雖然這篇線性核函數鄉民發文沒有被收入到精華區:在線性核函數這個話題中,我們另外找到其它相關的精選爆讚文章
在 線性核函數產品中有5篇Facebook貼文,粉絲數超過7萬的網紅iThome,也在其Facebook貼文中提到, 核方法(Kernel method)是提升特徵維度,讓特徵能成為線性可分的技巧,在運作上,核函數的選擇是個挑戰,然而挑戰的出發點不是認識核函數的數學公式,而是在深入的分析、理解資料本身 #看更多 https://www.ithome.com.tw/voice/146206...
同時也有2部Youtube影片,追蹤數超過2萬的網紅數學老師張旭,也在其Youtube影片中提到,【摘要】 本範例練習如何透過線性化函數做數值估計 【勘誤】 無,有任何錯誤歡迎留言告知 【講義】 請到張旭老師臉書粉專評論區留下你的評論 然後私訊張旭老師臉書粉專索取講義,通過審核即可獲得講義連結 👉 https://www.facebook.com/changhsu.math/reviews ...
線性核函數 在 如履的電影筆記 Instagram 的最佳解答
2020-09-07 20:13:58
【解析】《#天能》電影在演什麼?燒腦結局一次看懂 ⠀ (Part2) 全文太長分兩篇 @looryfilmnotes 主頁部落格看時間軸大圖 ⠀⠀ 接續上篇文章 ⠀⠀ ※天能主角回到過去發生什麼事? 首先必須再次強調「天能」只能夠改變人們在時間中的「前進」或「倒退」的方向,因此即便穿越了機器,《#...
-
線性核函數 在 數學老師張旭 Youtube 的最讚貼文
2020-09-21 20:30:03【摘要】
本範例練習如何透過線性化函數做數值估計
【勘誤】
無,有任何錯誤歡迎留言告知
【講義】
請到張旭老師臉書粉專評論區留下你的評論
然後私訊張旭老師臉書粉專索取講義,通過審核即可獲得講義連結
👉 https://www.facebook.com/changhsu.math/reviews
【習題】
請到張旭的生存用微積分社團下載
👉 https://www.facebook.com/groups/changhsumath666.calculus
【附註】
本影片適合理、工、商、管學院學生觀看
【加入會員】
歡迎加入張旭老師頻道會員
付費訂閱支持張旭老師,協助本頻道發展並獲得會員專屬福利
👉 https://www.youtube.com/channel/UCxBv4eDVLoj5XlRKM4iWj9g/join
【購買下學期微積分教學影片】
本頻道僅公開張旭微積分上學期教學影片
若你需要下學期微積分影片,請參考我們的方案
👉 https://changhsumath.1shop.tw/calculus2nd
【學習地圖】
【極限篇】(https://www.youtube.com/playlist?list=PLKJhYfqCgNXjkwxSf-xDV47b9ZXDUkYiN)
【連續篇】(https://www.youtube.com/playlist?list=PLKJhYfqCgNXgntIXH9Jrpgo5O6y_--58L)
【微分篇】(https://www.youtube.com/playlist?list=PLKJhYfqCgNXiPgR9GLKtro3CTr6OIgdMg)
【微分應用篇】
重點一:均值定理 (https://youtu.be/isNK9d84w9M)
重點二:微分與極限的聯手 (羅必達法則) (https://youtu.be/hlxqEekNp6U)
重點三:極值分析相關名詞介紹 (https://youtu.be/2yhgGjBklyc)
重點四:微分求極值法 (https://youtu.be/9OxXex9BavM)
重點五:漸近線 (https://youtu.be/OsSzTSmP2Io)
重點六:微分作圖法 (https://youtu.be/wJgwmAyfCek)
重點七:微分量 (https://youtu.be/6IlPFdXRv7o)
├ 精選範例 7-1 (https://youtu.be/DwRZ-ivLeAA)
├ 精選範例 7-2 👈 目前在這裡
├ 精選範例 7-3 (https://youtu.be/VtCrRHcyHis)
