[爆卦]迭代法計算機是什麼?優點缺點精華區懶人包

雖然這篇迭代法計算機鄉民發文沒有被收入到精華區:在迭代法計算機這個話題中,我們另外找到其它相關的精選爆讚文章

在 迭代法計算機產品中有12篇Facebook貼文,粉絲數超過2,398的網紅DavidKo Learning Journey,也在其Facebook貼文中提到, [Accelerate State of DevOps 2021 快速摘要] 找一些自己有興趣的地方, 快速用 Google 翻譯一下 主要發現 1. 表現最好的人正在成長並繼續提高標準 在我們的研究中,優秀的執行者現在佔團隊的 26%,並且縮短了他們對生產變更的準備時間。該行業繼續加速發展,...

迭代法計算機 在 BusinessFocus | 商業、投資、創科平台 Instagram 的最佳貼文

2020-05-13 04:35:46

立即 Follow @businessfocus.presslogic【騰訊故事】馬化騰接受官媒訪問:騰訊價值在於和時代、國家利益方向一致⠀ ·⠀ 中國官媒人民日報周二刊登了與騰訊董事會主席兼CEO馬化騰的訪談,馬化騰將騰訊作為互聯網平台企業的價值歸結為三個方面:和時代、國家的利益方向一致;和民眾生...

  • 迭代法計算機 在 DavidKo Learning Journey Facebook 的最佳貼文

    2021-09-23 15:42:19
    有 33 人按讚

    [Accelerate State of DevOps 2021 快速摘要]

    找一些自己有興趣的地方, 快速用 Google 翻譯一下

    主要發現

    1. 表現最好的人正在成長並繼續提高標準
    在我們的研究中,優秀的執行者現在佔團隊的 26%,並且縮短了他們對生產變更的準備時間。該行業繼續加速發展,團隊從中看到了有意義的好處。

    2. SRE 和 DevOps 是互補的理念
    利用我們的站點可靠性工程 (SRE) 朋友概述的現代運營實踐的團隊報告了更高的運營績效。優先考慮交付和卓越運營的團隊報告了最高的組織績效。

    3. 越來越多的團隊正在利用雲,並從中看到了顯著的好處
    團隊繼續將工作負載轉移到雲中,而那些利用雲的所有五種功能的團隊會看到軟件交付和運營 (SDO) 性能以及組織性能的提高。多雲的採用也在增加,因此團隊可以利用每個提供商的獨特功能。

    4. 安全的軟件供應鍊是必不可少的,也是驅動性能的驅動因素
    鑑於近年來惡意攻擊的顯著增加,組織必須從被動實踐轉變為主動和診斷措施。在整個軟件供應鏈中集成安全實踐的團隊快速、可靠和安全地交付軟件。

    5. 良好的文檔是成功實施 DevOps 功能的基礎
    我們第一次測量了有助於這種質量的內部文檔和實踐的質量。擁有高質量文檔的團隊能夠更好地實施技術實踐並整體表現得更好。

    6. 在充滿挑戰的情況下,積極的團隊文化可以減輕倦怠
    團隊文化對團隊交付軟件和實現或超越組織目標的能力有很大影響。在 COVID-19 大流行期間,具有生成性 1,2 文化的包容性團隊經歷較少的倦怠。

    =========================================================

    Technical DevOps capabilities

    我們的研究表明,通過採用持續交付進行 DevOps 轉型的組織更有可能擁有高質量、低風險和具有成本效益的流程。

    具體而言,我們衡量了以下技術實踐:
    • 鬆散耦合架構
    • 基於主幹的開發
    • 持續測試
    • 持續集成
    • 使用開源技術
    • 監控和可觀察性實踐
    • 數據庫更改管理
    • 部署自動化

    我們發現,雖然所有這些實踐都改進了持續交付,但鬆散耦合的架構和持續測試的影響最大。
    例如,今年我們發現,達到可靠性目標的精英執行者採用松耦合架構的可能性是低績效同行的三倍。

    松耦合架構 (Loosely coupled architecture)
    我們的研究繼續表明,您可以通過努力減少服務和團隊之間的細粒度依賴關係來提高 IT 性能。事實上,這是成功持續交付的最強預測因素之一。使用鬆散耦合的架構,團隊可以相互獨立地擴展、失敗、測試和部署。團隊可以按照自己的節奏前進,小批量工作,減少技術債務,並更快地從失敗中恢復。

    持續測試和持續集成
    與我們前幾年的發現類似,我們表明持續測試是成功持續交付的有力預測因素。達到可靠性目標的精英執行者利用持續測試的可能性是其 3.7 倍。通過在整個交付過程中結合早期和頻繁的測試,測試人員與開發人員在整個過程中一起工作,團隊可以更快地迭代和更改他們的產品、服務或應用程序。您可以使用此反饋循環為您的客戶提供價值,同時還可以輕鬆整合自動化測試和持續集成等實踐。
    持續集成還改進了持續交付。達到可靠性目標的精英執行者利用持續集成的可能性是其 5.8 倍。在持續集成中,每次提交都會觸發軟件的構建並運行一系列自動化測試,這些測試會在幾分鐘內提供反饋。通過持續集成,您可以減少成功集成所需的手動和通常複雜的協調。
    持續集成,由 Kent Beck 和它起源的極限編程社區定義,還包括基於主幹的開發實踐,接下來討論。

    基於主幹的開發
    我們的研究一致表明,高績效組織更有可能實施基於主幹的開發,其中開發人員小批量工作並經常將他們的工作合併到共享主幹中。事實上,達到可靠性目標的精英執行者使用基於主幹開發的可能性是其 2.3 倍。低績效者更有可能使用長期存在的分支並延遲合併。
    團隊應該每天至少合併他們的工作一次——如果可能的話,一天多次。基於Trunk的開發與持續集成密切相關,所以你應該同時實現這兩種技術實踐,因為它們一起使用時影響更大。

