[爆卦]陣列累加是什麼?優點缺點精華區懶人包

雖然這篇陣列累加鄉民發文沒有被收入到精華區:在陣列累加這個話題中,我們另外找到其它相關的精選爆讚文章

在 陣列累加產品中有3篇Facebook貼文,粉絲數超過3,992的網紅台灣物聯網實驗室 IOT Labs,也在其Facebook貼文中提到, 摩爾定律放緩 靠啥提升AI晶片運算力? 作者 : 黃燁鋒,EE Times China 2021-07-26 對於電子科技革命的即將終結的說法,一般認為即是指摩爾定律的終結——摩爾定律一旦無法延續,也就意味著資訊技術的整棟大樓建造都將出現停滯,那麼第三次科技革命也就正式結束了。這種聲音似乎...

 同時也有8部Youtube影片,追蹤數超過4萬的網紅吳老師教學部落格,也在其Youtube影片中提到,Excel VBA辦公室自動化程式開發(公訓處)2-1 如何學會EXCEL函數與VBA提高工作效率提前下班 完整教學影音 http://www.youtube.com/playlist?list=PLsE34duTsJQz2veMbVTQ7__bCKuBKQlIp 完整影音: http://gr...

  • 陣列累加 在 台灣物聯網實驗室 IOT Labs Facebook 的精選貼文

    2021-07-27 11:56:34
    有 1 人按讚

    摩爾定律放緩 靠啥提升AI晶片運算力?

    作者 : 黃燁鋒,EE Times China
    2021-07-26

    對於電子科技革命的即將終結的說法,一般認為即是指摩爾定律的終結——摩爾定律一旦無法延續,也就意味著資訊技術的整棟大樓建造都將出現停滯,那麼第三次科技革命也就正式結束了。這種聲音似乎是從十多年前就有的,但這波革命始終也沒有結束。AI技術本質上仍然是第三次科技革命的延續……

    人工智慧(AI)的技術發展,被很多人形容為第四次科技革命。前三次科技革命,分別是蒸汽、電氣、資訊技術(電子科技)革命。彷彿這“第四次”有很多種說辭,比如有人說第四次科技革命是生物技術革命,還有人說是量子技術革命。但既然AI也是第四次科技革命之一的候選技術,而且作為資訊技術的組成部分,卻又獨立於資訊技術,即表示它有獨到之處。

    電子科技革命的即將終結,一般認為即是指摩爾定律的終結——摩爾定律一旦無法延續,也就意味著資訊技術的整棟大樓建造都將出現停滯,那麼第三次科技革命也就正式結束了。這種聲音似乎是從十多年前就有,但這波革命始終也沒有結束。

    AI技術本質上仍然是第三次科技革命的延續,它的發展也依託於幾十年來半導體科技的進步。這些年出現了不少專門的AI晶片——而且市場參與者相眾多。當某一個類別的技術發展到出現一種專門的處理器為之服務的程度,那麼這個領域自然就不可小覷,就像當年GPU出現專門為圖形運算服務一樣。

    所以AI晶片被形容為CPU、GPU之後的第三大類電腦處理器。AI專用處理器的出現,很大程度上也是因為摩爾定律的發展進入緩慢期:電晶體的尺寸縮減速度,已經無法滿足需求,所以就必須有某種專用架構(DSA)出現,以快速提升晶片效率,也才有了專門的AI晶片。

    另一方面,摩爾定律的延緩也成為AI晶片發展的桎梏。在摩爾定律和登納德縮放比例定律(Dennard Scaling)發展的前期,電晶體製程進步為晶片帶來了相當大的助益,那是「happy scaling down」的時代——CPU、GPU都是這個時代受益,不過Dennard Scaling早在45nm時期就失效了。

    AI晶片作為第三大類處理器,在這波發展中沒有趕上happy scaling down的好時機。與此同時,AI應用對運算力的需求越來越貪婪。今年WAIC晶片論壇圓桌討論環節,燧原科技創始人暨CEO趙立東說:「現在訓練的GPT-3模型有1750億參數,接近人腦神經元數量,我以為這是最大的模型了,要千張Nvidia的GPU卡才能做。談到AI運算力需求、模型大小的問題,說最大模型超過萬億參數,又是10倍。」

    英特爾(Intel)研究院副總裁、中國研究院院長宋繼強說:「前兩年用GPU訓練一個大規模的深度學習模型,其碳排放量相當於5台美式車整個生命週期產生的碳排量。」這也說明了AI運算力需求的貪婪,以及提供運算力的AI晶片不夠高效。

    不過作為產業的底層驅動力,半導體製造技術仍源源不斷地為AI發展提供推力。本文將討論WAIC晶片論壇上聽到,針對這個問題的一些前瞻性解決方案——有些已經實現,有些則可能有待時代驗證。