└ 精選範例 7-4 (https://youtu.be/sNQq264jbDg)
重點八:牛頓法 (https://youtu.be/CoJnSuq75ac)
【積分前篇】(https://www.youtube.com/playlist?list=PLKJhYfqCgNXikxrvbQAnPa_l3nFh5m9XK)
【積分後篇】(https://www.youtube.com/playlist?list=PLKJhYfqCgNXhFI6OnDy0la5MqPOnWtoU7)
張旭微積分下學期課程影片將不會在 YouTube 頻道上免費公開
若你覺得我的課程適合你,且你下學期也有微積分要修
可以參考購課頁面 👉 https://changhsumath.1shop.tw/calculus2nd
【版權宣告】
本影片版權為張旭 (張舜為) 老師所有
嚴禁用於任何商業用途⛔
如果有學校老師在課堂使用我的影片的話
請透過以下聯絡方式通知我讓我知道,謝謝
FB:https://www.facebook.com/changhsu.math
IG:https://www.instagram.com/changhsu.math
【張旭老師其他社群平台】
Twitch:https://www.twitch.tv/changhsu_math
LBRY:https://odysee.com/@changhsumath:b
Bilibili:https://space.bilibili.com/521685904
SoundOn:https://sndn.link/changhsu_math
Discord 邀請碼:6ZKqJX9kaM
【贊助張旭老師】
歐付寶:https://payment.opay.tw/Broadcaster/Donate/E1FDE508D6051EA8425A8483ED27DB5F (台灣境內用這個)
綠界:https://p.ecpay.com.tw/B3A1E (台灣境外用這個)
#張旭微積分 #有錯歡迎留言指教 #喜歡請按讚訂閱分享 -
線性核函數 在 數學老師張旭 Youtube 的最佳貼文
2020-09-21 20:30:00【摘要】
本範例練習把一個函數線性化,為日後的估計做準備
【勘誤】
無,有任何錯誤歡迎留言告知
【講義】
請到張旭老師臉書粉專評論區留下你的評論
然後私訊張旭老師臉書粉專索取講義,通過審核即可獲得講義連結
👉 https://www.facebook.com/changhsu.math/reviews
【習題】
請到張旭的生存用微積分社團下載
👉 https://www.facebook.com/groups/changhsumath666.calculus
【附註】
本影片適合理、工、商、管學院學生觀看
【加入會員】
歡迎加入張旭老師頻道會員
付費訂閱支持張旭老師,協助本頻道發展並獲得會員專屬福利
👉 https://www.youtube.com/channel/UCxBv4eDVLoj5XlRKM4iWj9g/join
【購買下學期微積分教學影片】
本頻道僅公開張旭微積分上學期教學影片
若你需要下學期微積分影片,請參考我們的方案
👉 https://changhsumath.1shop.tw/calculus2nd
【學習地圖】
【極限篇】(https://www.youtube.com/playlist?list=PLKJhYfqCgNXjkwxSf-xDV47b9ZXDUkYiN)
【連續篇】(https://www.youtube.com/playlist?list=PLKJhYfqCgNXgntIXH9Jrpgo5O6y_--58L)
【微分篇】(https://www.youtube.com/playlist?list=PLKJhYfqCgNXiPgR9GLKtro3CTr6OIgdMg)
【微分應用篇】
重點一:均值定理 (https://youtu.be/isNK9d84w9M)
重點二:微分與極限的聯手 (羅必達法則) (https://youtu.be/hlxqEekNp6U)
重點三:極值分析相關名詞介紹 (https://youtu.be/2yhgGjBklyc)
重點四:微分求極值法 (https://youtu.be/9OxXex9BavM)
