雖然這篇耦合器作用鄉民發文沒有被收入到精華區:在耦合器作用這個話題中,我們另外找到其它相關的精選爆讚文章
在 耦合器作用產品中有14篇Facebook貼文,粉絲數超過20萬的網紅婷婷看世界,也在其Facebook貼文中提到, 【国际重大颠覆性突破 中国科学家首次在实验室实现人工合成淀粉】二氧化碳能合成淀粉吗?对这个貌似天方夜谭的问题,中国科学家历时6年多科研攻关给出肯定和详细的答案。继上世纪60年代在世界上首次完成人工合成结晶牛胰岛素之后,中国科学家又在人工合成淀粉方面取得重大颠覆性、原创性突破——国际上首次在实验室实现...
耦合器作用 在 婷婷看世界 Facebook 的最佳貼文
【国际重大颠覆性突破 中国科学家首次在实验室实现人工合成淀粉】二氧化碳能合成淀粉吗?对这个貌似天方夜谭的问题,中国科学家历时6年多科研攻关给出肯定和详细的答案。继上世纪60年代在世界上首次完成人工合成结晶牛胰岛素之后,中国科学家又在人工合成淀粉方面取得重大颠覆性、原创性突破——国际上首次在实验室实现二氧化碳到淀粉的从头合成。
由中国科学院天津工业生物技术研究所(中科院天津工业生物所)主导完成的人工合成淀粉重大科技突破进展成果论文,北京时间9月24日凌晨在著名国际学术期刊《科学》上线发表,从而为从二氧化碳到淀粉生产的工业车间制造“打开了一扇窗”。
这一人工途径的淀粉合成速率是玉米淀粉合成速率的8.5倍,向设计自然、超越自然目标的实现迈进一大步,为创建新功能的生物系统提供新的科学基础,也将为未来从二氧化碳合成淀粉开辟崭新道路,使未来淀粉的工业化生物制造成为可能。
业内专家称,如果未来二氧化碳人工合成淀粉的系统过程成本能够降低到与农业种植相比具有经济可行性,将会节约90%以上的耕地和淡水资源,避免农药、化肥等对环境的负面影响,推动形成可持续的生物基社会,提高人类粮食安全水平。同时,最新研究成果实现在无细胞系统中用二氧化碳和电解产生的氢气合成淀粉的化学-生物法联合的人工淀粉合成途径(ASAP),为推进“碳达峰”和“碳中和”目标实现的技术路线提供一种新思路。
中科院天津工业生物所介绍说,淀粉是粮食最主要的成分,同时也是重要的工业原料。目前,淀粉主要由玉米等农作物通过自然光合作用固定二氧化碳生产,淀粉合成与积累涉及60余步代谢反应以及复杂的生理调控,理论能量转化效率仅为2%左右。农作物的种植通常需要较长周期,需要使用大量土地、淡水等资源以及肥料、农药等农业生产资料。粮食危机、气候变化是人类面临的重大挑战,粮食淀粉可持续供给、二氧化碳转化利用是当今世界科技创新的战略方向。而不依赖植物光合作用,设计人工生物系统固定二氧化碳合成淀粉,是影响世界的重大颠覆性技术。
该所自2015年起聚焦人工合成淀粉与二氧化碳生物转化利用,开展需求导向科技攻关,集聚所内外创新资源,加强“学科-任务-平台”整合,实现各方科研力量的有机融合和高效协同,组建当初平均年龄30周岁的优秀青年科学家团队,持续6年深耕人工合成淀粉项目研发。
青年科学家团队从头设计出11步反应的非自然二氧化碳固定与人工合成淀粉新途径,在实验室中首次实现从二氧化碳到淀粉分子的全合成。他们采用一种类似“搭积木”的方式,联合中科院大连化学物理研究所,利用化学催化剂将高浓度二氧化碳在高密度氢能作用下还原成碳一(C1)化合物,然后通过设计构建碳一聚合新酶,依据化学聚糖反应原理将碳一化合物聚合成碳三(C3)化合物,最后通过生物途径优化,将碳三化合物又聚合成碳六(C6)化合物,再进一步合成直链和支链淀粉(Cn化合物)。
该团队还通过耦合化学催化与生物催化模块体系,创新高密度能量与高浓度二氧化碳利用的生物过程技术,通过反应时空分离优化,解决人工途径中底物竞争、产物抑制、热/动力学匹配等问题,扩展人工光合作用的能力。按照目前技术参数,在能量供给充足条件下,理论上1立方米大小的生物反应器年产淀粉量相当于5亩土地玉米种植的淀粉产量(按中国玉米淀粉平均亩产量计算)。这一成果使淀粉生产的传统农业种植模式向工业车间生产模式转变成为可能,并为二氧化碳原料合成复杂分子开辟新的技术路线。
中国科学家在淀粉人工合成方面取得的重大颠覆性成果,也获中外同行专家高度评价,认为这是“典型的0到1原创性突破”,是“扩展并提升人工光合作用能力前沿研究领域的重大突破,是一项具有‘顶天立地’重大意义的科研成果”“不仅对未来的农业生产、特别是粮食生产具有革命性的影响,而且对全球生物制造产业的发展具有里程碑式的意义”“将在下一代生物制造和农业生产中带来变革性影响”。(完)
来源:中国新闻网
耦合器作用 在 Facebook 的最讚貼文
Polymorphic VT 多形性心室頻脈:判讀與治療
多形性心室頻脈 (VT) 是一種危急嚴重的心室頻脈,其QRS波型有不同變化,有些會自然終止(如果持續數秒以上會導致暈厥)或持續惡化為VF,從而導致心跳停止。
定義多形性VT 的病因非常重要,具有相似心電圖特徵,但卻是不同類型的心律不整,對不同形式的治療有各有不同反應。因此要先知道如何定義多形性VT 及其病因。多形性VT通常會導致心律不整,連續性VF發作,需要去顫電擊。在這種情況下,對於一種形式的多形性 VT 來說可以挽救生命的藥物可能對另一種形式是禁忌的。
診斷步驟:
第 1 步:心律不整與長QT症候群有關嗎?