    部署自動化
    在理想的工作環境中,計算機執行重複性任務,而人類專注於解決問題。實施部署自動化可幫助您的團隊更接近此目標。當您以自動化方式將軟件從測試轉移到生產時,您可以通過實現更快、更高效的部署來縮短交付週期。
    您還可以降低部署錯誤的可能性,這在手動部署中更為常見。當您的團隊使用部署自動化時,他們會立即收到反饋,這可以幫助您以更快的速度改善您的服務或產品。雖然您不必同時實施持續測試、持續集成和自動化部署,但當您將這三種實踐結合使用時,您可能會看到更大的改進。

    數據庫變更管理
    通過版本控制跟踪更改是編寫和維護代碼以及管理數據庫的關鍵部分。我們的研究發現,與表現不佳的同行相比,達到可靠性目標的精英執行者進行數據庫變更管理的可能性要高 3.4 倍。此外,成功進行數據庫變更管理的關鍵是所有相關團隊之間的協作、溝通和透明度。雖然您可以從特定的實施方法中進行選擇,但我們建議,無論何時您需要對數據庫進行更改,團隊都應在更新數據庫之前聚在一起並審查更改。

    監控和可觀察性
    與前幾年一樣,我們發現監控和可觀察性實踐支持持續交付。成功實現可靠性目標的精英執行者的可能性是其 4.1 倍
    擁有將可觀察性納入整體系統健康狀況的解決方案。可觀察性實踐讓您的團隊更好地了解您的系統,從而減少識別和解決問題所需的時間。我們的研究還表明,具有良好可觀察性實踐的團隊會花更多的時間進行編碼。對這一發現的一種可能解釋是,實施可觀察性實踐有助於將開發人員的時間從尋找問題的原因轉移到故障排除並最終回到編碼上。

    開源技術
    許多開發人員已經利用開源技術,他們對這些工具的熟悉是組織的優勢。閉源技術的一個主要弱點是它們限制了您將知識傳入和傳出組織的能力。例如,您不能聘請已經熟悉您組織工具的人,開發人員也不能將他們積累的知識轉移到其他組織。相比之下,大多數開源技術都有一個社區,開發人員可以使用它來提供支持。開源技術具有更廣泛的可訪問性、相對較低的成本和可定制性。達到可靠性目標的精英執行者利用開源技術的可能性是其 2.4 倍。
    我們建議您在實施 DevOps 轉型時轉向使用更多開源軟件。

    source: https://cloud.google.com/devops

  • 迭代法計算機 在 許幼如的職場學習路 Facebook 的最讚貼文

    2021-06-01 08:57:01
    有 13 人按讚

    前言:

    測試學習是個理論簡單,但實作起來會遇到很多疑問的學習過程。曾經跟Sean Ellis 一起工作的曲卉寫的這本書不但實用,而且還訪問了一大票測試專家。

    他們對於測試主題的選擇(大題目還是小題目)、AARRR漏斗的重點,還有測試團隊在組織內的發展也都有不同的見解。

    我覺得很值得多看看,所以做了筆記跟大家分享。

    這次分3 part,先來一串九個人我印象最深的測試心得,再來九個人的訪談摘要,最後是九個人對於組織與人的看法。enjoy~

    ..........

    《硅谷增長黑客實戰筆記》曲卉



    #Greylock Partner / Pinterest(圖片秀), Casey Winters
    "不要只做優化,要做有高影響力的事情。不過,得先做優化累積影響力。"

    #Mobile Growth Stack / Sound Cloud (Podcast), Andy Carvell
    "不要把所有數字綁在一起看,用戶分群是有效優化的開始。"

    # GloStation / Postmates(送餐), 陳思齊
    "限制供給可以透過奇怪的方式,製造FOMO(害怕錯過fear of missing out) 社交地位(social status)等,讓產品流行"

    # Growthstructures / Sofi Finance(學貸轉貸), Steven Dupree
    "低垂果實摘完後,會陷入低潮與瓶頸。全公司(或跨團隊)的創新idea大匯集會讓大家一起幫忙,並且不要浪費對失敗案例的紀錄與策略學習。"

    #Cerberus Interactive/Acorns (微型投資), Sami Khan
    "醜陋、原始的廣告更像是朋友在對用戶說話,有更高機率穿透用戶的防衛心"

    
#Camera360(修圖), 陳思多
    "漏斗的無限解構,原本以為是單純解決留存率問題,結果深究了四層(留存率—>推送更新覆蓋率—>推送更新展示率—>下載權限設定)才達到目的。"

    
#Square(支付), 羅揚 James Luo
    "增長與嚕羊毛黨的鬥智鬥勇,對獎勵的設計要有吸引力,又要養成使用習慣,還要善用推薦者的資訊讓新用戶感受到個性化的感覺。"

    #探探(校園招聘)/ 美圖(修圖), 韓知白
    "要做增長先要備好基礎設施(行為數據後台,A/B測試框架),才能夠更快速迭代與勤能補拙。"

    #專訪 Keep(運動)/豆瓣(社群), 張弦
    "有些問題除了用數據作判斷外,直接問用戶可以達到更直接的效用,而且幫助增長團隊打開視野。"

    ---九篇專訪的摘要全文---

    #9-1 Greylock Partner / Pinterest(圖片秀), Casey Winters

    -北極星指標是會變動的

    -產品(也就是核心地帶)通常是增長的投資報酬率最高的測試,但很難直接說服公司其他成員直接拿產品動刀。


    -增長團隊一開始成立時候,選擇三不管地帶,以證明自己;之後才進展到核心地帶


    -核心地帶的創造新價值、改善原有價值,通常是產品團隊負責。傳遞已有價值給更多人則是增長團隊負責。

    -增長團隊必須是全職的,不能跟人共用成員,否則優先順序會被影響

    -做測試時候,如何在容易衡量但效果慢跟全新設計但不知哪個因素產生作用之間做取捨?優化測驗要一個個做,改變方向測驗則直接直搗黃龍。而改變方向的測試才能反應高影響力。