重點五:漸近線 (https://youtu.be/OsSzTSmP2Io)
重點六:微分作圖法 (https://youtu.be/wJgwmAyfCek)
重點七:微分量 (https://youtu.be/6IlPFdXRv7o)
├ 精選範例 7-1 👈 目前在這裡
├ 精選範例 7-2 (https://youtu.be/UEgv3EWAbAU)
├ 精選範例 7-3 (https://youtu.be/VtCrRHcyHis)
└ 精選範例 7-4 (https://youtu.be/sNQq264jbDg)
重點八:牛頓法 (https://youtu.be/CoJnSuq75ac)
【積分前篇】(https://www.youtube.com/playlist?list=PLKJhYfqCgNXikxrvbQAnPa_l3nFh5m9XK)
【積分後篇】(https://www.youtube.com/playlist?list=PLKJhYfqCgNXhFI6OnDy0la5MqPOnWtoU7)
張旭微積分下學期課程影片將不會在 YouTube 頻道上免費公開
若你覺得我的課程適合你,且你下學期也有微積分要修
可以參考購課頁面 👉 https://changhsumath.1shop.tw/calculus2nd
【版權宣告】
本影片版權為張旭 (張舜為) 老師所有
嚴禁用於任何商業用途⛔
如果有學校老師在課堂使用我的影片的話
請透過以下聯絡方式通知我讓我知道,謝謝
FB:https://www.facebook.com/changhsu.math
IG:https://www.instagram.com/changhsu.math
【張旭老師其他社群平台】
Twitch:https://www.twitch.tv/changhsu_math
LBRY:https://odysee.com/@changhsumath:b
Bilibili:https://space.bilibili.com/521685904
SoundOn:https://sndn.link/changhsu_math
Discord 邀請碼:6ZKqJX9kaM
【贊助張旭老師】
歐付寶:https://payment.opay.tw/Broadcaster/Donate/E1FDE508D6051EA8425A8483ED27DB5F (台灣境內用這個)
綠界:https://p.ecpay.com.tw/B3A1E (台灣境外用這個)
#張旭微積分 #有錯歡迎留言指教 #喜歡請按讚訂閱分享
線性核函數 在 iThome Facebook 的最讚貼文
核方法(Kernel method)是提升特徵維度,讓特徵能成為線性可分的技巧,在運作上,核函數的選擇是個挑戰,然而挑戰的出發點不是認識核函數的數學公式,而是在深入的分析、理解資料本身
#看更多 https://www.ithome.com.tw/voice/146206
線性核函數 在 台灣物聯網實驗室 IOT Labs Facebook 的最佳貼文
用深度神經網路求解「薛丁格方程式」,AI 開啟量子化學新未來
作者 雷鋒網 | 發布日期 2021 年 01 月 02 日 0:00 |
19 世紀末,量子力學的提出為解釋微觀物質世界打開了一扇大門,徹底改變了人類對物質結構及相互作用的理解。已有實驗證明,量子力學解釋了許多被預言、無法直接想像的現象。
由此,人們也形成了一種既定印象,所有難以理解的問題都可以透過求解量子力學方程式來解決。
但事實上能夠精確求解方程式的體系少之又少。
薛丁格方程式是量子力學的基本方程式,即便已經提出七十多年,它的氫原子求解還是很困難,超過兩個電子的氫原子便很難保證精確度。
不過,多年來科學家們一直在努力克服這一難題。
最近,來自柏林自由大學(Freie Universität Berlin) 的科學團隊取得了突破性進展,他們發表的一篇名為《利用深度神經網路解電子薛丁格方程式》的論文,登上《Nature Chemistry》子刊。
論文明確指出:利用人工智慧求解薛丁格方程式基態解,達到了前所未有的準確度和運算效率。該人工智慧即為深度神經網路(Deep-neural-network),他們將其命名為 PauliNet。
在介紹它之前,我們先來簡單了解薛丁格方程式。
什麼是薛丁格方程式?