    XPU、摩爾定律和異質整合

    「電腦產業中的貝爾定律,是說能效每提高1,000倍,就會衍生出一種新的運算形態。」中科院院士劉明在論壇上說,「若每瓦功耗只能支撐1KOPS的運算,當時的這種運算形態是超算;到了智慧型手機時代,能效就提高到每瓦1TOPS;未來的智慧終端我們要達到每瓦1POPS。 這對IC提出了非常高的要求,如果依然沿著CMOS這條路去走,當然可以,但會比較艱辛。」

    針對性能和效率提升,除了尺寸微縮,半導體產業比較常見的思路是電晶體結構、晶片結構、材料等方面的最佳化,以及處理架構的革新。

    (1)AI晶片本身其實就是對處理器架構的革新,從運算架構的層面來看,針對不同的應用方向造不同架構的處理器是常規,更專用的處理器能促成效率和性能的成倍增長,而不需要依賴於電晶體尺寸的微縮。比如GPU、神經網路處理器(NPU,即AI處理器),乃至更專用的ASIC出現,都是這類思路。

    CPU、GPU、NPU、FPGA等不同類型的晶片各司其職,Intel這兩年一直在推行所謂的「XPU」策略就是用不同類型的處理器去做不同的事情,「整合起來各取所需,用組合拳會好過用一種武器去解決所有問題。」宋繼強說。Intel的晶片產品就涵蓋了幾個大類,Core CPU、Xe GPU,以及透過收購獲得的AI晶片Habana等。

    另外針對不同類型的晶片,可能還有更具體的最佳化方案。如當代CPU普遍加入AVX512指令,本質上是特別針對深度學習做加強。「專用」的不一定是處理器,也可以是處理器內的某些特定單元,甚至固定功能單元,就好像GPU中加入專用的光線追蹤單元一樣,這是當代處理器普遍都在做的一件事。

    (2)從電晶體、晶片結構層面來看,電晶體的尺寸現在仍然在縮減過程中,只不過縮減幅度相比過去變小了——而且為緩解電晶體性能的下降,需要有各種不同的技術來輔助尺寸變小。比如說在22nm節點之後,電晶體變為FinFET結構,在3nm之後,電晶體即將演變為Gate All Around FET結構。最終會演化為互補FET (CFET),其本質都是電晶體本身充分利用Z軸,來實現微縮性能的提升。

    劉明認為,「除了基礎元件的變革,IC現在的發展還是比較多元化,包括新材料的引進、元件結構革新,也包括微影技術。長期賴以微縮的基本手段,現在也在發生巨大的變化,特別是未來3D的異質整合。這些多元技術的協同發展,都為晶片整體性能提升帶來了很好的增益。」

    他並指出,「從電晶體級、到晶圓級,再到晶片堆疊、引線接合(lead bonding),精準度從毫米向奈米演進,互連密度大大提升。」從晶圓/裸晶的層面來看,則是眾所周知的朝more than moore’s law這樣的路線發展,比如把兩片裸晶疊起來。現在很熱門的chiplet技術就是比較典型的並不依賴於傳統電晶體尺寸微縮,來彈性擴展性能的方案。

    台積電和Intel這兩年都在大推將不同類型的裸晶,異質整合的技術。2.5D封裝方案典型如台積電的CoWoS,Intel的EMIB,而在3D堆疊上,Intel的Core LakeField晶片就是用3D Foveros方案,將不同的裸晶疊在一起,甚至可以實現兩片運算裸晶的堆疊、互連。

    之前的文章也提到過AMD剛發佈的3D V-Cache,將CPU的L3 cache裸晶疊在運算裸晶上方,將處理器的L3 cache大小增大至192MB,對儲存敏感延遲應用的性能提升。相比Intel,台積電這項技術的獨特之處在於裸晶間是以混合接合(hybrid bonding)的方式互連,而不是micro-bump,做到更小的打線間距,以及晶片之間數十倍通訊性能和效率提升。

    這些方案也不直接依賴傳統的電晶體微縮方案。這裡實際上還有一個方面,即新材料的導入專家們沒有在論壇上多說,本文也略過不談。

    1,000倍的性能提升

    劉明談到,當電晶體微縮的空間沒有那麼大的時候,產業界傾向於採用新的策略來評價技術——「PPACt」——即Powe r(功耗)、Performance (性能)、Cost/Area-Time (成本/面積-時間)。t指的具體是time-to-market,理論上應該也屬於成本的一部分。

    電晶體微縮方案失效以後,「多元化的技術變革,依然會讓IC性能得到進一步的提升。」劉明說,「根據預測,這些技術即使不再做尺寸微縮,也會讓IC的晶片性能做到500~1,000倍的提升,到2035年實現Zetta Flops的系統性能水準。且超算的發展還可以一如既往地前進;單裸晶儲存容量變得越來越大,IC依然會為產業發展提供基礎。」

    500~1,000倍的預測來自DARPA,感覺有些過於樂觀。因為其中的不少技術存在比較大的邊際遞減效應,而且有更實際的工程問題待解決,比如運算裸晶疊層的散熱問題——即便業界對於這類工程問題的探討也始終在持續。

