[爆卦]轉移函數定義是什麼?優點缺點精華區懶人包

雖然這篇轉移函數定義鄉民發文沒有被收入到精華區:在轉移函數定義這個話題中,我們另外找到其它相關的精選爆讚文章

在 轉移函數定義產品中有4篇Facebook貼文,粉絲數超過3,992的網紅台灣物聯網實驗室 IOT Labs,也在其Facebook貼文中提到, AI加值智慧製造 鋼鐵傳產乘浪而起 芮嘉瑋/專欄 2021-01-28 02:45 2020年面對COVID-19(新冠肺炎)的襲擊,疫情籠罩之下各行各業幾乎空轉一年,投資購買設備及原料的腳步也都放緩,預期新的一年,隨著疫情穩定與經濟復甦,許多企業勢必加速添購設備和增加庫存料,鋼材需求可望隨...

  • 轉移函數定義 在 台灣物聯網實驗室 IOT Labs Facebook 的最佳解答

    2021-01-28 20:43:49
    有 1 人按讚

    AI加值智慧製造 鋼鐵傳產乘浪而起

    芮嘉瑋/專欄 2021-01-28 02:45

    2020年面對COVID-19(新冠肺炎)的襲擊,疫情籠罩之下各行各業幾乎空轉一年,投資購買設備及原料的腳步也都放緩,預期新的一年,隨著疫情穩定與經濟復甦,許多企業勢必加速添購設備和增加庫存料,鋼材需求可望隨著市場回升而轉強,且至少旺到第2季。

    舉例來說,在汽車的構造上,有相當高的比例是使用鋼板,包括車門、引擎蓋、後車箱、底盤、車頂等,所以汽車業的好壞,間接影響了鋼材的需求。這2年汽車上游原材料反應了因電動車興起所展開的換車潮,從而鋼市好轉、鋼價高漲,幾乎各國都是如此。

    隨著消費型態轉變,產品生命週期縮短,各行各業面臨客製化的挑戰,並在智慧工廠生產流程的訴求下,往往需要智慧機械、智慧製造設備以從事更複雜的生產工作,鋼鐵傳產業也不例外。然而,現有機器人或製造機台受限於原本功能單一又無法擴充的窘境,必須藉由人工智慧、物聯網、大數據等各種新興技術多元化功能的整合,以利製造業數位轉型升級,因應瞬息萬變的市場挑戰,凸顯「智慧製造」的概念是企業轉型升級的唯一出路。

    何謂智慧製造?

    經歷4次工業革命的演進,第4次工業革命被視為「工業4.0」,且因智慧製造是工業4.0的核心部件,在製造產業兩者幾乎可劃上等號,從而「工業4.0」常被稱為「智慧製造」。

    在工業4.0的時代驅動下,現今製造業不斷與數種新興技術結合,從而工業4.0被定義為「製造技術中整合了網路安全(cybersecurity)、擴增實境(AR)、大數據、自主機器人(autonomous robots)、積層製造(additive manufacturing)、模擬(simulation)、系統整合(system integration)、雲端運算(cloud computing)和物聯網等技術使之具有自動化、聯網、數據交換以及智能工廠所需功能的系統平台」 。

    因此,智慧製造實際上需要整合以上所述之各種關鍵領域技術的同步發展以建構出相應的產業生態體系,並在生產過程的每一個環節都能達到高度自動化、客製化與智慧化的先進製造模式,使生產環境具備自我感知、自我學習、自我決策、自我執行以及自我適應的能力,以適應快速變化的外部市場需求。

    如何利用AI加持智慧製造

    由於智慧製造包括連網(connection)、轉化(conversion)、虛擬(cyber)、認知(cognition)和自我配置(configure)等能力 ,其中利用機器學習、深度學習等AI技術使機器具備自我診斷並即時做出判斷的認知能力,就是AI之所以成為智慧製造核心技術之所在,它可以從大量原始數據中自動提取關鍵特徵及製造業中規律性的模式,進而學習過往曾經發生過的錯誤,以提前作預測及預警,藉此不僅可降低停機時間、提升製程效率,也可適時的根據產線作調整。

    至於該如何利用AI加持智慧製造,讓我們看看國內鋼鐵龍頭中國鋼鐵股份有限公司(簡稱中鋼公司),在其智慧生產技術中導入AI實現智慧製造的專利布局,提供製造業者掌握AI加值智慧製造,讓工廠轉型升級邁向智慧工廠。

    中鋼發明一種透過人工智慧演算模組在生產製程中進行估測及控制的系統(TWI704019),具體而言,係透過人工智慧演算模組所產生的估測鋼帶翹曲模型對鋼帶翹曲量進行估測,而該人工智慧演算模組係利用機器學習模組、深度學習模組或者使用一雲端伺服器模組評估該製程參數及該翹曲量。

