【@businessfocus.io】美國動大工程破解武漢實驗室數據 或未能提供高質評估結果
.
CNN援引多名消息人士披露,美國情報部門已獲取來自中國武漢實驗室的大量新冠病毒基因數據。當局目前正安排人力,並動用美國國家能源部數十台超級計算機對此進行研究和分析,一旦成功破譯,這些數據將可能是揭開新...
【@businessfocus.io】美國動大工程破解武漢實驗室數據 或未能提供高質評估結果
.
CNN援引多名消息人士披露,美國情報部門已獲取來自中國武漢實驗室的大量新冠病毒基因數據。當局目前正安排人力,並動用美國國家能源部數十台超級計算機對此進行研究和分析,一旦成功破譯,這些數據將可能是揭開新冠病毒溯源的關鍵。
.
美國總統拜登曾在5月要求情報部門在90天內調查新冠病毒溯源,如今僅剩不及半個月的時間。消息人士指出,情報部門獲得這些數據正是調查計劃的一部分,情報人員希望這些數據將有助於解開新冠病毒如何從動物傳播到人體的謎團,這對於確認新冠病毒是否是從武漢實驗室洩漏至關緊要。
.
報導指出,情報部門獲得的海量數據包含了從中國武漢實驗室研究的病毒樣本中提取的基因藍圖。不過報導稱,目前不確定情報部門是如何及何時獲得這些數據的,但參與創建和處理這些基因數據的計算機一般會連接到外部的雲端伺服器上,因此不排除有可能是黑客入侵系統拿到的,最終落入美國情報部門手中。
.
情報部門要將大量原始數據轉譯為可用資訊並非易事。當局需要依賴能源部國家實驗室的超級電腦,以確保擁有足夠的計算能力。此外,該基因測序數據涉及中文術語,情報部門需要尋找背景安全可靠、熟悉中文,且具備豐富經驗的科學家,來研究這些複雜的數據。消息人士指出,「顯然,有些科學家已經通過了安全審查,但既會說中文又背景安全的科學家是非常小的群體,這提升了研究難度。」
.
報導提及,美國情報人員一直在尋找武漢病毒研究所處理過的「2.2萬份病毒樣本」數據,但中國官員2019年9月從國際基因資料庫上刪除相關數據後,便未有重新提供。WHO早前亦呼籲中國配合展開第二階段病毒溯源調查,並批評中方在第一階段調查時未有提交所有重要數據。中方則表示,當時已向WHO展示了所有早期病人數據,但礙於隱私規定才沒有讓專家拷貝拍照。
.
有研究人員質疑該2.2萬份病毒樣本是否真實存在,或是還有科學家尚不知情的任何基因資料。另一方面,這2.2萬個樣本是否包含在今次情報部門所獲得的數據中,也尚未得知。
.
同時,知情人士指出,雖然破解這些病毒的基因定序數據,能夠使科學家分辨新冠變種病毒之間的差異,並提供科學家有關病毒如何進化或變異的線索,包括病毒是否有被人類操縱的跡象。不過,即使成功填補缺失的基因聯繫,依然不足以證明引起新冠病毒到底是來自於實驗室還是自然界,情報部門仍然需要拼揍起其他背景線索,才有可能證明「疫情源頭」。因此,情報部門幾乎不可能在拜登要求的90天內給出結論。
.
高階情報官員透露,目前為止情報部門內部在關於疫情起源的「實驗室外洩論」與「自然起源論」看法仍存分歧。CNN上月16日報導稱,多數研究新冠肺炎及調查疫情起源的科學家都表示,按照現有證據,強烈支持新冠病毒「自然起源論」。至於拜登政府,去年曾試圖淡化「實驗室外洩論」,但如今立場轉變,認為「實驗室外洩論」是病毒溯源的關鍵拼圖。另外,一些研究人員、情報官員和共和黨內保守派認為,武漢研究所的研究人員可能在實驗室中對病毒進行了基因改造,實驗意外令研究人員被意外感染,並在他們的社區中傳播。
.
面對美國不斷放風,中國外交部態度強硬,強烈譴責美方「散布新冠病毒溯源虛假信息」,此外,官媒亦反擊,質疑新冠病毒是來自美軍的實驗室,並要求WHO徹查。中央電視台譴責美方,在面對新冠病毒問題還有重重疑團還沒解開,例如美軍生物實驗室究竟發生了甚麼、電子煙肺炎的真相是甚麼等。中新社亦指美國近期大搞溯源恐怖主意,試圖將中國與新冠病毒起源連結一起;對於遭受外界質疑的美軍德特里克堡實驗室則保持沉默。
.