長QT症候群引起的多形性VT
尖端扭轉型(Torsade de pointes)
Torsade de pointes(法語意思的“點扭轉”)是 Dessertenne 創造,描述完全性房室傳導阻滯引起的長QT症候群 (LQTS) 引起的多形性VT。
最初的描述是指具有“進行性改變的快速性心律不整” QRS 波群的形態、幅度和極性,其峰值圍繞等電基線扭曲。”正如其他地方所述,Dessertenne當時並沒有認識到長QT與他所描述的心律不整之間的因果關係。然而,“尖端扭轉性室速”很快被用於所有形式的 LQTS 相關快速性心律不整。
TdP的診斷
TdP的正確診斷基於以下幾點:
(1)存在一種先天性或後天性長 QT 症候群;
(2)竇性心律QT間期延長;
(3)具有特徵性的心律不整發作方式。
具體而言,應考慮長 QT 症候群的潛在原因列表(表)3,6-15,應通過計算心率校正(QTc)間期的概率性質(https://www.qtcalculator.org)。大多數TdP患者記錄心律不整時 QTc ≥ 500 ms。
TdP的發作由2個基本特徵決定:
(1) 心搏過速的心律不整的第一次跳動,表示在延長動作電位晚期達到觸發電位的早期去極化(因此,耦合間隔就在心律不整開始和第一次心律不整搏動之前的最後一個竇性複合波總是很長)在不同的研究顯示>450 ms或≥500 ms;
(2) 異常的QT無法適應心率的突然變化。因此,在竇性心率加速時,TdP開始發生(心搏過速-依賴型的TdP),或更常見在心率減慢期間發生(暫停-依賴型的TdP)。
TdP緊急處置
TdP的緊急治療包括
1.停用任何延長QT間期的藥物,
2.維持血清鉀正常。
3.建議靜脈注射midazolam,因為任何壓力引起的交感神經張力升高都會導致心律不整。
4.靜脈注射MgSO4,緩慢靜脈推注 2 g硫酸鎂,可抑制扭轉的發作。鎂的作用通常是短暫的,因此靜脈注射鎂基本上是一種急救劑,直到採取額外的治療措施。只要避免高鎂血症(腎功能受損的患者),就可以重複進行。
5.亦有建議使用更有效的鈣離子阻斷劑,如Verapamil, 利用鎂阻斷鈣流入而抑制EAD。
6.對於LQTS而言,晚期鈉電流會引發心律不整。因此,Mexiletine一種特定的晚期鈉電流阻斷劑,可有效抑制先天性和後天型的LQTS TdP。
7.Lidocaine通常是用於治療任何心室心律不整的第一種藥物,但對治療TdP的療效知之甚少。利多卡因在體外阻斷晚期鈉電流,但其濃度可能需要超治療劑量。
8.頻脈-依賴型的TdP最好用高劑量的乙型阻斷劑治療。
9.通過心臟pacing或 Isoproterenol縮短停頓-依賴型TdP的停頓,是具有抗心律不整的效果。過度的頻脈可能會引起頻脈誘發的TdP,因此應將基本心率增加到最小速率,以防止出現停頓-依賴型的TdP。一旦經由有效的心臟pacing阻止了所有停頓,乙型阻斷劑也可以安全地用於停頓-依賴型的TdP。
第 2 步:與 LQTS 無關的心律不整:患者是否患有實質性心臟病?
無QT延長的多形性VT
無實質性心臟病的多形性VT
此類別包括患有基因疾病(短QT和Brugada症候群)和病因不明的疾病(有或沒有早期再極化的特發性VF)患者。這些實體疾病具有共同的重要特徵,包括發生心律不整風暴的趨勢,由異位搏動短的耦合間隔引起的覆發多形性VT。當其他抗心律不整藥物無效時,可改用Quinidine。
來自右心室出口的常見和良性特發性單形性VT ( RVOT-VT) 的患者很少發生危急嚴重的多形性VT。會引發心律不整的抗生素 azithromycin,卻很少引起多形性VT。
導致多形性VT的遺傳性通道病(Genetic Channelopathies)
Brugada症候群
Brugada 症候群最初被描述為:一種獨特的臨床和心電圖症候群,表現為右束支傳導阻滯、持續ST段升高和猝死。有趣的是,這3個特徵中沒有一個是普遍存在的。首先,尚不清楚右束支傳導阻滯模式是否代表所有患者的右束傳導阻滯。完全性右束支傳導阻滯的出現實際上可能掩蓋了 ST 段升高的診斷模式。其次,ST段升高:在那些患有 ST 段升高的人中,並非一直存在。因此不是真正持久的。儘管患有這種疾病的患者發生VF的風險增加,但現在看到的大多數患者在確診時都沒有症狀,而且許多患者在現在長達20年的追蹤期間仍然沒有心律不整。
Brugada 症候群診斷
有症狀的 Brugada 症候群的典型患者是成年男性,在休息時發生心跳停止,通常是在睡著時,並經常作為第一次發作之症狀。 Brugada 症候群的典型心律不整是由異位搏動觸發的多形性VT,具有短耦合間隔,但不像特發性VF那樣短。Fig 3B:來自植入式去顫器紀錄的自發性心律不整。關於 Brugada 症候群自發性多形性VT起源部位的訊息仍是不足。它被假定為 RVOT,但軼事性的證據並非總是如此(Fig 3C)。
Brugada 症候群之緊急治療
常規抗心律不整藥物治療Brugada 症候群中的 VF是無效的。但對靜脈注射isoproterenol和/或口服Quinidine是有反應的。這些藥物通過增加鈣電流(isoproterenol) 或阻斷瞬時鉀外向電流([ITo]Quinidine)來恢復再極化的均勻性。儘管尚未進行隨機研究,但證據足以推薦Isoproterenol和Quinidine作為 Brugada 症候群心律不整風暴的一線治療。
Quinidine並非在所有國家都可用。重要的是要確保醫院,尤其是心律不整轉診中心,會儲備Quinidine供應品,因為這種藥物在心律不整風暴期間可以挽救生命。靜脈注射Quinidine可用於治療瘧疾,並可用於VF風暴。Cilostazol和 Bepridil用於Quinidine不耐受患者。重要的是,對心律不整基質(被確定為異常、分割電位的區域),施予射頻灼燒術(Radiofrequency ablation),在使用經皮心外膜入路的右心室出口對覆發性VF的患者有效。
來自RVOT的特發性多形性 VT
RVOT是無實質性心臟病患者,發生良性心室心律不整最常見起源部位。患者出現VPC, 或salvos of non-sustained monomorphic VT(齊發非持續性單形性VT)相關的心悸。即使在持續單形性VT的情況下,可以忍受這種心律不整。
3% 的特發性 RVOT-VT 患者俱有多形性VT,但選擇偏差可能導致對該風險的高估。
RVOT的特發性多形性VT診斷
典型患者是其他方面健康的成年(39至45歲),有6至10年的心悸病史,表現為危急嚴重的暈厥。大多數患者(不同系列中 56% 至 85% 的患者)是女性。竇性結構複合物是正常的。起始搏動具有心軸下移和 LBBB 模式,表示 RVOT 原點。多形性 VT 很快(平均週期為224至270毫秒,而特發性單形性VT為 330至 380毫秒)。
RVOT的特發性多形性VT之緊急治療
實際上,所有報告的特發性多形性 RVOT-VT 病例都進行了RVOT期外收縮的射頻灼燒術(Radiofrequency ablation)。因此,沒有關於這種形式的多形性 VT 對抗心律不整治療反應的數據。在停頓依賴性多形性 RVOT-VT 的情況下,80 次/分鐘的心房起搏已成功用於防止覆發,直到進行灼燒術。
Pseudo–Torsade de Pointes 的概念
大約 40% 的Purkinje相關多形性 VT 患者的 QT 間期很長,因為 QT 間期通常在心肌梗塞的癒合階段延長或因為他們在心律不整時接受Amiodarone治療 (Fig 6B) 。在這些患者中,多形性VT的開始依賴於停頓,可能導致對TdP的錯誤診斷。我們將這種情況稱為“假性TdP”,以強調由長QT引起的多形性VT(“真性TdP”)和儘管QT延長仍發生的多形性VT(假性TdP)之間的區別。TdP的 QT 間期較長(QTc,真性vs 假性:565±76 ms vs. 491±25 ms;P<0.001),但真和假性TdP的 QT之間存在相當大的重疊。 另一方面,假性TdP的耦合間隔比扭轉期間(torsade)短得多(360±38 ms vs. 600±173 ms)。即使 QT間期延長,≤400 ms 的偶合間期通常表明多形性VT 與LQTS無關。
緊急治療
靜脈注射Amiodarone可減少復甦期間復發性VT/VF (ACC/AHA guideline, 2017)。這些建議基於對院外心跳停止並有VF的研究,其中多形性 VT 不一定是初始心律不整。Purkinje相關的VT心律不整風暴通常對Amiodarone在內的常規抗心律不整藥物無效。緊急PCI很少有幫助:它通常表明急性梗塞,住院時植入的支架是通暢的。即使在非阻塞動脈中的狹窄病變植入支架,心律不整風暴通常會繼續發生。當前指引強調,當繞道手術後數日內發生多形性 VT 引起的心律不整風暴時,需要評估移植物通暢性。根據經驗,在繞道手術後不久發生多形性VT的患者中,<20% 的心律不整風暴對血管再通重建有反應。
Quinidine治療對其他藥物無效的患者非常有效。
Quinidine sulfate使用的劑量,口服 600 毫克,然後每3小時400毫克,直到心律不整風暴消退,然後每8小時400毫克。
Hydroquinidine的等效劑量為600毫克,然後每8小時300毫克,然後每12小時300毫克。
Quinidine治療的最佳持續時間仍未確定。
心律不整風暴代表一種短暫的現象,晚期復發很少見。
針對觸發VF的Purkinje fibers的射頻灼燒術治療可能可以挽救生命,並且最適用於可以在VF發作之間頻繁Purkinje fibers相關異位的患者。該手術很重要,因為如果延遲治療,會增加心因性休克和死亡率的風險。
胸硬膜外麻醉和心臟去交感神經支配術已被有效地用於選定的冠心病和藥物難治性多形性VT患者。
第 3 步:心律不整是否與運動有關?