    不過1,000倍的性能提升,的確說明摩爾定律的終結並不能代表第三次科技革命的終結,而且還有相當大的發展空間。尤其本文談的主要是AI晶片,而不是更具通用性的CPU。

    矽光、記憶體內運算和神經型態運算

    在非傳統發展路線上(以上內容都屬於半導體製造的常規思路),WAIC晶片論壇上宋繼強和劉明都提到了一些頗具代表性的技術方向(雖然這可能與他們自己的業務方向或研究方向有很大的關係)。這些技術可能尚未大規模推廣,或者仍在商業化的極早期。

    (1)近記憶體運算和記憶體內運算:處理器性能和效率如今面臨的瓶頸,很大程度並不在單純的運算階段,而在資料傳輸和儲存方面——這也是共識。所以提升資料的傳輸和存取效率,可能是提升整體系統性能時,一個非常靠譜的思路。

    這兩年市場上的處理器產品用「近記憶體運算」(near-memory computing)思路的,應該不在少數。所謂的近記憶體運算,就是讓儲存(如cache、memory)單元更靠近運算單元。CPU的多層cache結構(L1、L2、L3),以及電腦處理器cache、記憶體、硬碟這種多層儲存結構是常規。而「近記憶體運算」主要在於究竟有多「近」,cache記憶體有利於隱藏當代電腦架構中延遲和頻寬的局限性。

    這兩年在近記憶體運算方面比較有代表性的,一是AMD——比如前文提到3D V-cache增大處理器的cache容量,還有其GPU不僅在裸晶內導入了Infinity Cache這種類似L3 cache的結構,也更早應用了HBM2記憶體方案。這些實踐都表明,儲存方面的革新的確能帶來性能的提升。

    另外一個例子則是Graphcore的IPU處理器:IPU的特點之一是在裸晶內堆了相當多的cache資源,cache容量遠大於一般的GPU和AI晶片——也就避免了頻繁的訪問外部儲存資源的操作,極大提升頻寬、降低延遲和功耗。

    近記憶體運算的本質仍然是馮紐曼架構(Von Neumann architecture)的延續。「在做處理的過程中,多層級的儲存結構,資料的搬運不僅僅在處理和儲存之間,還在不同的儲存層級之間。這樣頻繁的資料搬運帶來了頻寬延遲、功耗的問題。也就有了我們經常說的運算體系內的儲存牆的問題。」劉明說。

    構建非馮(non-von Neumann)架構,把傳統的、以運算為中心的馮氏架構,變換一種新的運算範式。把部分運算力下推到儲存。這便是記憶體內運算(in-memory computing)的概念。

    記憶體內運算的就現在看來還是比較新,也有稱其為「存算一體」。通常理解為在記憶體中嵌入演算法,儲存單元本身就有運算能力,理論上消除資料存取的延遲和功耗。記憶體內運算這個概念似乎這在資料爆炸時代格外醒目,畢竟可極大減少海量資料的移動操作。

    其實記憶體內運算的概念都還沒有非常明確的定義。現階段它可能的內涵至少涉及到在儲記憶體內部,部分執行資料處理工作;主要應用於神經網路(因為非常契合神經網路的工作方式),以及這類晶片具體的工作方法上,可能更傾向於神經型態運算(neuromorphic computing)。

    對於AI晶片而言,記憶體內運算的確是很好的思路。一般的GPU和AI晶片執行AI負載時,有比較頻繁的資料存取操作,這對性能和功耗都有影響。不過記憶體內運算的具體實施方案,在市場上也是五花八門,早期比較具有代表性的Mythic導入了一種矩陣乘的儲存架構,用40nm嵌入式NOR,在儲記憶體內部執行運算,不過替換掉了數位週邊電路,改用類比的方式。在陣列內部進行模擬運算。這家公司之前得到過美國國防部的資金支援。

    劉明列舉了近記憶體運算和記憶體內運算兩種方案的例子。其中,近記憶體運算的這個方案應該和AMD的3D V-cache比較類似,把儲存裸晶和運算裸晶疊起來。

    劉明指出,「這是我們最近的一個工作,採用hybrid bonding的技術,與矽通孔(TSV)做比較,hybrid bonding功耗是0.8pJ/bit,而TSV是4pJ/bit。延遲方面,hybrid bonding只有0.5ns,而TSV方案是3ns。」台積電在3D堆疊方面的領先優勢其實也體現在hybrid bonding混合鍵合上,前文也提到了它具備更高的互連密度和效率。

    另外這套方案還將DRAM刷新頻率提高了一倍,從64ms提高至128ms,以降低功耗。「應對刷新率變慢出現拖尾bit,我們引入RRAM TCAM索引這些tail bits」劉明說。

    記憶體內運算方面,「傳統運算是用布林邏輯,一個4位元的乘法需要用到幾百個電晶體,這個過程中需要進行資料來回的移動。記憶體內運算是利用單一元件的歐姆定律來完成一次乘法,然後利用基爾霍夫定律完成列的累加。」劉明表示,「這對於今天深度學習的矩陣乘非常有利。它是原位的運算和儲存,沒有資料搬運。」這是記憶體內運算的常規思路。