Text by BusinessFocus Editorial
.
#BF環球視野
.
@businessfocus.io 瞭解更多商業財經資訊
.⠀
#money #investment #business #finance #life #startup #startups #management #company #expert
質因數計算機 在 台灣物聯網實驗室 IOT Labs Facebook 的精選貼文
5G與邊緣互為體用 體現完美分散式運算
讓網路智能邁向邊緣網路
【作者: 籃貫銘、王岫晨】 2020年07月31日 星期五
分散式的概念由來已久,尤其從有網路以來,資料的運算和儲存架構就不斷的朝向「去中心化」發展。到了物聯網時代,這個模式更成了理所當然和不可或缺的系統建置架構。
最初,分散式運算(Distributed computing)的提出,就是一種基於多計算機以網路連接的運算系統。基本上就是使用一組電腦,透過網路互相連結並通訊,之後運用軟體的控制機制,讓它們形成一個大型的運算系統,已完成更大的運算目標。
也因此,這種形式的系統運作思維,就是要把一個需要大量計算的工程資料,分割成諸多小塊,再分給多台電腦個別去計算,接著再上傳運算結果,最後統一合併成資料結果。
所以可想而知,傳統的分散式運算是站在降低整體成本的思維來進行,就目的而言,仍是集中式的思考,只是在運算手段上採用了分散的形式,著名的蛋白質藥物運算專案Folding@home,就是在這種架構下執行的一項任務。
跳脫傳統框架 物聯網實現真正分散式運算
然而目前的物聯網則完全跳脫了傳統的框架,它們本身就不存在一個被指定的巨大任務,因此在設計上就顯得更加自由,架構上當然也更加彈性,因此物聯網可以說是真正的實現了分散式運算的理念。
首先,在本質上,物聯網就是一種去中心的架構,它透過有線和無線的網路系統,將各式的裝置連結起來。儘管在這個架構中,所有的裝置連結成一個大網路,但網路中的每個節點裝置都是獨立運行,有各自的功能與目標。
連結成網的目的,則是要打破物與物溝通的藩籬,讓彼此的運行可以更緊密,同時應用的深度也更加貼近實際的需求。
再者,從技術上看,物聯網裝置本身也需要一定的運算力,才能運行前端種種的功能,而且物聯網裝置經常會產生許多的數據,這些資料的處理、傳輸、儲存也會提供對端點裝置運算力的需要。也因此,分散式運算的功能在物聯網應用中更顯重要。
而物聯網的分散式運算技術應用中,邊緣運算則是當前最受關注的一環,它可以說是實現智慧物聯(AIoT)應用的關鍵技術,甚至也是把人工智慧帶進人們日常生活的重要技術,因此,包含AWS、英特爾、NVIDIA與Microsoft等大型的科技公司,紛紛鎖定邊緣運算的技術與應用,最為其在物聯網時代的主要服務項目,積極投入邊緣晶片與邊緣平台的開發。
根據市場研究公司technavio的研究,全球2019至2023年全球邊緣運算市場的年複合成長率(CAGR)將近41%,市場規模將達到57億美元。而其主要的驅力則來自於對於「去中心化」的運算力需求,藉此減低因數據傳輸路徑過長所造成的決策延遲。
另一方面,萬物聯網的時代,必然出現數據資料量爆炸性成長的情況,這不僅考驗網路基礎建設與傳輸技術,同時數據的儲存與隱私問題也會變成發展的挑戰。也因此「分散式儲存」和「分散式帳本」的技術與應用,也將隨之而來。
而隨著全球5G陸續啟用之後,尤其是5G的低延遲與大連結的技術,更是有助於提升分散式運算的性能,對於上述種種的分散式運算技術與應用,將會刺激其進一步的加速發展,並成為未來幾年內重要的市場成長驅力。
分散式運算的最佳體現
提起分散式運算,智慧手機算是最典型的一個代表產物了。越來越強大的運算功能,可以由使用者隨身攜帶,真正做到隨時隨地、不同空間的異地運算。特別是隨著5G問世,更大的通訊頻寬,使得更為強大的分散式運算成為可能,並開啟更多全新的應用體驗。我們可以說,去中心化的邊緣運算,就是實現分散式運算的最佳體現方式。
Marvell 首席架構師 George Hervey指出,當我們邁向「始終在線,始終連接」(Always On,Always Connected)模式的更進階階段時,智慧手機已經成為生活中不可或缺的一部分。我們的手機提供即時的資料和溝通媒體存取,這樣的存取方式影響我們的決定,最終左右我們的行為。這便是分散式運算的全新意涵。