運動誘發的多型性VT
Catecholamine敏感性多型性VT (CPVT, Catecholamine sensitive VT)
Catecholamine敏感性多型性VT (CPVT)用於患有應激性暈厥或心跳停止的兒童,這些兒童的基本心電圖正常,但在治療期間可重複誘發多形性和/或雙向 VT運動試驗。雙向 VT 與毛地黃中毒期間記錄相似。
CPVT診斷
CPVT 通常在兒童時期表現為暈厥或心跳停止,在情緒或醫生壓力下,如溺水或接近溺水的發作,成人較罕見,表現為與壓力無關的心跳停止。 除竇性心動過緩外,基本心電圖正常。雖然QT 是正常的,但對突然的心率變化和運動期間顯著的U波的異常QT反應都有清楚描述過。 對運動或isoproterenol輸注的反應是可重複的並且幾乎具有診斷性:隨著心率的增加,房性心律不整(包括心房顫動)和心室心律不整的嚴重程度從期外收縮到心室二聯(bigeminy)、多灶性期外、雙向 VT, 以及極少觸發VF的快速非持續性多形性 VT。
治療
在心律不整風暴期間,必須使用鎮靜劑以防止多形性VT立即重新再發。心律不整的長期預防包括最大耐受劑量的乙型阻斷劑,但多達30%的患者需要額外形式的治療,因為在後續運動測試期間,出現過症狀復發或顯著心律不整。IC 類藥物(flecainide or propafenone)通過阻斷 RYR2 鈣通道和鈉電流對CPVT非常有效。去心臟交感神經是一種有效的輔助治療。Verapamil已用於軼事案例。植入心臟去顫器可能挽救生命,但也可能導致心律不整。植入設備應只限於,已接受乙型阻斷劑(交感神經切除術)和flecainide全面治療的患者,並應仔細規劃並延長檢測時間以延遲激發電擊,直到觸發的多形性 VT(即休克難治性)惡化至電擊可終止的VF 。
詳讀全性~~
References:
1. Polymorphic Ventricular Tachycardia: Terminology, Mechanism, Diagnosis, and Emergency Therapy. Circulation. 2021;144:823–839
2. 2017 AHA/ACC/HRS guideline for management of patients with ventricular arrhythmias and the prevention of sudden cardiac death: executive summary. Circulation. 2018; 138:e210–e271.
3. Determination and interpretation of the QT interval. Circulation. 2018; 138:2345–2358.
詳讀全性~~
精彩內容~~
https://reurl.cc/zW8dvy
耦合器作用 在 台灣物聯網實驗室 IOT Labs Facebook 的最佳貼文
佈署 IoT Edge 和霧運算技術以開發智慧建築服務
2021年2月19日 星期五
《3S MARKET》這篇報導把物聯網的架構與實作,描寫的非常詳細,雖然在建築的細節上描述不多,但報導中也提及這是個實際驗證,可適用在很多的場域。不知道,有多少人真正看得懂?當然,連這篇都看不懂的人,就別說他真正了解物聯網、Edge 與 Cloud。
事實上這篇報導的描述不難了解,真正物聯網與邊緣運算的挑戰,是在實作。實作真正面臨的,是這些數據處理、融合、分析上的完整度,還有 —— 找到實作的場景!