    -當低垂果實摘完後,要做高影響力需要高資源的測試需求,而不是低資源但也只需要低影響力的需求

    #9-2 Mobile Growth Stack / Sound Cloud (Podcast), Andy Carvell

    -對行動應用來說,留存是所有指標中最重要的,因為客人離開沒有成本,但留存會對你有無限好處。留存指標包含以日、週、月計算。

    -增長團隊大約7-8人,包含產品經理、分析師、設計師、程序員,最多的是程序員。產品經理需要對分析、UI/UX設計、程序都略懂,才能跟他們溝通。

    -以每週的循環討論測試設計、結果與去留。

    -SC的做法不是所有用戶綁在一起看留存率,是用戶分群後看留存率,包含新用戶、流失後重新造訪用戶、重複使用用戶。

    -當移動應用要藉由更版推送提升客戶體驗的時候,如何達到最好的整體效果?衡量指標是RRF 覆蓋率(reach), 相關性(Relevance), 頻率(Frequency) 三個都達到高水準則影響力最大。但覆蓋率是這當中最重要的

    #9-3 GloStation / Postmates(送餐), 陳思齊

    -我的前一間公司(Stolen),每個增長流程與工具都做得很好,但就是產品不夠好。當我到Postmaster之後發現他們什麼成長技巧都沒有,但產品很符合市場需求。

    -增長最令人喜歡的是,能量化你的影響力,當你實驗做得好,結合了創造力與分析能力得出很好的想法,就像寫程式一樣,你做了某件事就有某個結果。這是令人上癮的。


    -增長最令人不喜歡的是,會讓你偏向那些容易衡量並且很快衡量的東西。但有時候最重要的事情,例如產品與市場的契合度,反而不是容易衡量的。

    -K因子(referral 用戶轉介人數)持續大於1是不可能的,尤其當你的產品越做越大,群體越來越多。即使是社交軟體,要讓k因子大於1 也需要一些違反自然規律的設計。

    -稀缺性可以透過奇怪的方式,讓產品更加流行。從Stolen 得到的認知是,限制供給,造成稀缺性。心理因素是害怕錯過(FOMO) 社交地位(social status)等

    -即使在矽谷,增長團隊也不多見。Google就沒有。但是FB就有一大批增長團隊並且擴散到其他地方。增長就是技術驅動,易於衡量的行銷。增長團隊更像升級版的行銷團隊,有了程序員的支持可以把推薦系統做得更精準,未來增長團隊會和市場團隊在一起而不是產品。

    -用少於10%的流量,可以做任何測試。

    #9-4 Growthstructures / Sofi Finance(學貸轉貸), Steven Dupree

    -數學不會就是不會,增長沒效就是沒效。增長可以很快做出改變,並且追蹤哪些改變有效哪些無效。

    -增長的低垂果實摘完後,會陷入疲乏,就需要大量idea。創新idea 兩種重要想法:每週五的全公司頭腦風暴 & 忠實紀錄失敗的測試並從中學到策略想法。

    -增長團隊刷存在感兩種做法:(1) 在例會中說明有趣但違反直覺的實驗,已讓大家有印象(2) 把大象(重大影響力但耗資源)跟螞蟻(容易但效益有限)的實驗混合起來,避免人家覺得你沒貢獻或者只會做小事情

    -新產品開始獲取客人的三種方法:(1) 付費搜索廣告,可以找到真的需要產品並且非常有興趣的人 (2) 抄競爭對手的做法,可以找到他們已經開發過的市場(3) 根據產品特殊屬性的增長手法

    #9-5 Cerberus Interactive/Acorns (微型投資與機器人投資), Sami Khan

    -靠創意的廣告狂人時代已經過去,excel 跟計算機才是你的好朋友。

    -檢視總預算,跨通路預算調整(放大表現好的),通路內預算調整(用七天平均放大表現好的)

    -2C新產品上線的建議是先在FB做小量A/B測試,找出好的再往其他通路擴散。測試前要設好追蹤,沒有追蹤,測試學習的迴路就不會成立。

    -比起其他app,遊戲是最不需要擔心用戶獲取的,因為人們下載無成本;比較需要擔心的反而是用戶留存。因此要一小批一小批的獲取用戶後,關閉其他溝通通路,只針對這小群人做各種產品測試與改進,確定30 日留存率到達可用水準後才能繼續獲取用戶。

    -臉書上,越醜的廣告表現越好。因為大家對電視已經疲乏,精美的廣告創意讓人想到電視會自動跳過,但粗糙的原始的則像是你朋友分享的。

    #9-6 Camera360(Photo Editor), 陳思多

    -漏斗的無限解構,以解決留存為例。原本想藉由app更新處理留存率低的問題,但發現更新覆蓋率不夠高,後來又發現問題是更新的展示率(被看到)低,而展示率低的原因又是app一開始下載時候的預設權限。所以回頭更改預設權限設定,在更改後次日留存率實現5%增長。(但如何在用戶已下載後調整權限啊)


    -各地區的差異化溝通,以美國市場為例,經過逐一測試不同族群發現40+婦女喜歡此產品,於是將廣告視覺改為該族群會喜歡的可愛孩子展示功能,降低33%的獲客成本

    -增長的成功要素是CEO的有意識支持。因為增長會用到很多資源,或是影響很多資源。若是沒有CEO的支持,無法成功。

    -增長團隊需要的數據分析師,是對產品有深切了解的數據分析人,而不是純粹解讀數字。

    #9-7Square(支付服務), 羅揚 James Luo

    -留存主要是產品決定的,但在早期留存(D14-D90)增長可以起到很大作用,只要透過各種管道(信件、推送、Retargeting 廣告)重新提醒用戶,就會對早期留存產生明顯效用。