    「無論是基於SRAM,還是基於新型記憶體,相比近記憶體運算都有明顯優勢,」劉明認為。下圖是記憶體內運算和近記憶體運算,精準度、能效等方面的對比,記憶體內運算架構對於低精準度運算有價值。

    下圖則總結了業內主要的一些記憶體內運算研究,在精確度和能效方面的對應關係。劉明表示,「需要高精確度、高運算力的情況下,近記憶體運算目前還是有優勢。不過記憶體內運算是更新的技術,這幾年的進步也非常快。」

    去年阿里達摩院發佈2020年十大科技趨勢中,有一個就是存算一體突破AI算力瓶頸。不過記憶體內運算面臨的商用挑戰也一點都不小。記憶體內運算的通常思路都是類比電路的運算方式,這對記憶體、運算單元設計都需要做工程上的考量。與此同時這樣的晶片究竟由誰來造也是個問題:是記憶體廠商,還是數文書處理器廠商?(三星推過記憶體內運算晶片,三星、Intel垂直整合型企業似乎很適合做記憶體內運算…)

    (2)神經型態運算:神經型態運算和記憶體內運算一樣,也是新興技術的熱門話題,這項技術有時也叫作compute in memory,可以認為它是記憶體內運算的某種發展方向。神經型態和一般神經網路AI晶片的差異是,這種結構更偏「類人腦」。

    進行神經型態研究的企業現在也逐漸變得多起來,劉明也提到了AI晶片「最終的理想是在結構層次模仿腦,元件層次逼近腦,功能層次超越人腦」的「類腦運算」。Intel是比較早關注神經型態運算研究的企業之一。

    傳說中的Intel Loihi就是比較典型存算一體的架構,「這片裸晶裡面包含128個小核心,每個核心用於模擬1,024個神經元的運算結構。」宋繼強說,「這樣一塊晶片大概可以類比13萬個神經元。我們做到的是把768個晶片再連起來,構成接近1億神經元的系統,讓學術界的夥伴去試用。」

    「它和深度學習加速器相比,沒有任何浮點運算——就像人腦裡面沒有乘加器。所以其學習和訓練方法是採用一種名為spike neutral network的路線,功耗很低,也可以訓練出做視覺辨識、語言辨識和其他種類的模型。」宋繼強認為,不採用同步時脈,「刺激的時候就是一個非同步電動勢,只有工作部分耗電,功耗是現在深度學習加速晶片的千分之一。」

    「而且未來我們可以對不同區域做劃分,比如這兒是視覺區、那兒是語言區、那兒是觸覺區,同時進行多模態訓練,互相之間產生關聯。這是現在的深度學習模型無法比擬的。」宋繼強說。這種神經型態運算晶片,似乎也是Intel在XPU方向上探索不同架構運算的方向之一。

    (2)微型化矽光:這個技術方向可能在層級上更偏高了一些,不再晶片架構層級,不過仍然值得一提。去年Intel在Labs Day上特別談到了自己在矽光(Silicon Photonics)的一些技術進展。其實矽光技術在連接資料中心的交換機方面,已有應用了,發出資料時,連接埠處會有個收發器把電訊號轉為光訊號,透過光纖來傳輸資料,另一端光訊號再轉為電訊號。不過傳統的光收發器成本都比較高,內部元件數量大,尺寸也就比較大。

    Intel在整合化的矽光(IIIV族monolithic的光學整合化方案)方面應該是商業化走在比較前列的,就是把光和電子相關的組成部分高度整合到晶片上,用IC製造技術。未來的光通訊不只是資料中心機架到機架之間,也可以下沉到板級——就跟現在傳統的電I/O一樣。電互連的主要問題是功耗太大,也就是所謂的I/O功耗牆,這是這類微型化矽光元件存在的重要價值。

    這其中存在的技術挑戰還是比較多,如做資料的光訊號調變的調變器調變器,據說Intel的技術使其實現了1,000倍的縮小;還有在接收端需要有個探測器(detector)轉換光訊號,用所謂的全矽微環(micro-ring)結構,實現矽對光的檢測能力;波分複用技術實現頻寬倍增,以及把矽光和CMOS晶片做整合等。

    Intel認為,把矽光模組與運算資源整合,就能打破必須帶更多I/O接腳做更大尺寸處理器的這種趨勢。矽光能夠實現的是更低的功耗、更大的頻寬、更小的接腳數量和尺寸。在跨處理器、跨伺服器節點之間的資料互動上,這類技術還是頗具前景,Intel此前說目標是實現每根光纖1Tbps的速率,並且能效在1pJ/bit,最遠距離1km,這在非本地傳輸上是很理想的數字。

    還有軟體…

    除了AI晶片本身,從整個生態的角度,包括AI感知到運算的整個鏈條上的其他組成部分,都有促成性能和效率提升的餘地。比如這兩年Nvidia從軟體層面,針對AI運算的中間層、庫做了大量最佳化。相同的底層硬體,透過軟體最佳化就能實現幾倍的性能提升。