思科預計,到了 2022 年,全球行動網路將會支援超過 120 億部行動裝置及物聯網連線。而這些行動裝置將會支援更多元的功能。如今,我們的手機已然取代許多小工具並提供諸多服務。如果您的手機可以提供 Apple Pay、Google Pay 或執行電子支付,那麼便無需隨身攜帶皮夾。如果手機可以開車門並且啟動汽車,或是可以打開車庫的門,那麼就無需隨身攜帶車鑰匙。目前,應用程式已經涵蓋即時串流服務,可提供 VR/AR(虛擬實境/擴增實境)體驗和即時分享等服務。未來的服務和應用程式似乎可以滿足無限的想像,不過它們的發展需要新世代資料基礎架構的支援與協助。
對於邊緣智能的需求
網路連線能力和流量成長都在持續提升,原因是新型數據密集應用程式的採用率的提升,造成對頻寬以及更高智慧基礎架構的需求。這樣的基礎架構可以透過智能辨識特定的應用程式和基礎架構需求,並且在必要時提供邊緣的處理作業。隨著Multi-Gigabit 乙太網路和 400GE 骨幹連線的進步,網速也獲得提升,但最新的 5G 和 Wi-Fi 科技可用頻寬卻持續造成回程傳輸中的瓶頸。
George Hervey說,邊緣處理有助於避免大量資料跨網路移動。這種更高階的網路智能可以讓網路在無須使用者介入的情?下提供複雜的軟體定義基礎架構管理、管理推論引擎、應用相關策略。最重要的是可提供主動式的應用程式功能。 透過使用具有低延遲性、高可靠度和安全性的基礎架構提供幾乎即時的互動式平台,使用者體驗將會獲得提升。
伴隨對頻寬的需求迅速激增,該怎麼有效在大範圍內解決這個問題呢?在平行處理雲端資料中心時發現,要擴展並處理新增的頻寬和大量節點,可以在網路邊緣新增處理作業。這個方法可以在資料中心完成,方法是透過使用智慧網卡(smartNIC)從伺服器卸載複雜的處理工作,包含封包處理、安全性、以及虛擬化。 另一個相似的方法可在電信業者網路中達成,方法是透過部署位於邊緣的SD-WAN/uCPE/vCPE提供智能服務並減少連線成本。然而,這個方法在企業網路中會出現問題,因為企業網路需要多樣功能的端點,而第一個一致功能需求位置出現在網路的存取層。
結語:利用AI
如果使用傳統方式在企業網路中部署服務(例如集中式防火牆和驗證伺服器),還會遇到其他挑戰。按照預期,會有更多的裝置需要存取網路,而且每部裝置會需要更多頻寬。這種情況下,這些傳統方式的限制會造成瓶頸。如果要解決這些問題,必須真正實現網路邊緣處理,讓處理作業貼近需求端,並且更加智能。 網路 OEM、IT 基礎架構擁有者和服務提供者,都必須在企業網路的存取層善用新世代的AI和網路功能卸載。
附圖:圖一 : 5G與邊緣運算將是共生互用的緊密關聯。(CTIMES製圖;source:lanner-america)
圖二 : 5G問世使得更為強大的分散式運算成為可能,並開啟更多應用體驗。(source: pxhere.com)
資料來源:http://www.ctimes.com.tw/DispArt/tw/5G/%E9%82%8A%E7%B7%A3%E9%81%8B%E7%AE%97/%E5%88%86%E6%95%A3%E5%BC%8F%E9%81%8B%E7%AE%97/%E7%89%A9%E8%81%AF%E7%B6%B2/2007311411T5.shtml?fbclid=IwAR2OybGp6M7ELrGsybQlhJvBdK7hZdBWKmELLBKWYAKyaGatAwLpm8caRTQ
質因數計算機 在 台灣物聯網實驗室 IOT Labs Facebook 的最佳解答
5G與邊緣互為體用 體現完美分散式運算
讓網路智能邁向邊緣網路
【作者: 籃貫銘、王岫晨】 2020年07月31日 星期五
分散式的概念由來已久,尤其從有網路以來,資料的運算和儲存架構就不斷的朝向「去中心化」發展。到了物聯網時代,這個模式更成了理所當然和不可或缺的系統建置架構。
最初,分散式運算(Distributed computing)的提出,就是一種基於多計算機以網路連接的運算系統。基本上就是使用一組電腦,透過網路互相連結並通訊,之後運用軟體的控制機制,讓它們形成一個大型的運算系統,已完成更大的運算目標。