    -要做全產品用戶推薦的指標的先決條件,是內部有堅實的大數據團隊,足以做獲客通路歸因。

    -通路關鍵三大指標(CPA, ROI, LTV)中,最難建模的是LTV。因為涉及對長期留存率與資本折現率的重要假設。

    -好的推薦系統會牽涉到三大項目,獎勵、曝光、轉化。其中獎勵的設計是與嚕羊毛黨鬥智鬥勇的活動。獎勵內容要考慮『有吸引力的額度、合適的條件限制、養成使用習慣的限制,累進式獎勵、考慮對稱式獎勵(利己又利人)』

    -即使是最忠誠的用戶,也不會時刻記得你的獎勵項目。

    -新用戶進來後,可以用推薦人的資訊提醒他們使用獎勵,不僅給新用戶個性化的感覺,也提醒新用戶『我確實獲得了某人的推薦』

    #9-8 探探(校園招聘)/ 美圖(Photo Editor), 韓知白

    -美圖的用戶留存指標設在N張照片保存,一開始是基於通路管理的需要,因為有些通路留存數據會有回饋延遲以及作假的問題。

    -探探的市場部與增長部的區別在,市場部負責花錢,增長部不負責花錢。

    -增長不是先做KPI管理,而是要有好的基礎設施(行為數據後台,A/B測試框架)才能開始觀測指標與迭代增長。

    -快速迭代的價值在於,當你沒有人家的靈感,人家一次增長效果比你好3倍(+60% vs +20%)的時候,只要你迭代速度有三倍,還是可以得到一樣的成功增長效果。

    -增長要避免的第一個坑就是局部優化,這裡改一點截圖,那裡改一點文案。其實也許改產品名字與圖標是最有效提升app商店轉化率的途徑。增長經理要能夠跳脫盒子思考(out of box thinking)

    -剛開始做測試的人,要忘記喬布斯張小龍等產品的大神,他們是靠直覺也很少看數據:正常人要靠數據與即時反饋,勤能補拙。


    #9-9 Keep(運動)/豆瓣(社群), 張弦

    -全景漏斗,關心橫向的產品功能交互關係。當一個產品不只是工具,還有社交,內容等多種功能。可以根據不同功能設計指標,再看看功能
    之間的交互拉提作用,決定整個產品後續的發展。而不是只看單一指標。

    -量化與質化的兩腳思維,曾經做測試時候只看指標,以為是A與B的相關性,但從未想過中間還有個C。學到後就會在產品中安插小問卷直接問用戶,但要把握3個題目之內的精簡原則,不可以打擾用戶。

    -加法與乘法,做增長後了解了加法與乘法的關係。增加一條溝通管道是加法,優化轉化率是乘法。一般來說,乘法的好處更大一些,但這也是基於加法已經帶來足夠的初始流量,否則盤子太小的乘法也沒啥意義。

    -做產品像開船,動力與方向最重要。產品小的時候,著重動力,加速度要夠。產品體量大了後,動力已經比較足了,著重方向,往哪兒發展就更重要。

    ---以下是關於團隊的摘要---

    #Greylock Partner / Pinterest(圖片秀), Casey Winters
    "增長團隊必須是全職的,不能跟人共用成員,否則優先順序會被影響"

    #Mobile Growth Stack / Sound Cloud (Podcast), Andy Carvell
    "增長團隊大約7-8人,包含產品經理、分析師、設計師、程序員,最多的是程序員。產品經理需要對分析、UI/UX設計、程序都略懂,才能跟他們溝通。以每週迭代的循環討論測試設計、結果與去留。"

    # GloStation / Postmates(送餐), 陳思齊
    "增長最令人不喜歡的是,會讓你偏向那些容易衡量並且很快衡量的東西。但有時候最重要的事情,例如產品與市場的契合度,反而不是容易衡量的。"

    #Growthstructures / Sofi Finance(學貸轉貸), Steven Dupree
    "增長團隊刷存在感兩種做法:(1) 在例會中說明有趣但違反直覺的實驗,已讓大家有印象(2) 把大事(重大影響力但耗資源)跟小事(容易但效益有限)的實驗混合起來,避免人家覺得你沒貢獻或者只會做小事情"

    #Cerberus Interactive/Acorns (微型投資與機器人投資) , Sami Khan
    "靠創意的廣告狂人時代已經過去,excel 跟計算機才是你的好朋友。"

    
# Camera360(修圖), 陳思多
    “增長的成功要素是CEO的有意識支持。因為增長會用到很多資源,或是影響很多資源。若是沒有CEO的支持,無法成功。”

    #Square(支付), 羅揚 James Luo
    “通路關鍵三大指標(CPA, ROI, LTV)中,最難建模的是LTV。因為涉及對長期留存率與資本折現率的重要假設。”

    # 探探(校園招聘)/ 美圖(修圖), 韓知白
    “快速迭代的價值在於,當你沒有人家的靈感,人家一次增長效果比你好3倍(+60% vs +20%)的時候,只要你迭代速度有三倍,還是可以得到一樣的成功增長效果。”

    # Keep(運動)/豆瓣(社群), 張弦
    “做產品像開船,動力與方向最重要。產品小的時候,著重動力,加速度要夠。產品體量大了後,動力已經比較足了,著重方向,往哪兒發展就更重要。”

  • 迭代法計算機 在 台灣物聯網實驗室 IOT Labs Facebook 的最佳貼文

    2021-05-28 14:39:22
    有 1 人按讚

    跨界圍攻:「AI 視覺」公司已集體殺入智能駕駛圈

    2021-05-22
    雷鋒網

    如今的智能汽車賽道,說挨肩迭背也不為過。

    新勢力派引領變革,最為二級市場所看好;泛網際網路派占流量高地,擅技術遷移;傳統車企派根基夯實,品牌名聲享譽在外。

    甚至財大氣粗的某地產派也曾放下豪言――力爭 3-5 年成為世界規模最大、實力最強的新能源汽車集團。

    如華山比武般,大俠們個個嚴陣以待,各方勢力黃巾高擎,左右開弓。

    你看看,前有行業鐵幕,中夾破釜沉舟之心,後是險峻江湖,哪還有初進牛犢的落腳之處?