薛丁格方程式(Schrödinger Equation),是量子力學中的一個基本方程式。又稱薛丁格波動方程式(Schrödinger Wave Equation),它的命名來自一位名為埃爾溫·薛丁格(Erwin Schrödinger)的奧地利物理學家。
Erwin 曾在 1933 年獲得諾貝爾物理學獎,是量子力學奠基人之一。他在 1926 年發表的量子波形開創性論文中,首次提出了薛丁格方程式。它是一個非相對論的波動方程式,反映了描述微觀粒子的狀態隨時間變化的規律。
具體來說,將物質波的概念和波動方程式相結合建立二階偏微分方程式,以描述微觀粒子的運動,每個微觀系統都有一個相應的薛丁格方程式,透過「解方程式」可得到波函數的具體形式以及對應的能量,從而了解微觀系統的性質。
薛丁格方程式在量子力學的地位,類似牛頓運動定律在經典力學的地位,在物理、化學、材料科學等多領域都有廣泛應用價值。
比如,應用量子力學的基本原理和方法研究化學問題已形成「量子化學」基礎學科,研究範圍包括分子的結構、分子結構與性能之間的關係;分子與分子之間的相互碰撞、相互作用等。
也就是說,在量子化學,透過求解薛丁格方程式可以用來預測出分子的化學和物理性質。
波函數(Wave Function)是求解薛丁格方程式的關鍵,在每個空間位置和時間都定義一個物理系統,並描述系統隨時間的變化,如波粒二象性。同時還能說明這些波如何受外力或影響發生改變。
以下透過氫原子求解可得到正確的波函數。
不過,波函數是高維實體,使捕獲特定編碼電子相互影響的頻譜變得異常困難。
目前在量子化學領域,很多方法都證實無法解決這難題。如利用數學方法獲得特定分子的能量,會限制預測的精確度;使用大量簡單的數學構造塊表示波函數,無法使用少數原子進行計算等。
在此背景下,柏林自由大學科學團隊提出了一種有效的應對方案。團隊成員簡‧赫爾曼(Jan Hermann)稱,到目前為止,離群值(Outlier)是最經濟有效的密度泛函理論(Density functional theory ,一種研究多電子體系電子結構的方法)。相比之下,他們的方法可能更成功,因在可接受計算成本下提供前所未有的精確度。
PauliNet:物理屬性引入 AI 神經網路
Hermann 所說的方法稱為量子蒙地卡羅法。
論文顯示,量子蒙地卡羅(Quantum Monte Carlo)法提供可能的解決方案:對大分子來說,可縮放和並行化,且波函數的精確性只受 Ansatz 靈活性的限制。
具體來說,團隊設計一個深層神經網路表示電子波函數,這是一種全新方法。PauliNet 有當成基準內建的多參考 Hartree-Fock 解決方案,結合有效波函數的物理特性,並使用變分量子蒙地卡洛訓練。
弗蘭克‧諾(Frank Noé)教授解釋:「不同於簡單標準的數學公式求解波函數,我們設計的人工神經網路能夠學習電子如何圍繞原子核定位的複雜模式。」
電子波函數的獨特特徵是反對稱性。當兩個電子交換時,波函數必須改變符號。我們必須將這種特性構建到神經網路體系結構才能工作。
這類似包立不相容原理(Pauli’s Exclusion Principle),因此研究人員將該神經網路體系命名為「PauliNet」。
除了包立不相容原理,電子波函數還具有其他基本物理特性。PauliNet 成功之處不僅在於利用 AI 訓練數據,還在將這些物理屬性全部整合到深度神經網路。
對此,FrankNoé 還特意強調說:
「將基本物理學納入 AI 至關重要,因為它能夠做出有意義的預測,這是科學家可以為 AI 做出有實質性貢獻的地方,也是我們關注的重點。」
實驗結果:高精確度、高效率