也因此,這種形式的系統運作思維,就是要把一個需要大量計算的工程資料,分割成諸多小塊,再分給多台電腦個別去計算,接著再上傳運算結果,最後統一合併成資料結果。
所以可想而知,傳統的分散式運算是站在降低整體成本的思維來進行,就目的而言,仍是集中式的思考,只是在運算手段上採用了分散的形式,著名的蛋白質藥物運算專案Folding@home,就是在這種架構下執行的一項任務。
跳脫傳統框架 物聯網實現真正分散式運算
然而目前的物聯網則完全跳脫了傳統的框架,它們本身就不存在一個被指定的巨大任務,因此在設計上就顯得更加自由,架構上當然也更加彈性,因此物聯網可以說是真正的實現了分散式運算的理念。
首先,在本質上,物聯網就是一種去中心的架構,它透過有線和無線的網路系統,將各式的裝置連結起來。儘管在這個架構中,所有的裝置連結成一個大網路,但網路中的每個節點裝置都是獨立運行,有各自的功能與目標。
連結成網的目的,則是要打破物與物溝通的藩籬,讓彼此的運行可以更緊密,同時應用的深度也更加貼近實際的需求。
再者,從技術上看,物聯網裝置本身也需要一定的運算力,才能運行前端種種的功能,而且物聯網裝置經常會產生許多的數據,這些資料的處理、傳輸、儲存也會提供對端點裝置運算力的需要。也因此,分散式運算的功能在物聯網應用中更顯重要。
而物聯網的分散式運算技術應用中,邊緣運算則是當前最受關注的一環,它可以說是實現智慧物聯(AIoT)應用的關鍵技術,甚至也是把人工智慧帶進人們日常生活的重要技術,因此,包含AWS、英特爾、NVIDIA與Microsoft等大型的科技公司,紛紛鎖定邊緣運算的技術與應用,最為其在物聯網時代的主要服務項目,積極投入邊緣晶片與邊緣平台的開發。
根據市場研究公司technavio的研究,全球2019至2023年全球邊緣運算市場的年複合成長率(CAGR)將近41%,市場規模將達到57億美元。而其主要的驅力則來自於對於「去中心化」的運算力需求,藉此減低因數據傳輸路徑過長所造成的決策延遲。
另一方面,萬物聯網的時代,必然出現數據資料量爆炸性成長的情況,這不僅考驗網路基礎建設與傳輸技術,同時數據的儲存與隱私問題也會變成發展的挑戰。也因此「分散式儲存」和「分散式帳本」的技術與應用,也將隨之而來。
而隨著全球5G陸續啟用之後,尤其是5G的低延遲與大連結的技術,更是有助於提升分散式運算的性能,對於上述種種的分散式運算技術與應用,將會刺激其進一步的加速發展,並成為未來幾年內重要的市場成長驅力。
分散式運算的最佳體現
提起分散式運算,智慧手機算是最典型的一個代表產物了。越來越強大的運算功能,可以由使用者隨身攜帶,真正做到隨時隨地、不同空間的異地運算。特別是隨著5G問世,更大的通訊頻寬,使得更為強大的分散式運算成為可能,並開啟更多全新的應用體驗。我們可以說,去中心化的邊緣運算,就是實現分散式運算的最佳體現方式。
Marvell 首席架構師 George Hervey指出,當我們邁向「始終在線,始終連接」(Always On,Always Connected)模式的更進階階段時,智慧手機已經成為生活中不可或缺的一部分。我們的手機提供即時的資料和溝通媒體存取,這樣的存取方式影響我們的決定,最終左右我們的行為。這便是分散式運算的全新意涵。
思科預計,到了 2022 年,全球行動網路將會支援超過 120 億部行動裝置及物聯網連線。而這些行動裝置將會支援更多元的功能。如今,我們的手機已然取代許多小工具並提供諸多服務。如果您的手機可以提供 Apple Pay、Google Pay 或執行電子支付,那麼便無需隨身攜帶皮夾。如果手機可以開車門並且啟動汽車,或是可以打開車庫的門,那麼就無需隨身攜帶車鑰匙。目前,應用程式已經涵蓋即時串流服務,可提供 VR/AR(虛擬實境/擴增實境)體驗和即時分享等服務。未來的服務和應用程式似乎可以滿足無限的想像,不過它們的發展需要新世代資料基礎架構的支援與協助。
對於邊緣智能的需求
網路連線能力和流量成長都在持續提升,原因是新型數據密集應用程式的採用率的提升,造成對頻寬以及更高智慧基礎架構的需求。這樣的基礎架構可以透過智能辨識特定的應用程式和基礎架構需求,並且在必要時提供邊緣的處理作業。隨著Multi-Gigabit 乙太網路和 400GE 骨幹連線的進步,網速也獲得提升,但最新的 5G 和 Wi-Fi 科技可用頻寬卻持續造成回程傳輸中的瓶頸。