    宋繼強說,「我們發現軟體最佳化與否,在同一個硬體上可以達到百倍的性能差距。」這其中的餘量還是比較大。

    在AI開發生態上,雖然Nvidia是最具發言權的;但從戰略角度來看,像Intel這種研發CPU、GPU、FPGA、ASIC,甚至還有神經型態運算處理器的企業而言,不同處理器統一開發生態可能更具前瞻性。Intel有個稱oneAPI的軟體平台,用一套API實現不同硬體性能埠的對接。這類策略對廠商的軟體框架構建能力是非常大的考驗——也極大程度關乎底層晶片的執行效率。

    在摩爾定律放緩、電晶體尺寸微縮變慢甚至不縮小的前提下,處理器架構革新、異質整合與2.5D/3D封裝技術依然可以達成1,000倍的性能提升;而一些新的技術方向,包括近記憶體運算、記憶體內運算和微型矽光,能夠在資料訪存、傳輸方面產生新的價值;神經型態運算這種類腦運算方式,是實現AI運算的目標;軟體層面的最佳化,也能夠帶動AI性能的成倍增長。所以即便摩爾定律嚴重放緩,AI晶片的性能、效率提升在上面提到的這麼多方案加持下,終將在未來很長一段時間內持續飛越。這第三(四)次科技革命恐怕還很難停歇。

    資料來源:https://www.eettaiwan.com/20210726nt61-ai-computing/?fbclid=IwAR3BaorLm9rL2s1ff6cNkL6Z7dK8Q96XulQPzuMQ_Yky9H_EmLsBpjBOsWg

  • 陣列累加 在 COMPOTECHAsia電子與電腦 - 陸克文化 Facebook 的精選貼文

    2019-11-01 14:30:00
    有 38 人按讚

    #半導體製程 #電子設計自動化EDA #神經網路NN #機器學習MachineLearning #數位訊號處理器DSP

    【半導體創新,EDA 來相助】

    半導體製程創新,絕對離不開電子設計自動化 (EDA) 的幫襯。特定領域的處理器似乎是大型主機、微型電腦、筆記型電腦和無線技術的主要推力、是下一波浪潮,可惜受限於製程微縮,若想大力改善系統的結構性能,那麼包括模式識別等在內的多數情況,可能不適用浮點乘法。

    擁有強大、經過驗證且可配置軟體的數位訊號處理器 (DSP),可自定義乘積累加運算 (MAC) 脈動陣列,再加上集成專用可預測編譯器 (compiler),可讀取來自軟體編程測試台的訊號或透過配置額度解決壅塞。此外,雖然標準化架構較省事,但每個設計者都傾向自定義內容,這意味著須進行系統結構分析、自定義編譯器、需有共同框架,可看到不同層面正在發生之事。

    其次,了解功耗需求、做前期功耗分析很重要。實際運行各式工作負載是建置操作系統 (OS) 的關鍵;很多晶片開發商就是在此卡關,不得不回頭重做系統結構。在落實標準化前,業界正處於競爭激烈的硬體衝擊之中,其間產業聚合繁瑣。AI、機器學習以及整合方式仍存在混亂和局限性,迄今依然處於監督學習和訓練階段,也許我們應該關注生態系統,因為電子工程不再僅定格於 IC 設計。

    延伸閱讀:
    《EDA 成為電子&資訊工程的中介橋樑》
    http://compotechasia.com/a/feature/2019/1011/42990.html
    (點擊內文標題即可閱讀全文)

    #國際半導體產業協會SEMI #西門子事業部SiemensBusiness #明導國際MentorGraphic #益華電腦Cadence #新思科技Synopsys

  • 陣列累加 在 台灣物聯網實驗室 IOT Labs Facebook 的最佳解答

    2018-09-17 18:33:00
    有 3 人按讚


    Facebook跨界打造AI深度學習晶片

    2018年9月17日Rick Merritt, EE Times矽谷採訪中心主任

    Facebook證實目前正在招聘晶片工程師,成立晶片部門並展開ASIC設計。這家社交網路巨擘預計很快地將有5家晶片公司支援其Glow深度學習編譯器…

    據Facebook一位高層證實,該公司目前正在招聘晶片工程師,並展開至少一款ASIC設計。在日前於美國加州舉行的Facebook @Scale 2018大會上,這家社交網路巨擘宣佈,預計將有五家晶片公司支援其Glow——一款開放來源的深度學習編譯器。

    Facebook基礎架構副總裁Jason Taylor說,Facebook「確實成立了一支專門與晶片供應商合作的晶片團隊,同時,我們也在打造自家晶片。不過這當然不是我們的首要關注重點。」他表示,這款晶片「並不等同於Google TPU」深度學習加速器,但他並未提供與這款晶片有關的更多細節或時間表。