摘要
基於 SoC 架構的嵌入式系統的進步,使許多商業設備的開發變得足夠強大,足以運行操作系統和複雜的算法。這些設備整合了一組具有連通性、運算能力和成本降低的不同感測器。在這種情況下,物聯網(IoT)的潛力不斷增加,並帶來了其他發展可能性:「事物」現在可以增加數據源附近的運算量;因此,可以在本地系統上,佈署不同的物聯網服務。
這種範例稱為「邊緣運算」,它整合了物聯網技術和雲端運算系統。邊緣運算可以減少感測器與中央數據中心之間,所需的通信頻寬。此方法需要管理感測器、執行器、嵌入式設備,和可能不連續連接到網路的其他資源(例如智慧手機)。這種趨勢對於智慧建築設計非常有吸引力,在智慧建築設計中,必須整合不同的子系統(能源、氣候控制、安全性、舒適性、使用者服務、維護和營運成本)以開發智慧設施。在這項工作中,分析和提出了一種基於邊緣運算範例的智慧服務設計方法。
這種新穎的方法,克服了現有設計中與服務的互操作性,和可伸縮性有關的一些缺點。描述了基於嵌入式設備的實驗架構。能源管理、安全系統、氣候控制和資訊服務,是實施新智慧設施的子系統。
1. 簡介
建築自動化系統使用開放式通信標準和介面,可以整合多種不同的建築控制規則,例如供暖、通風、空調、照明和百葉窗、安全功能和設備。但是,現有建築物通常不具有這些系統。
通常,每種安裝類型都提供特定的服務:供暖通風和空調(HVAC)控制氣候服務,攝影機和感測器提供安全服務等。僅當設計能源管理系統時,不同的子系統相關,但僅透過以下方式,連接建築物的能源管理系統。能源管理服務,集中在專用軟體中。
對於使用者和維護技術人員來說,提供不同服務的不同製造商,發現很難整合新的服務和功能。自動化建築將用於控制和數據採集的軟體,與工業協議和介面整合在一起。此外,將新服務整合到這種解決方案中並不容易,這取決於已安裝軟體的開發。
這些工業發展還為能源管理,提供了雲端連接解決方案和智慧服務。這些服務,也在集中式電腦系統中開發。數據被傳輸到這些系統或雲端進行分析。本文提出使用佈署在物聯網(IoT)技術中的邊緣和霧運算範例,主要有兩個目的:
A. 在自動化和非自動化建築物中,促進新的智慧和可互操作服務的整合(整合)。
B. 允許在建築物的所有子系統之間,分配智慧服務(互操作性)。
透過該建議,可以促進建築物子系統之間的關係。它還促進創建新的智慧服務(例如,新的分佈式智慧控制算法;使用電源管理捕獲的數據,來檢測人類活動;捕獲設備連接的模式辨識,運算可再生電力預測,在安全服務中使用電力數據等)。在這項工作中,我們設計了一個中間軟體的體系結構,該體系結構具有兩個主要層,這些層基於嵌入式設備、IoT 通信協議和硬體支援,來開發人工智慧算法(圖1)。
為了實現這一目標,我們在建築物的設施中添加了兩個概念等級:邊緣節點和霧節點。每個等級都有不同種類的設備和功能。我們佈署並實現了基於層的中間軟體的體系結構,以對模式進行實驗。
本文的組織結構如下:第 2 節回顧了智慧建築技術,建築物中的 IoT 佈署以及邊緣運算範例。第 3 節提出了一種在建築物(自動與否)中佈署邊緣和霧運算範例的方法。第 4 節介紹了進行的實驗。最後,第 5 節介紹了結論和未來的工作。
2. 相關工作
本節介紹與這項工作相關的主要研究領域。首先,我們在分析雲端運算層之後,回顧了基於邊緣運算範例的資源和服務供應。最後,我們研究了實現智慧建築的技術,並在最後的小節中,總結了先前研究的貢獻。
2.1. 邊緣運算資源和服務供應
最近,網路在兩端被標記為「邊緣」和「核心」,以查明處理發生的位置。邊緣端靠近數據源和使用者,核心端由雲端伺服器組成。透過這種方式,邊緣運算範例將運算推送到 IoT 網路的邊緣,以減少數據處理延遲,和發送到雲端的數據數量。基於雲端的後端,可以處理對時間不太敏感,或源設備本身不需要結果的處理請求(例如,物聯網網路狀態下的大數據分析)。
在邊緣運算資源供應方面,正在進行的 Horizon 2020 RECAP 項目,提出了一種整合的雲端 - 邊緣 - 霧端架構,目的在解決應用放置、基礎架構管理和容量供應。雲端/邊緣基礎架構監控功能豐富了應用,基礎架構和工作負載模型,這些模型又被回饋到優化系統中,該系統可以協調應用並持續配置基礎架構。
徐等人進行的研究。 提出了一種用於邊緣運算的實用感知資源分配方法,稱為 Zenith。借助 Zenith,服務提供商可以與邊緣基礎設施提供商,建立資源共享合同,從而允許延遲感知資源調配算法,以滿足其延遲需求的方式,來調度邊緣任務。
邊緣節點資源管理(簡稱 ENORM),是管理邊緣/霧節點資源的框架,可透過監控應用需求,來自動擴展邊緣節點。可以透過靜態優先等級分配,來確定特定應用的優先等級。供應和自動縮放機制,是基於線性搜索的相對簡單的實現。
當源本身是可行動的時,邊緣雲範例也是可行的。 Chen 等人研究了行動設備向邊緣節點(特別是在無線電接入網路邊緣)的智慧運算分流。在這項工作中,作者提供了任務卸載算法,將分佈式運算卸載決策表述,為多使用者運算卸載功能。在同一項工作中,Wang 等人研究了聯合協調卸載任務,到多個邊緣節點的問題,並提出在邊緣等級引入及准入控制,以及兩階段調度方法,與傳統的最近邊緣選擇方法相比,改進了卸載性能。
2.2. 雲端運算服務配置
就社會和行業採用資訊技術而言,雲端運算範例是最具創新性的策略之一。提供的優勢提高了效率,並降低了成本,同時提供了可透過 Internet,普遍存取訪問的按需 IT 資源和服務。
當前,雲端運算服務種類繁多,甚至如何提供,這是一個受到廣泛研究的主題,正在提出許多的方案。甚至有評論總結了雲端運算範例的相關研究。
本小節介紹了有關以下問題的先前工作,這些問題與本手稿的主題有關:(i)安全性; (ii)服務品質(QoS); (iii)提供邊緣服務。
(i)安全是雲端運算中一個具有挑戰性的問題。雲端服務位於應用環境之外,並且超出了防火牆的保護範圍,因此,需要附加的安全層。另外,邊緣和霧運算應用的行動性和異構性,使得難以定義單個過程。因此,需要一種分佈式安全策略。
此外,必須有一個標準化的環境,才能正確解決此問題,並指定霧運算和邊緣設備,如何相互協作。網路邊緣上的多個霧節點之間的敏感數據通信,需要資源受限的事物的輕量級解決方案。另一個與安全性相關的問題是數據位置。在雲端中運行數據分析是很常見的。因此,關於數據安全或隱私的公有雲與私有雲的爭論就出現了。
(ii)分配給雲端應用的資源,通常是根據合同規定的服務水準協議(SLA)所設置的。但是,實際上,由於偶爾執行大量事務,而導致分配的基礎結構飽和,可能會出現瓶頸。為了解決此問題,可以在資源可用時,動態擴展雲端基礎架構。當前,最具創新性的趨勢,目的在建構自動 SLA 合同合規系統。在 Faniyi 和 Bahsoon,以及 Singh 和 Chana 進行的研究中,可以找到與品質服務管理相關建議的詳盡綜述。考慮到這一點,提出了幾種策略來預測,應用的資源需求和 QoS 的要求。最近的工作試圖將安全性和 QoS 問題結合起來,以提供全面的性能指標。