    即便如此,在月前燥熱尚未消退的上海車展後,鮮少被提及的AI視覺公司還是擠了進來。

    看慣了巨頭們的聲勢浩蕩,轉身發現AI視覺企業們的入局講究一個循序漸進,起承轉合。

    而他們的悄然進入,也給智能駕駛領域增添了幾段新故事。

    海康威視:左手自研、右手投資

    AI安防老大哥海康,深耕智能駕駛市場履行一貫的低調風格。

    其對智能駕駛的綢繆始於2015年,當時海康內部計劃開展新業務,起初確定的業務有三:海康汽車電子、海康機器人、海康螢石。

    2016年7月,耗資1.5億的海康汽車技術正式成立。

    在此前後,海康還分別於2016年6月投資了威視汽車科技,2017年7月成立了海康汽車軟體。

    2018年是海康智能駕駛的上升之年,市場渠道、技術研發上均有突破。

    2018年2月,他們上線高級駕駛輔助系統、自動泊車APA+,同年又成功打入2019款保時捷卡宴的配置中。

    汽車產業以穩為重,鏈條長、利益盤根錯節,新入者切入並不容易,而海康卻出其不意一舉打入高端。

    數據顯示,截至2018年底,海康汽車已經通過了20家OEM的審核並成為其合格供應商,公司的主要客戶包括一汽集團、北京汽車、上汽榮威、上汽名爵、本田汽車等。

    其中,定點項目超過200個,已量產的項目超過100個,覆蓋500家渠道合作夥伴。

    成立子公司自研之外,投資也是海康較為看中的一大路徑。

    在成立汽車電子公司之前,海康就曾在2016年入股毫米波雷達企業森思泰克,並成為後者的第二大股東。

    2013年成立的森思泰克既是毫米波雷達第一批探路者,也是成績較為優秀的領軍企業之一。

    森思泰克創始人秦屹是英國海歸的雷達專家,在英從事雷達研發和製造十餘年。

    據悉,森思泰克所聚團隊成員中80%具有軍工背景,掌握雷達硬體、軟體和量產工藝等幾乎全部核心技術。

    據悉,森思泰克毫米波雷達在北京、石家莊設研發中心,在蕪湖設總廠,在杭州設車載事業部。

    石家莊,有軍工雷達大本營之稱,軍民毫米波雷達研發人才密集,且電科雷達研發54所和13所都在石家莊。

    森思泰克也頗為爭氣。

    2019年,思泰克首次實現大批量77GHz車載毫米波雷達國產化、突破國際巨頭壟斷。

    森思泰克的77GHz毫米波雷達成為國內首個真正實現「上路」的ADAS毫米波雷達傳感器。

    目前,森思泰克已成為紅旗、一汽、韓國現代、東風日產、長城、長安等國內外車企體系內供應商。

    海康與森思合作的高分毫米波成像雷達+視覺融合技術,或許將對壘低線束雷射雷達。

    大華股份:立足整車,三電、網聯、自動駕駛多點齊發

    零跑汽車脫胎於大華股份的汽車部門,獨立後獲得了大華股份的技術和資金支持。

    2015年,大華股份副董事長兼任大華股份CTO朱江明親自下場,成立零跑。

    經歷2019年新能源補貼大退坡,不少新勢力造車企業已經出現嚴重資金問題,且變現存疑。

    零跑汽車亦不例外。

    2018年,零跑虧損 3.07 億元後,2019 年上半年又持續虧損約 2 億元。

    2019年1月4日,零跑汽車第一款車S01上市,該車2019年全年交付約1000輛。

    對於連續虧損的零跑,唱衰論一直也在網上發酵。

    朱江明對此表示,「即使不融資,零跑也能再活三年。」他透露,大華股份將持續為零跑輸送資金,「當然我們希望能更多的融資,發展得更快些。」

    在經歷融資受阻後,2021年伊始,零跑官宣融資43億元,合肥政府投資平台亦在其中。

    今年年初,此前曾投資蔚來的合肥市政府與零跑方面簽訂戰略合作協議,未來合肥方面將對零跑B輪融資投資約20億元,並展開更多合作。

    現金流方面,從不被業界看好,到巨額融資的到帳,仿佛又讓市場看到了可能性。

    技術層面,零跑汽車稱自主研發了三電系統、智能網聯繫統、自動駕駛系統三大核心技術,並完全掌握自動駕駛核心硬體平台和算法技術,實現對自動駕駛感知、決策、執行層關鍵技術的自主化全覆蓋。