PauliNet 對電子薛丁格方程式深入學習的核心方法是波函數 Ansatz,它結合了電子波函數斯萊特行列式(Slater Determinants),多行列式展開(Multi-Determinant Expansion),Jastro 因子(Jastrow Factor),回流變換(backflow transformation,),尖點條件(Cusp Conditions)以及能夠編碼異質分子系統中電子運動複雜特徵的深層神經網路。如下圖:
論文中,研究人員將 PauliNet 與 SD-VMC(singledeterminant variational,標準單行列式變分蒙地卡羅)、SD-DMC(singledeterminant diffusion,標準單行列式擴散蒙地卡羅)和 DeepWF 進行比較。
實驗結果顯示,在氫分子(H_2)、氫化鋰(LiH)、鈹(Be)以及硼(B)和線性氫鏈 H_10 五種基態能量的對比下,PauliNe 相較於 SD-VMC、SD-DMC 以及 DeepWF 均表現出更高的精準度。
同時論文中還表示,與專業的量子化學方法相比──處理環丁二烯過渡態能量,其準確性達到一致性的同時,也能夠保持較高的計算效率。
開啟「量子化學」新未來
需要說明的是,該項研究屬於一項基礎性研究。
也就是說,它在真正應用到工業場景之前,還有很多挑戰需要克服。不過研究人員也表示,它為長久以來困擾分子和材料科學的難題提供了一種新的可能性和解決思路。
此外,求解薛丁格方程式在量子化學領域的應用非常廣泛。從電腦視覺到材料科學,它將會帶來人類無法想像的科學進步。雖然這項革命性創新方法離落地應用還有很長的一段路要走,但它出現並活躍在科學世界已足以令人興奮。
如 Frank Noé 教授所說:「相信它可以極大地影響量子化學的未來。」
附圖:▲ Ψ 表示波函數。
資料來源:https://technews.tw/2021/01/02/schrodinger-equation-ai/?fbclid=IwAR340MNmOkOxUQERLf4u3SK0Um6VQVBpvEkV_DxyxIIcUv8IP88btuXNJ6U
線性核函數 在 李開復 Kai-Fu Lee Facebook 的精選貼文
分享好文,中學生要學電腦嗎?
作者:創新工場CTO、人工智慧工程院執行院長 王詠剛
文章来自半轻人微信公众号(ban-qing-ren)
………………………………
朋友的孩子高中剛畢業,已拿到美國頂尖大學(非電腦專業)的錄取通知。疫情影響,不知何時才能去學校報到。孩子想抓緊學習一下程式設計,為大學打好基礎。這孩子找我聊了一個多小時,從如何學程式設計,聊到非電腦專業和電腦專業的路徑差異,又聊到如何從不同角度認識電腦與程式設計。聊得比較寬泛,不知是否對這孩子有用。
回想我自己的高中時代:那時雖迷戀程式設計,卻完全沒有懂行的人指導。在我們那個四線城市的廠礦中學裡,開設電腦興趣課的老師知道的資訊還沒我多。我高一時跑到北京中關村逛街,卻完全沒意識到中國第一代頂尖程式師當時就在我身邊的低矮辦公樓裡寫代碼(這話說得並不準確,比如求伯君那年就主要是在珠海做開發),鼎鼎大名的UCDOS、WPS、CCED就出自他們之手……我在當時街邊的一家書店(位置似乎就在今天的鼎好大廈對面)買到了許多種印刷品質極低劣的電腦圖書。用今天的標準看,那就是一批盜版影印或未授權翻譯的國外圖書。可那批書竟成了我高中時代最寶貴的程式設計知識來源。
顯然,我在高中時根本就是野路子學電腦。現在後悔也沒用,當時我的眼界或能觸及的資源就那麼多。如果能穿越回30年前,我該對喜歡程式設計的自己說些什麼呢?這些年,我與世界上最好的一批程式師合作過,也參與過世界上最有價值的軟體系統研發——我所積累的一些粗淺經驗裡,有哪些可以分享給一個愛程式設計的中學生?
【問題1】中學生要不要學電腦?
當然要!
每個中學生都要學。只不過——建議大部分中學生使用“休閒模式”,小部分(不超過10%)中學生使用“探險模式”。
啊?兩個模式?那我該進入哪個模式?⟹請跳轉至【問題2】
【問題2】選哪個模式?