(iii)最後,濫用雲端服務,是該領域的另一個問題。物聯網環境是霧和邊緣設備不斷加入或離開,動態的執行前後關聯。因此必須在網路邊緣提供彈性的服務。為此,在網路的可用設備之間,共享應用工作負載,可以為高階運算應用提供靈活性。提出了可靠的服務供應方法,來為系統提供更高的彈性,並提供靈活和優化的雲端服務。
在本主題中,將雲端框架和中間軟體技術,設置為與雲端層,以及具有不同介面操作系統,和體系結構的設備之間,進行通信的平台。
2.3. 物聯網在建築服務工程中
物聯網開發為在建築物上,開發數位服務提供了新資源。建築物中常見的物聯網應用,包括節能的過程環節、維護改進、雜務自動化和增強安全性。由於全球變暖,建築物的節能是一個重要的課題。
物聯網技術引入智慧建築,不僅可以減少本地溫室氣體排放,還可以將減少溫室效應擴大到更大的領域。目前,物聯網還被用於建築領域,以協助設施管理。物聯網使營運系統能夠提供更準確和更有用的資訊,從而改善營運,並為房客租戶提供最佳體驗。有基於物聯網的建議,這些建議顯示建築系統,如何與雲端進行通信,並分析所獲取的數據,以開發新的業務見解,從而能夠推動真正的增值和更高的績效。
實驗研究顯示,物聯網平台不僅可以改善,工業能源管理系統中實體的互連性,而且可以降低工業設施的能源成本。 FacilitiesNet 表示,建築物聯網(BIoT)正在推動我們獲取資訊,彼此互動和做出決策的方式發生重大轉變。BIoT 不僅與連接性或設備數量有關,而且還與交付實際和相關結果有關。當前,有很多基於物聯網的智慧家庭應用的例子。
然而,智慧設備或「物」,僅僅是連接到網路的設備或嵌入式系統。增值來自設計協調系統,和提供智慧服務,以提供實際收益的能力。這些特徵基本上,取決於對不同類型連接事物的異質性,及其互操作性的管理,並取決於數據處理提供的情報潛力。
Tolga 和 Esra 進行的研究得出的結論是,就智慧家庭系統中的軟體和硬體而言,物聯網技術尚未變得穩定。原因之一,有可能是物聯網技術仍處於發展階段。McEIhannon 所撰寫有關物聯網應用的邊緣雲和邊緣運算的未來,其評論得出了類似的結論。這篇評論提到概念和發展,目前還處於早期階段,從學術和行業的角度來看,許多挑戰都需要解決。
物聯網帶來了新的機會,但許多企業仍在尋求了解和分析,其將如何影響,並與現有的 IT 結構和管理策略整合。為此,必須創建專門的使用模式和技術,來彌合這一差距。
2.4. 發現
以下結論闡明了這項研究建議的新穎之處:
雲端運算作為「實用」的一般概念,非常適合智慧家庭應用的常規需求。但是,在某些情況下,將所有運算都移到雲端中,是不切實際的。
邊緣計算作為一種計算範例而出現,可以在物聯網設備生成的數據附近執行計算。這種範例可能有助於滿足最新應用的安全性和 QoS 的要求。
當前,控制子系統的高級建築設施,通常使用 Internet、IoT 協議和 Web 服務。專有系統是使用標準的 Internet 通信協議設計的,用於管制和監控。先前的工作顯示,基於無線感測器網路、Web 介面和工業控制模式,用於氣候控制、電源管理或安全性的控制系統,使用不同的監視和控制技術。監控應用分析,得自監控和數據採集系統中的這些子系統。對於不同的子系統,有不同的解決方案。考慮到上述情況,本工作中提出的模式,引入了以下新穎元素:
A. 介紹了一種分層架構(整合了邊緣和霧端等級),以及提供子系統之間互操作性,以及在建築物控制中開發智慧服務的方法,該方法使用了邊緣和霧端範例,這些範例將 IoT 協議整合在一起,並在本地 Intranet 中操作 AI 技術,讓雲端服務的通信層,完善了該層的架構。
B. 介紹了一種基於使用者為中心的方法,用於在互操作性需求下設計、驗證和改進新服務。
C. 該提案允許使用可以在已建的建築物中,實施的非專有硬體和軟體系統。
3. 計算模式設計
建築物中的設施子系統分為有照明、氣候、能源、安全、警報、電梯等。在自動化建築中,這些子系統由專門的控制技術控制和監控。在非自動化建築物中,不存在這些服務,並且子系統透過電子和電氣方式進行控制。在這兩種情況下,所有子系統都為建築營運,提供必要的服務。
從邏輯上講,每個子系統都在其場景中起作用,並且不能與其他子系統互操作。嵌入式電子控制器和連接的不同感測器,可以使每個子系統自動化。這些服務都是基於直接反應性控制規則。除了嵌入式控制系統和感測器之外,通信技術(基於 Internet 協議)和新的行動設備還為開發管制、監控和數據訪問服務,提供了新的可能性。
在智慧型動設備上開發,並連接到 Web 伺服器的人機介面和專用應用,是近年來已實現的服務的範例。每個子系統中的專家(氣候、安全性、電源等),都具有可以轉換為專家規則的知識。這些規則被轉換為用於管理、維護、控制、優化和其他活動的控制算法。這些規則是可以,在可程式設備上編程和實現的。但是,它們是靜態的,不會在出現新情況時發生變化,並且不能互操作,也無法適應每個安裝的特性。
例如,氣候或安全專家決定,如何使用標準啟動條件,來配置每個子系統。每個控制規則僅在一個子系統(此範例中為氣候或安全性)中工作,因此,這些子系統之間沒有互操作性。考慮到這種情況,提出的模式有助於並允許,基於不同子系統的互操作性,來整合新的數位服務,並將人工智慧(AI)技術的新服務,引入當前設施。
例如,諸如電梯控制的設施,可以用於安全服務或建築能源管理服務。氣候控制設施,可以與安全子系統整合在一起。整合到模式中的天氣預報軟體系統,可以由能源管理服務,或建築物空調服務使用。
目的是讓每個子系統中的專家,參與設計整合服務,並將所有子系統轉換為可互操作的系統。該模式會開發自動規則,並允許在考慮安裝行為本身的情況下進行決策。該模式基於一個過程,該過程包括四個開發階段(圖2)和分為不同級別的硬體 - 軟體體系結構(圖3)。該體系結構的主要等級,是邊緣等級和霧等級。這兩個層次介紹了在建築物中,應用物聯網技術的新穎性。下面介紹了模式的各個階段(分析、設計、實施和啟動)。
.分析:在此階段確定了不同的專家使用者(氣候、安全、電力、水、能源、管理人員,以及資訊和通信技術(ICT)技術人員)。諮詢專家使用者,以指定需要控制的主要過程。資訊通信技術專家作為整合環節,參與了這一過程。第一種方法產生了設計控制規則,和潛在服務所需的事物(對象)。在此階段,使用以使用者為中心的方法,並捕獲子系統的需求。
.設計:我們提出了一個三層架構(邊緣、霧端和雲端),如圖 3 所示。
.實施和數據分析:在此階段中已安裝和整合了子系統。服務基於每個子系統中的規則,分析事物(對象)生成的數據,以設計基於機器學習的服務。
.啟動:最初,在每個子系統的監督下制訂專家規則。然後,使用回饋過程安裝規則。最後,透過人工智慧技術,可以推斷出自動的和經過調整的規則。
3.1. 分析與設計