George Hervey說,邊緣處理有助於避免大量資料跨網路移動。這種更高階的網路智能可以讓網路在無須使用者介入的情?下提供複雜的軟體定義基礎架構管理、管理推論引擎、應用相關策略。最重要的是可提供主動式的應用程式功能。 透過使用具有低延遲性、高可靠度和安全性的基礎架構提供幾乎即時的互動式平台,使用者體驗將會獲得提升。
伴隨對頻寬的需求迅速激增,該怎麼有效在大範圍內解決這個問題呢?在平行處理雲端資料中心時發現,要擴展並處理新增的頻寬和大量節點,可以在網路邊緣新增處理作業。這個方法可以在資料中心完成,方法是透過使用智慧網卡(smartNIC)從伺服器卸載複雜的處理工作,包含封包處理、安全性、以及虛擬化。 另一個相似的方法可在電信業者網路中達成,方法是透過部署位於邊緣的SD-WAN/uCPE/vCPE提供智能服務並減少連線成本。然而,這個方法在企業網路中會出現問題,因為企業網路需要多樣功能的端點,而第一個一致功能需求位置出現在網路的存取層。
結語:利用AI
如果使用傳統方式在企業網路中部署服務(例如集中式防火牆和驗證伺服器),還會遇到其他挑戰。按照預期,會有更多的裝置需要存取網路,而且每部裝置會需要更多頻寬。這種情況下,這些傳統方式的限制會造成瓶頸。如果要解決這些問題,必須真正實現網路邊緣處理,讓處理作業貼近需求端,並且更加智能。 網路 OEM、IT 基礎架構擁有者和服務提供者,都必須在企業網路的存取層善用新世代的AI和網路功能卸載。
附圖:圖一 : 5G與邊緣運算將是共生互用的緊密關聯。(CTIMES製圖;source:lanner-america)
圖二 : 5G問世使得更為強大的分散式運算成為可能,並開啟更多應用體驗。(source: pxhere.com)
資料來源:http://www.ctimes.com.tw/…/%E7%89%A9%E8…/2007311411T5.shtml…
質因數計算機 在 國立臺灣大學 National Taiwan University Facebook 的最佳貼文
🖥🖥🖥NTUMOOC X Coursera「用 Python 做商管程式設計(一)」上線摟! 🖥🖥🖥
【修課連結】https://www.coursera.org/learn/pbc1(點選連結立即免費修課)
NTUMOOC X Coursera線上課程「用 Python 做商管程式設計(一)」,已於2018 / 2 / 12正式上線了,由臺大資訊管理學系 孔令傑老師主講,從零開始帶你了解Python的世界!
本系列課程從零開始,教授一般認為最適合初學者的程式語言「Python」,目標是讓大家在完成本課程之後,一方面獲得程式設計與運算思維的基本概念,一方面也能獨立寫出能解決運算問題的程式。本課程和一般程式設計課程最不同的地方,在於它是以解決商管領域的運算問題為導向,因此課程不會只含有質因數分解、紅球白球排列組合、三角不等式、萬年曆、數字排序等傳統程式設計課程的範例與作業,而是包含了生產、物流、存貨、投資、定價等問題,讓大家在學會程式設計的同時,也直接體會程式設計與資訊技術在商管領域的各種應用。 本系列課程共分為三門課程。本門課程做為第一門課程,將介紹程式設計的基本觀念、Python 語言的基本語法、選擇、迴圈、清單,並以作業管理領域的一些簡單演算法作結。
授課對象,本課程適合:
1.毫無程式設計基礎,想要開始學習此技術的學習者。
2.身處商管領域,想要瞭解程式設計與資訊技術之應用的學習者。
3.將來想要在企業裡以程式設計與資訊技術解決問題的學習者。
4.學過其他程式語言,想要快速學會 Python 語言的學習者。
學習者不需要任何程式設計、資訊工程、計算機科學的基礎,也不需要商管基礎。只要有一般高中生的基本英文與數學能力,並且願意花時間學習與練習,就可以完成此課程並且有所收穫。
【修課連結】https://www.coursera.org/learn/pbc1(點選連結立即免費修課)
https://www.coursera.org/instructor/~4239422
【製作團隊】臺大資訊管理學系 孔令傑老師 x臺大數位學習中心
#COURSERA # NTUMOOC