    該專利提供一種包含熱浸鍍鋅設備100、矯正機構130、感測模組150、人工智慧演算模組160以及最佳化演算模組165的熱浸鍍鋅鋼帶翹曲量估測系統。其中,該人工智慧演算模組160連接該感測模組150及該熱浸鍍鋅設備110,用以收集且評估該熱浸鍍鋅設備110中諸如產線速度、張力、鋼帶鋼種、鋼帶寬度、鋼帶厚度、鋼帶剛性等製程參數及翹曲量,進而可產生估測鋼帶翹曲模型,且該估測鋼帶翹曲模型包含一矯正干涉量,用以供矯正機構130矯正鋼帶。

    經過大量數據的累積,該估測鋼帶翹曲模型還可以包含來自該最佳化演算模組165的製程參數最佳值,當類似或相同的製程參數(例如類似或相同鋼種)的鋼帶需要進行熱浸鍍鋅時,該估測鋼帶翹曲模型就會顯示諸如最佳張力、最佳產線速度、最佳矯正干涉量等製程參數最佳值,供操作者參考,從而獲得翹曲量最少且鍍鋅厚度一致的鍍鋅鋼帶。

    再者,由於一般的鋼捲產品需要經過諸如煉鋼、熱軋和冷軋等許多生產階段,為了讓產品的機械性質符合預定的規範,過去往往依賴人為經驗調整生產階段的製程參數,然而,人為經驗難以即時反應生產線狀況,中鋼就此發明一種適用於一軋延系統之製程參數的調控方法(TWI708128),當執行完一部分的生產階段以後,可以即時地計算下一個生產階段的製程參數,其中之製程參數的調控方法包括根據歷史資料建立一機器學習模型,後續並將測試資料輸入至機器學習模型以預測目前產品的機械性質等步驟。

    在該專利之軋延系統的運作流程示意圖中,在步驟220,可根據這些歷史資料來建立一個機器學習模型221,此機器學習模型221是要根據生產參數來預測產品諸如拉伸強度、降伏強度和伸長率等的機械性質,換言之在訓練階段中生產參數是作為機器學習模型221的輸入,機械性質則作為機器學習模型221的輸出。機器學習模型221可以是卷積神經網路、支持向量機、決策樹或任意合適的模型。

    在步驟230,對目前在線上的產品執行部分的生產階段。在步驟240中,將測試資料輸入至機器學習模型221以預測目前產品的機械性質,並判斷所預測的機械性質是否符合一規範。在步驟250中,依照預設生產參數進行下一個生產階段。

    如果步驟240的結果為否,則執行一搜尋演算法以取得最佳的生產參數,並據此實施下一個生產階段(步驟260)。其中,執行搜尋演算法以取得調控後參數的步驟包括:設定一利益函數;將尚未完成生產階段的可調控參數與線上資料合併後輸入至機器學習模型以取得預測機械性質,並根據利益函數計算出預測機械性質的誤差值;以及取得最小誤差值所對應的可調控參數以作為調控後參數。

    此外,中鋼亦發明一種設備監診方法(I398629),係在設備故障監診分析流程的邏輯下導入類神經網路(neural network)之人工智慧,以便在決策分析時有效解決故障類型分類方面問題。

    給台灣製造業的建議與展望導入AI技術、配合感測器收集各類數據以及大數據分析進行諸如產線異常診斷或品質監控,以維持機器正常運作無虞是智慧工廠有效運作的基礎。然而,智慧製造除了藉由智慧機械建構智慧生產線、透過雲端和物聯網分析資料、AI自主監測診斷調整產線產能之外,虛實整合系統(或稱網路實體系統,Cyber-physical systems)也是構成工業4.0創建智慧製造所需的功能之一,整合物理模型、感測器資料和歷史數據,在虛擬空間即時模擬呈現生產狀態,透過遠程監視或跟踪與工廠現有的資訊管理系統緊密整合,建立完整資訊生態系統才能透過AI即時彙整資訊進行決策。

    未來製造業仍將是全球產業不可或缺的一環,隨著工業4.0的蓬勃發展,台灣製造業在邁向智慧製造過程中,所有智慧化的步驟都需要運用AI來執行分析、診斷、預測或決策等工作,欣見國內鋼鐵龍頭已率先落實AI加值智慧製造,然而若能整合虛擬(Cyber),強化與工業物聯網之整合,更可提升透過AI提高組織運作效率及效能的目的。

    過去製造業藉由大量生產與低價競爭已非決勝關鍵,如何協助國內產業在後疫情時代轉型升級,是當前的重要議題。持續強化在地製造業與資訊業領域的技術整合優勢,透過機器學習、類神經網路或深度學習等AI技術的導入,並與使用者/消費者連結形成完整的製造服務體系,將可望從傳統製造體系中依賴人為經驗、人力需求及規格一致的常態,轉換為自動化、客製化、智慧化和靈活彈性化的智慧製造。本文以鋼鐵龍頭之典範轉移為例,以期台灣所有製造產業均應具備智慧製造的軟硬實力,才能持續在全球製造體系中發光發熱。

    附圖:鋼帶翹曲量估測及控制系統結構示意圖。芮嘉瑋
    台灣專利號I708128之軋延系統的運作流程示意圖。芮嘉瑋

    資料來源:https://www.digitimes.com.tw/tech/dt/n/shwnws.asp?cnlid=1&cat=140&id=0000602586_r1c6gnef7wl2247ink60m

  • 轉移函數定義 在 李傑老師 Facebook 的精選貼文

    2021-01-12 16:53:01
    有 115 人按讚

    110學測數學重點來嘍!!!