專家使用者對此過程,進行不同的審查。以使用者為中心的技術,用於設計整合流程。目的是獲得所需的所有事物(對象),它們之間的關係,以及潛在的服務。一旦指定了事物(對象)和服務,就必須關聯通信協議和控制技術。選擇了物聯網協議和嵌入式控制器;提出了人機介面;指定了邊緣層和霧層及其功能;分析專家規則和智慧服務。最後,提出了維護和操作方法。所有這些任務在專家技術人員,和資訊技術專家之間共享。
結果是事物的定義,它們之間的關係,以及與邊緣和霧層的交互作用。該過程中代表了建築物的所有子系統,數據感測器、執行器、控制器、規則和過程經過設計,可以整合所有子系統。數據集、對象和設備,由物聯網概念表示。事物由具有狀態和配置數據的實體,和前後關聯組成。事物數據位於霧和邊緣節點中,儲存的不同配置中的關聯性。
事物以數據向量表示:[ID、類型、節點、前後關聯情境]。
– ID是辨識碼。
– 類型可以是感測器、執行器、變量、過程、設備、介面、數據儲存,或可以在 IoT 生態系統中寫入、處理、通信、儲存或讀取數據的任何對象。
– 節點指定建築物子系統、功能描述、層類型(邊緣、霧端、通信或雲端)、IoT 協議和時程存取訪問。
– 前後關聯表示在 IoT 生態系統中,用於發布或讀取數據的時間、日期、位置,與其他事物的關係、狀態和訪問頻率。
表 1 是由事物([ID、類型、節點])。所有事物都可以訪問配置文件(CF),以了解如何使用可用數據,以及如何使用適當的訪問權限配置新數據。前後關聯數據位於內建記憶體,或是靜態儲存。使用定義的事物,設計不同的控制規則。這些控制規則是分佈在連接到網路的不同嵌入式系統中,控制過程的一部分。事物表示佈署在安裝的不同子系統中,所有的可用資源。在此等級上,設計師對所有事物進行分析、指定和關聯。基本控制算法是使用此資訊實現的。配置關聯性允許層和設備之間,所有事物的互操作性。
在此階段的另一級設計,必須提出物聯網管理中,使用的節點要求和規範。設計的流程和服務,將在邊緣或模糊節點中實施。必須指定每個節點,以確定其內部功能、通信及其服務。在獲取數據的地方,開發了智慧和處理能力。邊緣和霧層的節點,位於數據感測器、執行器和控制器附近。本文提出的方法,使用具有兩個功能的兩層(邊緣和霧端)。每一層都可以佈署互連節點的網路,以促進互操作性。
邊緣和霧層的功能是:
邊緣層功能:在連接感測器/執行器的嵌入式設備上,開發的控制軟體。某些 AI 算法可以安裝在邊緣節點上。中央處理器(CPU)和計算資源有限。安裝了通信介面,以允許在本地網路中進行整合。
霧層功能:局域網級別的通信、AI 範例、儲存、配置關聯性和監控活動。霧節點透過處理、通信和儲存,來處理 IoT 的Gateway、伺服器設備,或其他設備中的數據。在此等級實施本地、全球的整合服務。利用這些節點的硬體、軟體和通信功能,開發了基於機器學習範例的算法。霧層設備還可以在很少單位的設施或服務中,執行邊緣節點功能。
透過這兩個等級,可以優化建築設施,以獲得不同子系統之間的整合和互操作性。
表 1 顯示了每件事與關聯性配置,和節點規範的關係。節點標識其所屬的子系統(控制、能源、氣候等),層(霧端、邊緣、通信和雲端)及其執行的功能。
3.2. 架構設計
在分析和設計階段,獲得對象(事物)及其關係。規範和要求用於實現每個層。實施取決於提供所需功能的設計,和現有技術(硬體、通信和軟體)。在此階段,開發了一種適合現有設施的體系結構。物聯網協議提供互操作性,而 AI 範例則提供了適應性和優化性。邊緣運算節點用於控制設備,霧運算節點安裝在本地網路節點上。這些等級為配置、安裝和運行新流程,提供了強大的資源。
物聯網協議,傳達所有子系統數據。每個子系統由對象/事物(虛擬等級)組成,安裝為可連接的感測器/執行器/控制器設備(硬體等級)。
物聯網通信中,針對建築場景建立的要求是:標準協議、低功耗、易於存取訪問和維護、支援整合新模組,非專有硬體或軟體,以及低成本設備。
MQTT 協議,是目的在用於提供整合和互操作性資源,異構通信場景的主要物聯網協議之一。該協議被提議作為感測器、執行器、控制器、通信設備,和子系統之間的通信範例。
MQTT 協議的一些主要功能,在不同的著作中有所顯示,這使其特別適合於這項研究。他們之中有一些是:
.它是針對資源受限的場景開發的發布 - 訂閱消息協議。
.它具有低頻寬要求。
.這是一個非常節能的協議。
.編程資源非常簡單,使其特別適合於嵌入式設備。
.具有三個 QoS 等級,它提供了可靠和安全的通信。
MQTT 開發了無所不在的網路,該網路支持 n-m 節點通信模式。任何節點都可以查詢其他節點,並對其進行查詢。在這些情況下,任何節點都可以充當基地台的角色,能夠將其資訊傳輸到遠端處理位置。無處不在的感測器網路(USN)中的節點,可以處理本地數據。如果使用 Gateway,則它們具有全局可訪問性;他們可以提供擴展服務。
節點(邊緣或霧),可以具有本地和全局存取訪問權限。這些設施具有不同的可能性和益處。本地數據處理,對於基本過程控制是必需的,而全局處理則可用於模式檢測和資訊生成。從這個意義上講,擬議的平台使用了組合功能:連接到 IoT 雲端服務,本地網路區域上不同的 USN。在這種情況下,運算層(邊緣或模糊等級)將用作控制流程和雲端服務之間的介面。該層可以在與雲端進行通信之前,進行處理數據。
實現邊緣和霧端運算節點需要執行三個操作:
.連接和通信服務:所有設備必須在同一網路中,並且可以互操作。所有感測器和執行器都可用於開發服務。此活動的一個示例,是在 Internet 上遠端讀取建築物的電源參數、環境條件和開放的天氣預報數據。此活動中應實現其他功能,例如連接的安全性、可靠性和互操作性。
.嵌入式設備(邊緣運算層)中的控制算法和數據處理:在此活動中,這些設備中實現的基本控制規則和數據分析服務,可以開發新功能。此階段可以應用於數據過濾、運算氣候數據或分析功耗、直接反應控製,或使用模式辨識技術檢測事件。
.Gateway 節點(霧運算層)上的高階服務:此等級使用和管理 AI 範例,和 IoT 通信協議。霧運算節點對數據執行智慧分析,對其進行儲存,過濾並將其傳遞到不同等級,以糾正較低級別的新控制措施,或者生成雲端中服務感興趣的資訊。此階段的應用示例,包括分析新模式、預測用水量,或功耗、智慧檢測和其他預測服務。
3.3. 測試與回饋
在測試階段使用標準方法,邊緣和霧層提供不同的功能。提出了針對不同子系統的機器學習模式,並且可以將其安裝在邊緣或霧節點上。必須執行以下操作,來測試機器學習應用:
A. 定義和捕獲數據集:必須辨識、捕獲和儲存主要變量。在不同的建築子系統中,過程數據集是由連接到邊緣層的感測器捕獲的數據。使用通信協議監控和儲存數據集。一個案例是電表,該電表在配電盤中連接到嵌入式設備(邊緣節點),該嵌入式設備傳送電力數據,以在霧節點設備中儲存和處理。
