投稿日期: 2017年12月7日 13:22 CST