你癡迷電腦嗎?比如,你玩遊戲時會特別想知道這遊戲背後的代碼是如何編寫的嗎?再比如,就算老師家長不同意你學電腦,甚至當著你的面把電腦砸了,你也要堅持學電腦嗎?如果是,恭喜你進入“探險模式”⟹請跳轉至【問題200】
你對數學有興趣嗎?比如,你看到街邊建築的曲線,就會在腦子裡琢磨曲線對應的函數或方程嗎?每當手裡攥著幾粒骰子,你就會不由自主地計算概率嗎?如果是,歡迎進入“探險模式”⟹請跳轉至【問題200】;當然,如果有些猶豫,也可以先進入“休閒模式”⟹請跳轉至【問題100】
即便你對電腦和數學興趣不大,家長、老師還是強烈建議你學電腦嗎?就算你一百個沒時間一千個不願意,家長、老師還是會逼著你學電腦嗎?如果是,建議你主動進入“休閒模式”並向家長、老師彙報說“我已經按照前谷歌資深軟體工程師的專業建議在認真學程式設計了”⟹請跳轉至【問題100】
其他情況,一律進入“休閒模式”。⟹請跳轉至【問題100】
【問題100】休閒模式 | 主要學什麼?
“休閒模式”將電腦視為我們生活、工作中的必備工具,主要學習如何聰明、高效、優雅地使用計算設備。這裡說的計算設備,包括所有形式的電腦、手機、遊戲機、智慧家電以及未來一定會進入生活的自動駕駛汽車。
什麼什麼?你已經會用電腦、會玩手機、會打遊戲了?別著急,慢慢往下看。
【問題101】休閒模式 | 我會用搜尋引擎嗎?
我知道你會用百度搜習題答案。但,習題答案不是知識。你會用搜尋引擎來搜索和梳理知識嗎?請試著用電腦和你喜歡的搜尋引擎來解決如下兩個問題:
(1)圓周率𝜋的計算方法有多少種?每種不同的計算方法分別是由什麼人在什麼時代提出的?借助電腦,今天人們可以將圓周率𝜋計算到小數點後多少位?將圓周率𝜋計算到小數點這麼多位元,一次大概需要花掉多少度電?
(2)全球大約有多少個廁所?在發展程度不同的國家,分別有多少比例的人可以享用安裝了抽水馬桶的衛生廁所?為什麼比爾·蓋茨曾大力推動一個設計新型馬桶的研發專案?比爾·蓋茨的公益組織在這個專案上大約花費了多少資金,最終收到了多大的效果?
如果你沒法快速得到上述問題的全部答案,那就給自己設一個小目標:一個月內,學會用搜尋引擎系統地獲取、梳理一組知識點的全部技巧。
【問題102】休閒模式 | 接下來學什麼?
建議學好典型的工具軟體。比如,我知道你會用Office了,但用Office和用Office是很不一樣的。對生活、學習、工作來說,學好、學透一個工具軟體比鑽研程式設計技巧更實用。
你會用Excel來管理班級公益基金的預算和實際收支情況嗎?
你會用Excel做出過去20年裡全球大學排名的演變趨勢圖嗎?
你會用Word排版一篇中學生論文嗎?論文中的圖表和最後的參考文獻部分該如何排版?
你會用Word編排一份班級刊物,包含封面、扉頁、目錄、插圖頁、附錄、封底等部分,可以在列印後直接裝訂成冊嗎?
PowerPoint呢?你有沒有研究過蘋果公司發佈會上那些幻燈片的設計?當約伯斯(多年以前)或蒂姆·庫克站在幻燈片前的時候,他們的演講思路是如何與幻燈片完美結合的?
還有哦,別忘了學學如何為數碼照片做後期,如何用電腦或手機剪視頻,如何為剪輯好的視頻配字幕,如何將照片、音樂、視頻等素材結合起來,做出一段吸引人的快手/抖音短視頻。
最後,抽空玩玩那些設計精妙的遊戲吧,比如《紀念碑穀》、《塞爾達傳說:曠野之息》之類;同時,遠離那些滿屏廣告,或者一心騙你在遊戲裡充值花錢的垃圾。
【問題103】休閒模式 | 不學學知識嗎?