B. 訓練數據集和形式辨識模式。先前數據集的一個子集,用於訓練不同的模式。評估針對從未用於訓練的數據測試模式,此過程的結果已由專家使用者驗證。目的是獲得一組代表性的結果,以了解模式在現實世界中的表現。
C. 實際場景中的驗證:必須在邊緣和霧節點上,實施新的服務和控制算法。這些模式具有用於分析數據,實施特定模式,並使用結果開發最佳參數的算法。在此階段,可以修改或進行改善模式。
D. 用統計術語和模式演變,得出測試結果:基於 AI 算法的模式而將產生近似值,而不是精確的結果。分析應用結果以確定置信度,並允許模式演化。該活動支持開發新的 AI 服務,或對已實現的算法進行修改。有監督的自動更改,是維護和改進系統的過程。此階段的過程,包括所有模式層。
建議對使用邊緣和霧,任何的安裝進行這些活動。如前所述,該模式既可以安裝在既有舊的建築物中,也可以安裝在新建築物中。對於新建築設計,基於建議模式的安裝更易於整合。此外,可以提供的服務的潛力,也使其對於既有建築物具有吸引力。
4.在建築子系統中,實施智慧服務
該模式在預先存在的住宅建築物上,進行了測試。設計和實施電源管理、管制和監控服務。物聯網協議(MQTT 和 HTTP)和 ML 範例,用於建議的層體系結構。基於 KNN 的機器學習方法,和樹決策算法用於管理功耗(家用電器),和可再生能源發電(風能和太陽能)。使用房屋中的霧節點,在雲端平台上實現監控和統計數據。該節點連接到控制可再生,和家用電器子系統的不同邊緣節點。
在圖 6 中,邊緣節點,整合在先前安裝的可再生子系統中。透過邊緣層上的這種新設備、電源管理、安全控制和操作流程得以整合,並且可以與其他子系統互操作。可以設計新的智慧服務。邊緣節點將數據傳輸到霧節點 Gateway,該 Gateway 管理功耗和發電,並控製家用電器。該節點中的輸入,是可再生能源發電的數據。輸出控件是 ON-OFF 開關,用於優化發電、安全性和操作。
4.1. 分析與設計
分析了住宅建築,以設計電源管理,安全和控制服務。 在第一種方法中,所需的主要事物(對象),它們之間的關係和不同的服務,如表 2 所示。
4.2. 執行
分析房屋中的建築子系統,以整合這個執行模式層:邊緣控制、霧服務,與雲端的通信和雲端服務。 選擇了本實驗工作中使用的感測器、執行器和控制過程(事物)。 表 3 列出了使用的嵌入式設備。
家庭服務中的控制過程,需要反應時間和互操作性。人機介面、數據存取訪問和分析服務,是本地和雲端運算上的服務。上面提到的兩個需求,都使用不同的協議處理:控制/通信上的 MQTT,和雲端服務上的 HTTP(RESTful API)是用於整合,並使所有子系統互操作的 IoT 協議。在提出的該層模式中,還使用 MQTT 協議、控制、數據處理,以及使用 RESTful 協議,到雲端的數據通信,來開發機器對機器(M2M)應用。
MQTT 使用開放的消息協議,該協議可以將遙測樣式的數據(即在遠端位置收集的測量結果),以消息的形式,從設備和感測器,沿著不可靠或受約束的網路傳輸,到伺服器(BROKER)。消息是簡單、緊湊的二進制數據包,有效載荷(壓縮的標頭,比超連結傳輸協議(HTTP)少得多的詳細資訊),並且非常適合推送簡單的消息傳遞方案,例如溫度更新或移動通知。例如,消息也可以很好地用於,將受約束的或更小的設備,和感測器連接到 Web 服務。
MQTT 通信協議,使所有對象可以互操作。透過此協議實現的發布者和訂閱者模式,可以互連所有設備和事物。該通信層由安裝在霧節點上的代理設備管理。不同的發布者和訂閱者,在不同的節點上實現。安裝了一個 Gateway 設備(霧節點)和兩個嵌入式控制器(邊緣節點),來控製家用電器和電源管理。事物和流程佈署在所有節點上。
邊緣節點控制子系統,霧節點根據決策樹,以及專家定義的規則,實現 AI 範例。霧設備將數據傳輸到雲端平台,以開發儀表板螢幕,來監看子系統的狀態。
可以開發新的雲端平台服務:事件檢測、機器學習處理、統計分析等。專家使用者設計基本的控制算法。在學習和訓練過程之後,將根據專家系統的結果,對這些算法進行調整和修改。在這項工作中,目標是在不損失生產力的情況下優化資源(控制和能源)。在邊緣或霧節點中,執行不同的控製過程;分類過程和決策樹在霧節點中實現。算法以 Python 語言實現。此語言的開源庫用於不同的應用。
4.3. 佈署與測試
對於現有建築物,邊緣節點交錯插入已安裝的控制器、配電板,以及感測器和執行器中。如果在分析階段指定了新的東西(電錶、氣候和控制器),則會安裝一些新的感測器/執行器。這項工作中佈署的邊緣節點具有以下優點:
.請勿干擾先前的安裝操作。
.他們使用新的專家規則和自動規則,引入新控件。
.他們測試和重新配置,在分析、學習和測試驗證中,設計更新的專家規則。
圖 7. 佈署在配電盤中的節點。 使用 IoT 協議通信,在不同節點中開發數據捕獲、控制算法、數據分析、儲存和通信服務
在電力管理過程中,專家使用者根據電力消耗、發電量、消耗負荷曲線、氣候數據和氣候預測數據,對具有選定流程的時間表,進行可程式處理。邊緣節點捕獲數據,並將其發送到霧節點。
霧節點處理室內和室外環境的日記數據,以及天氣狀況。霧節點還可以捕獲其他感測器數據。對房屋中的這些數據消耗和生成方式,進行檢測和分類。消費和發電結果,作為數據添加,以便與儲存的數據一起進行分析。可以使用機器學習方法開發,作為家用電器或人類活動檢測的智慧服務(圖8)。
4.3.1. 機器學習:數據捕獲過程(邊緣節點)和家用電器分類(霧節點)
連接在主配電盤中的電表,用於捕獲數據,並使用標準的 K 近似值,最近鄰(KNN)分類算法,來開發形式辨識模式。 KNN 是機器學習系統中最常見的方法之一。電表捕獲電流;如果連接了新的家用電器,則電流數據會更改。不同的家用電器具有不同的變化等級。
用於辨識家用電器的不同模式的主要變量,是連接時的電流水準差異。數據捕獲過程流程圖(圖9),顯示了在邊緣節點中實現的算法,以捕獲預處理並傳遞電力數據。
在此過程中,監督階段使用訓練數據集。接下來,真實場景中的驗證,將測試分類模式。家用分類設備將用於不同的服務:人類活動的辨識、負載控制、可再生能源管理、空調、安全性等。在訓練階段,已捕獲了不同的家用電器開機,以獲得一組形式。每個家庭都有一個矩心向量,將用於分類過程中的檢測。如上面所示的算法所示,分類器處理將產生連接時的電流數據作為輸入。KNN 分類過程流程圖(圖10)描述了 KNN 方法,它在霧節點中實現。
4.3.2. 可再生電源管理。控制電力自耗的決策樹
每個建築物都有不同的需求曲線,以及在接入電網方面的特定情況。為此,整合和可互操作的設施,可以實施適用於每種情況的不同解決方案,從而提供對太陽風資源的最佳管理,優化電源效率,簡化管理流程,並實現最高的成本節省。當可再生能源超過消耗的能源時,在使用 AC 耦合到電網的設施中,會出現問題。