    Facebook的新晶片部門工作重點之一在於與大約50家設計人工智慧(AI)加速器的公司合作。Taylor指出,「市場上將出現許多加速器晶片。但最大的問題在於他們針對的工作負載是否是當前最重要的。」

    在主題演講中,Taylor將Glow描述為一種通用編譯器,讓開發人員能夠針對雲端或網路邊緣中任何新興深度學習加速器進行推論任務。它並不針對智慧型手機等客戶端系統。

    「我們預期[推論加速器]市場將會出現硬體零碎化的情況。我們開發Glow的目的在於協助機器學習專家設計神經網路,而不必面對調整『每個特定晶片』所需的工作。」

    「我們知道硬體零碎化即將發生,因為沒有人知道哪一種[硬體]資源的組合——例如晶片上記憶體區塊和乘法累加陣列——將會勝出,因此我們讓開發人員專注於高層級的圖形,而無需為硬體規格手動編碼。」

    Taylor解釋,Glow採用由TensorFlow或Caffe2等架構產生的AI圖形,並將其渲染為硬體加速器的位元程式碼。根據Facebook的一篇部落格文章,該編譯器內含幾種工具,包括為晶片特定記憶體配置產生有效程式碼的指令排程器、線性代數最佳化器與記憶體分配器,以及用於測試硬體精確度的CPU參考建置。

    益華電腦(Cadence)、Esperanto Technologies、英特爾(Intel)、Marvell和高通(Qualcomm)等公司都表示未來的晶片將支援Glow。Taylor則表示希望進一步擴展支援名單。「這是Glow作為開放來源的優點之一。」

    一位資深晶片專家將Glow描述為在生產系統中部署神經網路的架構。其輸入是在TensorFlow或Caffe2等架構中創建的圖形。

    幾家既有的晶片製造商已經提供了類似的軟體。例如,輝達(Nvidia)的Tensor RT自架構中提取圖形,並為其GPU輸出Cuda程式碼。

    傳統上,編譯器針對特定晶片進行嚴密的最佳化。但是,Taylor說:「近來的編譯器範圍比過去的更加廣泛——Glow中的最佳化必須能辨識可以渲染到硬體加速器的大部份圖形。」

    轉型AI的前兆?

    在快速發展的深度學習領域,Glow可說是致力於填補軟體和硬體之間差距的最新例證。例如,Nvidia Tensor RT雖然在一年多前才首次發佈,至今已進展到第五個版本了。但有些加速器新創公司對於支持各種軟體架構及其變化所要求的工作程度也無能為力。

    Facebook、微軟(Microsoft)和其他公司則都支援ONNX——一種以權重表現圖形的標準方法。去年12月,Khronos Group還發佈了用於深度學習加速器的硬體抽象層NNEF。

    Glow是Pytorch 1.0的一個組成部份。Pytorch 1.0是一個開放來源計劃組合,包括合併的Caffe2和Pytorch架構。Pytorch 1.0的第一個開發者大會將於今年10月在舊金山舉行。

    Facebook工程經理Kim Hazelwood在另一場活動中展示Facebook使用的十幾種不同深度學習工作負載,其中至少使用了四種不同類型的神經網路。每天,該AI應用程式(App)產生超過200兆個推論,翻譯超過50億個文本,同時也自動刪除至少100萬個假帳戶。

    她說,Facebook的一些推論任務需要的運算量是其他任務的100倍。如今,Facebook在其設計的一小部份CPU和GPU伺服器上執行這些任務。

    Hazelwood在接受《EE Times》訪問時說,從通用硬體轉向客製硬體,必須為那些仍在定義中的工作負載量身打造晶片。但她拒絕透露Facebook對於使用任何自定義AI加速器的想法。

    Facebook neural nets在至少十幾種深度學習app中,僅Facebook本身就採用了至少5種神經網路

    一位觀察家推測,Glow可說是一款理想的工具,有助於讓公司採用適合其工作負載的加速器。Facebook的晶片團隊還能協助精選晶片,或許還可以為其提出客製化晶片的建議。

    此外,Facebook的一篇部落格文章描述它所開發的一款全新軟體工具,使用深度學習來除錯程式碼。SapFix可以自動產生針對特定錯誤的修復程式,然後提交給工程師進行審核並部署至生產中。

    目前,Facebook已經使用SapFix,加速為使用Facebook Android App的數百萬裝置發送程式碼更新的過程。Facebook表示將發佈該工具的一個版本,但未具體說明時間表。

    附圖:
    Jason Taylor GlowFacebook基礎架構副總裁Jason Taylor形容Glow是一款為雲端和邊緣網路進行推論的編譯器(來源:Facebook)

    Facebook Glow

    資料來源:https://www.eettaiwan.com/…/20180917NT01-Facebook-Builds-Ch…

  • 陣列累加 在 吳老師教學部落格 Youtube 的精選貼文

    2013-08-07 01:20:00

    Excel VBA辦公室自動化程式開發(公訓處)2-1
    如何學會EXCEL函數與VBA提高工作效率提前下班

    完整教學影音
    http://www.youtube.com/playlist?list=PLsE34duTsJQz2veMbVTQ7__bCKuBKQlIp