    產品層面,零跑汽車目前旗下擁有3款量產車型,分別為:零跑T03、零跑S01以及零跑C11。

    三款產品風格各異,銷量不一。

    2020年,零跑汽車官方消息稱,2020年累計銷量達11391輛,其中T03為主力軍,貢獻了10266輛。

    創始人朱江明也底氣頗足:「2023年零跑進入造車新勢力TOP3、2025年在國內新能源汽車市占率達到10%」。

    商湯:求精感知技術,並進艙內艙外

    與其他AI獨角獸相比,商湯在自動駕駛上布局較早,也更全面。

    2017年進軍自動駕駛,商湯的汽車產業布局可分為艙內(智能車艙)和艙外(智能駕駛)兩大層面。

    智能車艙層,基於前裝量產解決方案,以視覺感知技術為錨點,由點及面,覆蓋用戶從上車到用車的多個場景。

    商湯的SenseAuto Cabin智能車艙解決方案包括駕駛員感知系統、座艙感知系統、智能進入等等功能。

    據悉,在過去的兩年多時間裡,商湯已經拿下了30多個國內外頭部夥伴的智能車艙定點量產項目,覆蓋車輛總數超過1300萬輛,其中10 余個項目已經實現了量產交付。

    智能駕駛層,商湯選擇與主機廠合作,做汽車廠商(OEM)及一級供應商(Tier1)的解決方案供應商。

    在自動駕駛感知、決策和執行三大要素中,汽車廠商和Tier1占據重要角色。

    2017年,商湯與OEM廠商本田簽訂了為期5年的長期合作協議,研發適合乘用車場景的L4級自動駕駛方案。

    2018年,商湯完成杭州、上海半開放場地內實現無接管自動駕駛。2019年,在日本落地「AI自動駕駛公園」,將用於自動駕駛汽車的研發和測試,並面向公眾開放。

    商湯的自動駕駛業務定位,是以視覺為主,其他元素為輔。

    視覺之外,商湯在高精度地圖和雷射雷達、毫米波雷達等方面皆有技術儲備。

    通過搭配多種不同傳感器,實現感知、分析預測、決策規劃控制、城市級三維地圖重建及無人車高精度定位能力等技術功能。

    目前,商湯對自動駕駛技術進行了多次疊代,形成了一套較為成熟的智能駕駛方案:SenseAuto Pilot智能駕駛解決方案,聚焦 L2+ 級高級輔助駕駛至L4級自動駕駛創新,並在上海車展首次發布SenseAuto Pilot-P駕駛領航方案。

    軟體之外,2019年3月,商湯還推出首款原創機器人SenseRover X自動駕駛小車,這是款針對自動駕駛的教學產品。

    奧比中光:戰投+自研,兩條腿走路

    奧比中光是AI初創企業中對智能汽車投入最多的公司之一。

    作為一家AI 3D感知技術方案提供商,成立於2013年的奧比中光現今已在3D傳感領域深耕近8年。

    3D傳感作為人工智慧領域最核心的視覺感知技術,融合了晶片、算法、光學、軟體等多交叉學科技術,是人工智慧時代感知識別、新型人機互動等最為核心的技術載體。

    除3D結構光外,奧比中光在雙目、iTOF、dTOF、雷射雷達等主流3D視覺感知技術領域也有長遠布局。

    早在2018年,奧比中光就投資雷射雷達晶片級解決方案提供商飛芯電子。

    飛芯電子成立於2016年,是一家專注於光電設備、雷射雷達研發、集成電路設計的高新技術企業。

    成立僅2年,飛芯電子獲得了博世等注資。

    據悉,飛芯電子以研發、生產雷射雷達系統及核心晶片為主要業務,客戶群體主要面向國內外汽車、機器人、無人機等生產研發廠商。

    飛芯電子稱,其針對行業痛點,採用了連續波載調製或相干外差探測方案,利用焦平面點雲測距技術,滿足較高的空間解析度和較大的視場角,探測距離可超過200m,且無需複雜昂貴的機械掃描裝置,不斷提高系統可靠性,也使獲得的圖像更為清晰。

    2019年4月,奧比中光成立車載3D視覺傳感方案提供商奧銳達。

    奧銳達的業務重心在智能座艙,產品包括ToF攝像頭模組、雷射雷達等硬體以及3D ToF智能座艙方案。

    承襲了奧比中光的3D視覺感知技術,奧銳達可為智能汽車帶來DMS、OMS、手勢識別、人臉識別、身份驗證等多種3D化智能功能。

    其金融級安全的3D人臉識別方案,保護駕乘人員的信息安全;通過3D-ToF 攝像頭,實現多區域手勢控制;同時,智能汽車還可以通過3D信息,判斷駕乘人員體型、座艙內位置等。

    近日,奧銳達還發布了為智能汽車量身定製的3D ToF智能座艙方案。

    虹軟:主攻艙內,走軟硬一體之路

    2018年,為應對手機市場見頂飽和,虹軟正式將業務從智慧型手機領域拓展至智能汽車、IoT等領域,一舉橫向突進自動駕駛市場。

    虹軟科技創始人兼CEO鄧暉曾表示,未來每輛汽車裡都有10個以上的攝像頭,智能座艙將成為智能駕駛視覺AI的重點應用場景。

    與其手機定位一樣,虹軟的智能汽車走軟硬一體解決方案,力圖做車載視覺一站式解決方案的供應商。

    從招股書看,截至2018年底,虹軟科技的「汽車等loT產品」的業務收入僅367.95萬元,占比不足1%。

    與多數視覺企業加裝雷射雷達等技術不同,虹軟的的自動駕駛解決方案完全基於視覺層面,且核心聚焦在車內智能。

    虹軟科技的智能駕駛視覺解決方案,包括車內安全駕駛預警、駕駛員身份識別、車內安全輔助、輔助駕駛預警、自動泊車等眾多解決方案。

    2019年3月,虹軟入股開易(北京)科技,後者主營業務包括主動安全智能終端(ADAS+DMS+人臉識別)、SDK軟體服務以及硬體整體解決方案。

    2019年,虹軟在科創板上市。

    虹軟表示,其在計算機視覺領域積累深厚,融合其暗光高反差拍攝、防抖等影像視頻增強算法技術,即使在車內光線不佳、人臉角度多變、車輛晃動等特殊情況下,也能夠很好地完成車輛周圍環境監測和車內人員監測等功能。

    上市後,虹軟大力布局智能汽車及其他 IoT 智能設備領域,目前成效初現。

    據虹軟表示,智能汽車板塊2019年開始真正量產。

    數據顯示,2020年,智能駕駛視覺解決方案業務增長較快,實現營業收入6592.99萬元,同比增長310.61%。

    據悉,虹軟智能駕駛相關產品包括DMS(駕駛員識別系統)、ADAS(高級駕駛輔助系統)、BSD(盲區檢測系統)、OMS(乘客識別系統)、Interact(視覺互動系統)、Authenticate(生物認證)、AVM(3D環景監視系統)、AR HUD(AR抬頭顯示)和智能後備箱等各類以核心算法為基礎的相關軟體解決方案。

    高工智能汽車研究院數據顯示,DMS(駕駛員識別系統)的算法業務是其智能汽車業務的主要收入來源。

    虹軟今年透露,其智能駕駛業務已實現37+7個前裝車型定點開發(37款量產車型定點,7款車型預研),以提供純算法為主,公司直接與Tier1或整車廠簽約,涉及多家國內主流車企(含造車新勢力)及部分合資車企。