在實驗工作中,太陽能在一天的中央時段的能量,大於所消耗的能量(圖11)。但是,在分析了消耗曲線之後,可以在這段時間內連接負載,以避免注入電網。可以透過設計一種算法,來滿足這一要求,該算法可以預測,何時發生此事件,以自動連接不同的負載。利用所有感測器和執行器的整合,和互操作通信,已經開發了在不同節點中,所實現的算法(圖12)。
13. 在電源管理子系統上開發的決策樹。 它由專業使用者設計,並整合在邊緣節點上。該決策樹的目的,在優化可再生能源的使用。
4.3.3. 基於 Edge 和 Fog 節點的 Control Home
圖 14 顯示了安裝在住宅房間中的邊緣節點。 該節點可以控制四個設備(設備),並捕獲感測器數據(功耗、發電量、溫度、濕度等)。該設備可以使用 MQTT 協議進行通信。該協議允許設備之間,進行其他類型的通信:智慧手機、新邊緣節點等。圖 7 和圖 14 顯示了可以在其他建築物中,佈署的標準實現。在所有系統中,都有配電板,這些配電盤佈署了霧節點和邊緣節點,如圖所示。
4.3.4. 使用物聯網協議的雲端服務
雲端服務可以監控,透過霧節點或人機介面(HMI)訪問的數據。 IoT 協議(MQTT)從任何已連接 Internet 的設備推送數據。事件檢測、儲存統計分析等其他服務,完善了該資源的功能。提供類似服務的不同平台,顯示了商用物聯網技術的狀態:Amazon IoT、Microsoft Azure、Ubidots 和 Thingspeak,是提供 IoT 平台的公司一些案例。提供了資源以及客戶端,和 IoT 平台之間的應用程式介面(API)通信,以便可以使用它們。
用於設計儀表板監控和管制的 HMI 資源,是這些平台上的主要實用功能之一。霧節點使用雲端 API 傳達數據和資訊,可以實施其他控制服務。在這些雲端平台上,預先建構了用於監控數據的儀表板設計。使用 API 實用功能,霧節點中的過程處理,會將數據發送到每個儀表板。API 文件指定了在設備、IoT 平台和 Mobile-Alerts Cloud 之間,交換數據的結構,以及用於加速項目的代碼案例和形成資料庫。
圖 15 顯示了在 Ubidots 雲平台上,設計的儀表板。Ubidots是本實驗工作中使用的物聯網平台。該模式可以在實現這些協議的層,和平台中使用不同的標準協議。圖 16 顯示了在雲端平台中,IF 變量 THEN 動作的事件配置。大多數物聯網平台,都提供此功能。
5. 結論
為了設計物聯網系統,越來越多地提出邊緣霧模式。但是,每個範例都提供特定應用領域的解決方案。不同子系統之間的整合和互操作性,可以改善這種情況,並提供更好的服務。這項工作的主要目的,是透過提出一種基於邊緣層和霧層,兩層體系結構的運算模式,來解決這個問題。透過這兩層,可以基於使用邊緣或霧節點中,嵌入式的設備捕獲數據所產生的新型有用資訊,來設計和開發新服務。這些節點使用雲端平台和 IoT 協議(例如 MQTT)。
MQTT 是作為不同層(霧 – 邊緣 – 雲)之間提出的通信協議,並進行實驗的。雲端平台用於開發儀表板的面板資訊和 Internet 上的新服務,例如控制、儲存和通信事件。該平台可用於透過 API,交付不同的服務。
該模式可以在現有建築物和新建築物中,開發這些服務。在這種情況下,要求每個子系統中的專家和專業人員,參與新服務的設計。
為了測試該模式的功能,並顯示如何在實際設施中,實現該模式,在住宅中進行了一項實驗性工作。在此霧和邊緣節點前後關聯中,描述了實現的幾個範例。開發了模式辨識和決策樹方法,以展示人工智慧在設計 IoT 解決方案中的潛力。已安裝服務的結果顯示,邊緣和霧節點佈署,產生了預期中整合和互操作性的好處。
提出的工作演示了,如何將邊緣和霧範例,整合到可以增強其優勢的新架構中,從而擴展了應用領域。該體系結構的主要科學貢獻,是整合、技術的互操作性,及其為開發 AI 服務提供的設施的範例。所有這些改進,都在已開發的實驗的不同示例中顯示。具體的優化和改進,將在以後的工作中進行。此外,使用機器學習平台,和 AI 範例的新控制規則,將確保可以創建和改進新的智慧服務。
附圖:圖1.自動建構子系統和資訊技術環境。
圖2.基於使用者為中心關係的模式。
圖3.通信架構。 每個等級都有不同的功能。 提出了兩個通信等級:IoT(使用消息隊列遙測傳輸(MQTT))和 Web(使用代表性狀態傳輸(REST)協議)。這些協議的層,涵蓋了已建立的整合和互操作性要求。
圖4. 在建築物的現有設施上實施的邊緣霧架構示例:邊緣節點是較低的層次,必須與安裝的設備進行新連接。互連所有子系統的霧節點,是透過整合連接到邊緣節點的新設備來實現的。邊緣和霧節點,可以佈署在所有建築物子系統中。
圖5. 住宅建築中的第一個實驗工作。
圖6. 整合在先前安裝的可再生子系統中,邊緣節點的示例。 該節點可以使用新算法控制 ON-OFF 開關,以管理發電過程,以及通信和監控電源數據。
表1.事物示例描述。寫入 ID、類型和節點數據,以配置 XML 文件。配置關聯性儲存在霧節點中。
表 2. 實驗工作中的分析和設計要求。
表 3. 實驗室內使用的嵌入式設備。
圖 7 顯示了分佈在配電板上的節點(邊緣和霧狀)。在此節點中,設計並安裝了功率計、ON-OFF 開關控件和 AI 服務。
圖 8. 佈署的智慧電源功能。在霧節點中實施的分類過程,可用於檢測電連接和人類活動。可以使用 IoT 通信實現其他服務
圖9. 邊緣節點中捕獲,並預處理的用電量數據;MQTT 協議用於通信數據。另外,其他節點可以使用捕獲的數據,來提供其他智慧服務,佈署了整合和互操作性。
圖10. 分類過程。處理捕獲的電數據以檢測家用電器連接。可以使用 IoT 協議整合,來設計其他智慧服務。
圖11. 該圖顯示了實驗工作中的消耗和生產數據。 在自儲存的電力自備設施中,沒有儲存並且沒有注入電網,所產生的能量必須即時使用,並且不得超過所消耗的能量。 能源經理必須預測此事件,並提前連接電荷。
圖 12. 用電自耗設施中的可再生電源管理。
圖 13 是在電源管理子系統中,開發的算法的示例。 可以在邊緣節點上安裝此過程。該節點獲取氣候數據預測,並預測系統是否可以在不儲存的情況下,使用可再生能源。
圖14. 佈署的邊緣節點。該節點可以使用新算法,控制 ON-OFF 開關,並可以在每個房間或建築物中,通信和監控感測器數據。
圖 15. 在雲平台上配置的儀表板。顯示了風力發電數據和預測風力。
圖 16. 在雲端平台上配置事件的儀表板:IF 事件 THEN 動作。 該服務顯示了,如何使用雲端訪問來控制設施。與霧節點的 Internet 通信,可以控制建築物中的不同子系統,並使用電子郵件,SMS 或其他 Internet 服務來通報事件。
資料來源:https://3smarket-info.blogspot.com/2021/02/iot-edge.html?m=1&fbclid=IwAR0uijX5WdNrfzmGjVsakFGaEsWivPgyH1zumxVr7fwvvgqtdFFTI6jJXS8