    完整影音:
    http://groups.google.com/group/excelvba2012?hl=zh-TW

    如何把EXCEL"函數"變為 "VBA"?
    今天課程延續大樂透函數版轉成VBA版,這裡會遇到幾個要注意事項:
    1.如何利用陣列存放 6個使用者選號與 7個亂數產生的號碼。
    2.如何增加副程式,再利用call呼叫。
    3.除錯技巧說明,如何逐行與新增監看式。

    之後再教了兩個範例,一個是銷貨單,把EXCEL當成資料庫來存放資料,
    與郵遞區號碼轉換程式撰寫,可以快速的分析資料並輸出成所要資料結果。
    很快的就完成VBA的建立,如此效率大增,隨心所欲的建立標準流程。

    01_講師簡介與課程大綱
    02_問卷結果與縮短網址與下載檔案
    03_範例01:進階功課表說明
    04_範例01:進階功課表解題
    05_開發環境設定與巨集安全性
    06_如何錄製巨集並修改
    07_如何在巨集中加入註解與增加按鈕
    08_實例2:大型試算表說明
    09_實例2:大型試算表解說(公式)
    10_實例2:大型試算表解說(九九乘法表)
    11_實例2:大型試算表解說(函數)
    12_實例2:大型試算表解說(巨集)
    13_實例2:大型試算表解說(VBA列迴圈)
    14_實例2:大型試算表解說(VBA欄迴圈)
    15_實例2:大型試算表解說(VBA字串)
    16_實例2:大型試算表解說(VBA非字串)
    17_實例3:文字遊戲說明
    18_實例3:文字遊戲說明串接
    19_實例3:文字遊戲說明串接(合併字串VBA)

    補充資料:
    EXCEL函數與VBA進階班總整理:
    http://terry55wu.blogspot.com/p/excelvba.html

    目前 EXCEL函數與VBA完整影音論壇:
    1.EXCEL函數與VBA設計
    http://groups.google.com/group/labor_excel_vba?hl=zh-TW
    2.EXCEL函數與VBA進階51
    http://groups.google.com/group/excelvba51?hl=zh-TW
    3.EXCEL函數與VBA雲端班
    http://groups.google.com/group/excelvbacloud?hl=zh-TW
    4.EXCEL VBA辦公自動化班
    http://groups.google.com/group/excelvba_cloud?hl=zh-TW
    5.EXCEL函數與VBA設計(自強基金會2012)
    http://groups.google.com/group/excelvba2012?hl=zh-TW

    由於吳老師超過十年以上的教學經驗,對EXCEL與VBA十分純熟,
    並將多年的教學過程錄製分享給學生課後學習,讓想學習者也想一同學習,
    但礙於加入者實在太眾多,無法讓所有人加入,除非您是:
    1.吳老師目前上這門課的學生。
    2.吳老師的數位影音申請的學生,也就是申請完整教學影音DVD者。網址:http://goo.gl/xME01
    最近湜憶電腦也開設EXCEL函數與VBA設計課程,若有興趣可以詢問看看。

    EXCEL,VBA,函數,自強基金會,吳清輝老師,程式設計,線上教學,e化創新,雲端計算,吳老師提供,APP教學

  • 陣列累加 在 吳老師教學部落格 Youtube 的最佳貼文

    2013-08-07 01:19:45

    Excel VBA辦公室自動化程式開發(公訓處)2-1
    如何學會EXCEL函數與VBA提高工作效率提前下班

    完整教學影音
    http://www.youtube.com/playlist?list=PLsE34duTsJQz2veMbVTQ7__bCKuBKQlIp

    完整影音:
    http://groups.google.com/group/excelvba2012?hl=zh-TW

    如何把EXCEL"函數"變為 "VBA"?
    今天課程延續大樂透函數版轉成VBA版,這裡會遇到幾個要注意事項:
    1.如何利用陣列存放 6個使用者選號與 7個亂數產生的號碼。
    2.如何增加副程式,再利用call呼叫。
    3.除錯技巧說明,如何逐行與新增監看式。

    之後再教了兩個範例,一個是銷貨單,把EXCEL當成資料庫來存放資料,
    與郵遞區號碼轉換程式撰寫,可以快速的分析資料並輸出成所要資料結果。
    很快的就完成VBA的建立,如此效率大增,隨心所欲的建立標準流程。

    01_講師簡介與課程大綱
    02_問卷結果與縮短網址與下載檔案
    03_範例01:進階功課表說明
    04_範例01:進階功課表解題
    05_開發環境設定與巨集安全性
    06_如何錄製巨集並修改
    07_如何在巨集中加入註解與增加按鈕
    08_實例2:大型試算表說明
    09_實例2:大型試算表解說(公式)
    10_實例2:大型試算表解說(九九乘法表)
    11_實例2:大型試算表解說(函數)
    12_實例2:大型試算表解說(巨集)
    13_實例2:大型試算表解說(VBA列迴圈)
    14_實例2:大型試算表解說(VBA欄迴圈)
    15_實例2:大型試算表解說(VBA字串)
    16_實例2:大型試算表解說(VBA非字串)
    17_實例3:文字遊戲說明
    18_實例3:文字遊戲說明串接
    19_實例3:文字遊戲說明串接(合併字串VBA)