    格靈深瞳:最早入局,協同成長

    成立於2013年,格林深瞳是最早的一批AI視覺公司,也是最早一批投入自動駕駛的AI視覺公司。

    當年,格靈深瞳聯合英特爾研究院院長吳甘沙、國家智能車未來挑戰賽冠軍團隊負責人姜岩等一同創辦了一家專注於自動駕駛領域的公司――馭勢科技。

    2016年,馭勢科技在北京誕生,格靈深瞳作為投資方入股馭勢科技。

    過去五年,馭勢科技在洶湧潮水中奮力前行。

    2017年1月的CES,馭勢科技向世界推出了無人駕駛概念車「城市移動包廂」,該車型成為了全球第三款獲得紅點設計大獎的無人車。

    同年,這家公司分別在4月和6月,於白雲機場、杭州來福士率先展開面向普通公眾的無人駕駛商業化運營。

    今年1月21日,香港國際國際機場宣布,由馭勢科技與香港國際機場管理局共同研發的無人駕駛物流車將替代人力駕駛拖車,承擔往返機場和海天客運碼頭的行李運輸任務,意味著其在機場的運用已逐步上量。

    在過去的一年中,馭勢科技與長安民生物流、一汽物流、巴斯夫(BASF)等數十家企業建立了商業合作。

    據透露,在國內某豪華品牌車型上,馭勢科技提供的軟體算法也已前裝量產,並幫助該自主品牌率先推出 L3 級自動駕駛功能。去年馭勢科技交付了數百套「AI駕駛員」,實現年度業績同比增長150%。

    前不久,馭勢科技宣布完成累計超10億元人民幣的新一輪融資,在這場融資中馭勢科技獲得了國家資本的參投。

    馭勢科技在無人物流埋頭苦幹,潛心鑽研,其成績是在無人物流領域的業務布局幾乎占到了國內市場的70%。

    2016年誕生至今,馭勢科技經歷萬千辛酸,在密如繁星的棋子中探索出一條最優解法,以機場定式,在精進自我的路上捨命狂奔。

    而格林深瞳的自動駕駛之路,也隨著馭勢科技越走越遠。

    曠視:立足AI視覺,做車載全套解決方案

    2018年11月,曠視曾公開展示過車載AI視覺解決方案。

    彼時的曠視,其解決方案基於車載系統和駕駛過程的人臉解鎖、帳戶切換、駕駛員識別、多模態交互等功能為主,並收取相應軟體使用費和服務費。

    「人臉解鎖」可通過車外的攝像頭捕捉駕駛員人臉信息並進行身份的識別與確認,實現人臉解鎖車門、臨時授權人臉解鎖車門;

    通過車內的攝像頭實現刷臉啟動發動機、保險箱等,「帳戶切換」功能可通過人臉識別無感知精準識別駕駛員身份,配合車載智能系統,快速調整用戶預設的車輛各項個性化配置(座椅位置、反光鏡角度、空調溫度、音樂、燈光、導航等)。

    「駕駛員識別系統」可通過車內攝像頭,實時查看駕駛員駕駛狀態和行為,在駕駛員出現疲勞駕駛或分心駕駛跡象時觸發預警,保障行車安全。

    曠視曾表示,其與蔚來汽車實現了未來在智能汽車應用上的深度合作,真正的無人駕駛商用較遠,曠視聚焦對人類駕駛員的理解和輔助。

    的盧深視:基於3D視覺相機,為產業賦能

    的盧深視在智能汽車領域的角色,更多是與第三方合作的方式。

    作為三維視覺領域的佼佼者,的盧深視在高精度深度感知成像、三維實時高精度重建、三維跟蹤識別及感知等技術方向上深耕多年。

    上月,的盧深視出席了2021全球自動駕駛高峰論壇,並展示了其最新3D CV相機及其應用。

    的盧深視兩款自研3D CV相機,其在5米範圍誤差小於1mm,指標超越國際3D相機巨頭,量產良率達99%以上。

    基於前端低功耗嵌入式平台,兩款相機均可實現非接觸式精準識別,基於結構光原理,更可還原人臉高精度3D細節信息,通過人臉立體尺寸信息精準辨識人員身份,同時對於二維和三維攻擊識別正確率高達99.99%。

    多提一句,安全性上,可達金融級別。

    據悉,除了智能汽車領域,兩款相機也在智能家居、金融支付、智慧交通等領域展開布局。

    智能駕駛:AI視覺第二春

    AI視覺眾企入局智能駕駛賽道,並非跑題創作。

    其一,布局智能駕駛,是戰略向外牽引使然。

    自計算機視覺出走實驗室樊籠,AI安防、自動駕駛便拿到一大波投資人的「S卡」。

    當年AI落地之時,安防提供了絕佳的土壤,AI公司在此實現技術與產業的交融。

    期間,AI與安防彼此成就:

    安防向世界輸送的海大宇等驕子,幾乎主導了全球安防市場話語權,行業極速擴容,向城市各個領域蔓延。

    AI獨角獸們也從安防起家,並逐漸走向千行百業,邁向全域。

    左邊是AI安防成主要營收來源,右邊是AI安防逐漸占領一席之地。擺在入局者眼前的,是如何保持縱向持續增長的必答題。

    擺脫路徑依賴,尋找AI安防之外的市場,已是當務之急。

    如果說,過去五年,AI視覺公司的路徑是「通用AI SDK 重定製集成項目實施」的話,那麼未來五年,他們可嘗試「非標領域的標準市場 形成標準化產品 低成本規模化複製」的路子。