    1.數與式
    有理數與無理數/絕對值的數線意義/算幾不等式。

    2.多項式
    二次函數(極值,恆正,係數的正負判別)/牛頓定理/勘根/虛根成雙/插值多項式。

    3.指對數
    圖形/對數的定義題(星等,分貝,地震,ph值)/不等式/首尾數(複利,成長率,內插法)與應用。

    4.數列級數
    等差等比的混合題型/sigma求和應用/複利求和。

    5.排列組合
    同物排列/排容原理/選排問題/分組分堆/幾何計數(直線數,三角形數,矩形數…)/二項式定理。

    6.機率
    古典機率(骰子,銅板,數字問題)/條件機率/貝式定理/獨立事件。

    7.數據分析
    標準差S/相關係數r/迴歸直線/資料的伸縮平移。

    8.三角
    定義(廣義角)/正餘弦與應用(面積,中線,分角線,偏線,R,r)/二倍角公式/簡易三角測量。

    9.直線與圓
    斜率/直線的位置關係與分割/線性規劃/圓與線的位置關係/切線的求法。

    10.平面向量
    加減法概念/共線理論/內積的性質與應用(長度,夾角,正射影)/兩線求夾角(距離)。

    11.空間向量
    坐標系的設定/外積與面積體積。

    12.空間中的平面直線
    平面方程式的處理/兩平面求夾角距離/直線與平面的位置關係(交於一點,平行...)。

    13.矩陣
    乘法與性質/轉移矩陣的判讀/馬可夫鏈/反矩陣(乘法反元素)

    14.二次曲線
    定義的應用(尤其是兩種曲線的混合命題,共焦點或共頂點…)/求方程式。

    請按照上述重點逐一複習,並找試題演練,必可考得佳績!

    Go go go & good luck♥
    (本文歡迎轉載或分享 請註明出處 謝謝)

  • 轉移函數定義 在 數學老師張旭 Facebook 的最佳解答

    2020-06-17 17:54:41
    有 17 人按讚

    ▋歡迎用訂閱行動支持數學老師張旭 YT 頻道!
    ▋連結:https://reurl.cc/KkL3Vy
     
    ▋張旭老師大一微積分先修線上直播課程開課了🔥
    ▋連結:https://reurl.cc/Njol7x
     
    第十一屆的許願池活動結束了
    講的是拉普拉斯轉換
     
    我個人對拉普拉斯轉換是又愛又恨
    愛是因為真的非常漂亮且好用
    恨是因為其實太多細節需要謹慎處理
     
    但無論如何
    昨天二個半小時我把常考的拉氏轉換內容都跑了一遍
    如果你對該主題有需求的話
    歡迎點此連結:https://reurl.cc/kdWyeL
     
    這次的許願池一樣
    歡迎大家留言想聽我們講的主題
    或是你也可以去按你想聽的主題讚
     
    得票數最高且適合較多學生看的主題
    將會在下周透過錄播或直播的方式分享給大家
     
    然後有個比較大的事情要跟大家公布
    從第 12 屆許願池活動開始
    影片首播將轉移到 YouTube 頻道上面進行
     
    所以如果你想參與直播的話
    之後就請到張旭老師的 YouTube 頻道上觀看吧
    連結:https://reurl.cc/KkL3Vy
     
    最後,在留言提出你想聽的主題之前
    記得看看我們是否已經講過了喔
    目前已經講過的主題:
     
    EP01:向量微積分重點整理 (https://reurl.cc/62Y1Ky)
    EP02:泰勒展開式說明與應用 (https://reurl.cc/g7pORz)
    EP03:級數審斂法統整於習題 (https://reurl.cc/j7YN91)
    EP04:積分技巧統整【丈哥講解】(https://reurl.cc/D9LRqm)
    EP05:極座標統整與應用 (https://reurl.cc/b5aLWl)
    EP06:極限嚴格定義題型 + 讀書方法分享 (https://reurl.cc/3Dp0KX)
    EP07:常見的一階微分方程題型與解法 (https://reurl.cc/3Dp0KX)
    EP08:Jordan form 與 SVD 分解 (本集計算錯誤較多,之後將重新錄製)
    EP09:反函數定理與隱函數定理 (https://reurl.cc/O1LlY3)
    EP10:多變數函數求極值與 Lagrange 乘子法【丈哥講解】 (https://reurl.cc/xZ4yNz)
    EP11:Laplace 轉換 (https://reurl.cc/kdWyeL)
     
    ▋贊助支持推廣高等數學
    ▋歐付寶:https://reurl.cc/vD401k (台灣境內請用這個)
    ▋綠界:https://reurl.cc/3Dp7Ll (台灣境外用這個)
    ▋flyingV:https://reurl.cc/g7p48N (2020/7/17 結束)

你可能也想看看

搜尋相關網站