    補充資料:
    EXCEL函數與VBA進階班總整理:
    http://terry55wu.blogspot.com/p/excelvba.html

    目前 EXCEL函數與VBA完整影音論壇:
    1.EXCEL函數與VBA設計
    http://groups.google.com/group/labor_excel_vba?hl=zh-TW
    2.EXCEL函數與VBA進階51
    http://groups.google.com/group/excelvba51?hl=zh-TW
    3.EXCEL函數與VBA雲端班
    http://groups.google.com/group/excelvbacloud?hl=zh-TW
    4.EXCEL VBA辦公自動化班
    http://groups.google.com/group/excelvba_cloud?hl=zh-TW
    5.EXCEL函數與VBA設計(自強基金會2012)
    http://groups.google.com/group/excelvba2012?hl=zh-TW

    由於吳老師超過十年以上的教學經驗,對EXCEL與VBA十分純熟,
    並將多年的教學過程錄製分享給學生課後學習,讓想學習者也想一同學習,
    但礙於加入者實在太眾多,無法讓所有人加入,除非您是:
    1.吳老師目前上這門課的學生。
    2.吳老師的數位影音申請的學生,也就是申請完整教學影音DVD者。網址:http://goo.gl/xME01
    最近湜憶電腦也開設EXCEL函數與VBA設計課程,若有興趣可以詢問看看。

    EXCEL,VBA,函數,自強基金會,吳清輝老師,程式設計,線上教學,e化創新,雲端計算,吳老師提供,APP教學

  • 陣列累加 在 吳老師教學部落格 Youtube 的最佳解答

    2011-09-29 00:52:24

    EXCEL VBA程式設計第2次上課
    申請網頁:http://goo.gl/17286
    想取得完整的EXCEL VBA程式設計線上教學,請洽詢湜憶電腦02-25868980

    上學期上的算是EXCEL函數與VBA入門,這學期則以EXCEL VBA進階程式設計為主,
    剛好進來雲端技術發酵,就順便帶入大家都有興趣的雲端試算表,
    所以第一次上課就要求大家一定要有GOOGLE帳號,
    電腦也一定安裝GOOGLE瀏覽器,這樣才能上雲端去使用GOOGLE的試算表,
    可以比較和EXCEL2003的差異,如果可以輕易使用GOOGLE的試算表,
    這樣就可以再沒有EXCEL2003的環境也能作業。

    此外,這學期教是剛換 OFFICE 2010,剛好可以順勢學習 EXCEL2010新介面,
    所以未來的學習環境除了雲端外,就是EXCEL2010了!
    對大家來說有很多挑戰要面對,但如果學會這些技術,工作上一定非常有幫助的。
    尤其是雲端方面的技術,目前懂的人還真不多,用的人也少,
    但這樣好用的技術為什麼沒人推廣?
    可能也是大家都還不會使用吧!之所以自己用的熟,
    主要用GOOGLE的服務至少5年以上,看著GOOGLE的壯大,發現只要跟著GOOGLE就沒錯!
    不斷使用他的免費服務,感覺穩定又好用,重要的事完全免費。

    吳老師 100/9/25

    教學影音(完整版在論壇):

    01_大型試算表VBA內外迴圈
    02_大型試算表INPUTBOX與MSGBOX
    03_大型試算表改為公式
    04_萬年曆下拉式選單
    05_萬年曆日期計算
    06_萬年曆日期欄列函數
    07_萬年曆日期IF&OR函數
    07_萬年曆日期_清單
    08_文字遊戲_文字累加
    10_文字遊戲_百家姓
    11_文字遊戲_向下
    12_文字遊戲_向右
    13_文字遊戲_向下(ROW)
    14_文字遊戲_向右(ROW)
    15_文字遊戲_VBA
    16_文字遊戲_VBA
    17_文字遊戲_VBA(向右)
    18_文字遊戲_VBA(向下)
    19_大樂透範例說明與07開發人員設定
    20_大樂透01
    21_大樂透02
    22_大樂透03
    22_大樂透04開獎
    23_大樂透05開獎
    24_大樂透06開獎
    25_大樂透07開獎
    26_大樂透08開獎

    吳老師教學網:
    http://3cc.cc/10g
    部落格:
    http://terry55wu.blogspot.com/
    論壇:
    http://groups.google.com/group/excelvba_cloud?hl=zh-TW
    溫馨考場論壇:
    http://123.205.192.177/uc/bbs/index.php/

    EXCEL,VBA,函數,吳清輝老師,湜憶電腦,程式設計,線上教學,e化創新,雲端計算,虛擬電腦,吳老師提供

你可能也想看看

搜尋相關網站