    非標領域的標準市場在哪?自動駕駛、醫療、晶片赫然在列。

    縱觀AI市場,目光所及賽道幾近全員虧損,掘金志認為,與高成本人力無關,因為虧損在放大;與硬體儲備也無關,因為可以OEM。

    核心在於:AI安防未能標準化,項目需求又無窮多。

    那就去標準化市場?有人問。

    標準化市場可以一夜之間把價格做到無窮低,但高額運營支出非AI企業所能承受。

    標準化市場上不去,定製化市場下不來,AI公司的突破口在哪?答案是:非標準化市場裡找到標準化路子。

    賽道上,自動駕駛正是明顯的非標領域的標準市場。與AI安防共通的是,智能駕駛初創企業也依賴資本輸入。

    但前者場景碎片化、項目定製化,產品標準化之路漫漫;後者以智能汽車為載體,技術上軟體定義、人機協同一旦成型,會一招吃遍天下鮮。

    眼下,不少智能駕駛新勢力已實現產品量產,並獲得一定規模的現金流。

    對於一眾搶灘的各路豪傑,AI視覺的入場似乎有些遲。

    但智能汽車賽道正熱、格局未定,智能汽車產業鏈長、細分領域繁雜,此時入場的AI視覺,你可以說它入場稍晚,但不能說它機遇不在。

    其二,自動駕駛或是計算機視覺技術應用必登之高峰。

    近幾年,機器學習持續深入,計算機視覺應用亦有了飛速進展。

    千山萬水跨越的人臉識別小山,是AI最成功,也最基礎的一環。

    真正的AI,是貫穿感知-決策-執行的長鏈條,這一點在自動駕駛上體現得尤為極致。

    感知層,通過各類硬體傳感器捕捉車輛的位置信息以及外部環境信息;

    決策層的「大腦」,基於感知層輸入的信息作環境建模,從而形成對全局的理解並作出決策判斷,再向車輛發出執行的信號指令;

    最後的執行層,將決策層的信號轉換為汽車的動作行為。

    自動駕駛技術是人工智慧、高性能晶片、通信技術、傳感器技術、車輛控制技術、大數據技術等多領域技術的結合體,落地難度之大,各路AI無不動容。

    計算機視覺應用場景萬千,自動駕駛無疑是極具挑戰性、最具想像力的一條。

    越是長在懸崖之巔的花,越讓人著迷。

    一直以來,在環境感知環節,存在AI視覺與雷射雷達技術路徑之爭。

    不管何種路徑更優,已經在視頻物聯領域經歷過殘酷驗證,AI技術儲備上,AI視覺企業們也已攢下不少經驗。

    狼多肉少,能吃幾成飽?

    「自動駕駛是很低級的行業嗎?所有人都想來分一杯羹。」

    這調侃入局者們聽了,大抵會覺得分外委屈。

    大多數困在第一道門檻,錢。

    「沒有200億不要造車」的聲量振聾發聵,造車明星蔚來也曾資金一度跌入谷底。

    雖說AI視覺公司除了大華的零跑汽車外,其他參與者目前都專注於智能駕駛硬體和系統,但這也是個昂貴的行當。

    不少企業本身依靠資本輸血,是否有更多資金和精力參與自動駕駛廝殺,是他們需要思考的問題。

    行業壁壘不容小覷。

    汽車產業發展百餘年才形成了一套嚴謹而完整的生產流程和制度,乃至於衍生出了一套基於安全的工業文明,不是後來者們在短短的幾年時間裡就能夠顛覆的。

    作為智能汽車的核心體現,自動駕駛技術遠未達到成熟的程度;車艙內的智能化體驗也還有豐富的想像空間。

    換言之,如果跨界選手想要在智能汽車的世界裡找到自己的一席之地,不僅要高度重視安全這一話題,還要擁有強大的軟體能力。

    但在前一輪前沿傳統主機廠以及蔚來、小鵬、理想等新造車勢力的人才軍備賽過後,新入局的玩家要如何吸納更多的專業人才?又如何權衡來自世界各地的人才的意見和建議,從而做出最終決策?

    與此同時,智能汽車的研發不是一件只要懂軟體就能夠做成功的事情。

    隨著電動化、智能化大潮的到來,造車的門檻看似降低了不少,但在這一過程中遇到的內因外因的難題,可能遠比想像中的要多。

    行業資源尚需積累。

    相比AI安防、智慧城市等領域,AI視覺跨界者在智能汽車領域品牌影響力和渠道資源不足,短期內,造血盈利能力較低。

    而且,AI視覺企業布局智能駕駛時間不一,技術雖有共性但終究有別,相較於大多數垂直企業,尚有諸多不足。

    故可見,過去幾年,即使AI視覺巨頭,步伐也較為謹慎,大多圍繞艙內智能、ADAS市場。

    如果說巨頭們跨界,自帶熱搜體質,AI視覺企業跨界的光彩,多少暗淡了些。

    前者身家優渥,拿著頂流體驗卡入場,高屋建瓴,後者更多是以小舟,涉鯨波。

    當然,隨著技術日進一桿,資源聚沙成塔,營收逐年增長,他們將投入包括但不限於研發、營銷、資本等層面,難保這一葉扁舟,哪天出其不意成為可遠航的重磅郵輪。

    莫道桑榆晚

    眾多跨界玩家湧入智能汽車,激發了新的生機。

    無論從何種角度來看,智能汽車的市場都蘊藏著無限機遇。

    這個市場需要鲶魚的存在。

    在新時代的風潮之下,我們固然期待看到不斷有實力強勁的新玩家們入局,留下中國智能汽車史上濃墨重彩的一筆。

    我們也殷切地希望,這是一片能夠承載百花齊放,充滿新的生機和活力的沃土,而不是拔苗助長的投機者的港灣。

    憑藉先發優勢,不少入局者或已暫列行業前位,但隨著各方力量的持續加碼,後來居上也並非不無可能。

    保持警惕,時刻成長。

    資料來源:https://www.chinahot.org/science/83632.html?fbclid=IwAR2Mm9ZU17srF7sCywqUPw-hmRAyGN_sN9XnL0_Q6mE4bUYwUpgGNX3wHps

你可能也想看看

搜尋相關網站