當然要學知識。下面每種實用的電腦知識都夠大家學一陣子了。
(1)色彩知識:你知道同一張數碼照片在不同品牌的手機螢幕上、不同的電腦螢幕上、不同的智慧電視上顯示時,為什麼經常有較大色差嗎?你知道有一些色彩只適合螢幕顯示,不適合列印輸出嗎?你知道軟體工具裡常用的RGB、HSL之類的色彩空間都是什麼意思嗎?如何在設計PowerPoint幻燈片時選擇一組和諧美觀的色彩?
(2)字體知識:你知道什麼是襯線字體,什麼是無襯線字體嗎?你知道網頁中常用的英文字體都有哪些嗎?你知道商務演講時最適用于幻燈片的英文字體有哪些嗎?你知道電腦和手機常用的黑體、宋體、仿宋體、楷體等中文字體分別適合哪些實際應用場合嗎?你會將不同字體混排成一個美觀的頁面嗎?
(3)網路知識:你知道5G是什麼嗎?你知道5G和4G在通信頻寬、通信距離上的具體區別嗎?你知道什麼是路由器,什麼是防火牆嗎?你知道如何配置路由器,如何配置防火牆嗎?微信或QQ聊天時,對方發的文字、語音或視頻是如何傳送到你的手機上的?
(4)應用知識:淘寶中搜索得到的商品資訊是從哪裡來的?商品是按什麼方式排序的?為什麼購物APP經常會推薦給你一些曾經買過、看過的商品?你知道如何為自己建立個人網站嗎?你知道如何管理微信公眾號嗎?
(5)安全知識:你知道網路上的釣魚攻擊是怎麼回事兒嗎?你知道什麼是電腦漏洞嗎?你知道駭客為什麼想把一大批受攻擊的電腦變成可以遠端操控的傀儡機嗎?你知道為什麼現在很多手機APP都要通過短信發送驗證碼嗎?如果驗證碼被壞人截獲,你會面臨哪些風險?
這裡只是舉例。實用的電腦知識還有很多。大家可以自己發掘。
【問題104】休閒模式 | 我需要學程式設計嗎?
可以學,但不是必須。即便學,也只需要根據自己的需要,學那些最能幫你解決現實問題的部分。
【問題105】休閒模式 | 我該學什麼程式設計語言?
在“休閒模式”裡,電腦就是工具,程式設計也是工具,夠用就好。學什麼程式設計語言,完全看你想要電腦幫你做什麼。
• 如果你想對資料處理有更多自主權,那不妨學學Python;
• 如果你想做簡單的交互演示程式,那就先把JavaScript學起來;
• 如果你想更好、更快地寫論文,那不妨學學LaTeX(什麼什麼,LaTeX不是程式設計語言?你太小看LaTeX了);
• 如果你想學做簡單的手機APP,那麼,Android手機就學Java,蘋果手機就學Swift好了;
• 如果你只想知道程式設計是怎麼回事,那……從Python或JavaScript開始就行。其實,跟五六歲的小朋友一起學學Scratch圖形程式設計也不錯。
【問題106】休閒模式 | 我需要學人工智慧嗎?
在“休閒模式”裡,最需要學的不是“人工智慧的實現原理”,而是“什麼是人工智慧”,以及“人工智慧能做什麼,不能做什麼”。
• 在手機上試一試,人工智慧做語音辨識時能做到什麼水準?哪些話容易識別,哪些話不容易識別?
• 打開機器翻譯軟體,試一試哪些資訊翻譯得好,哪些資訊翻譯得不好?
• 手機上的拍照軟體一般都有人臉識別功能。試一試人臉識別在什麼場景下做得好,什麼場景下做得不好?
• 找一部講人工智慧的科幻電影,用自己的判斷解讀一下,電影裡哪些技術有可能成為現實,哪些技術存在邏輯矛盾。
【問題107】休閒模式 | 推薦什麼參考書、參考文獻?
書不重要,豆瓣評分7分以上的電腦應用、程式設計甚至科普類圖書都可以拿來翻翻。
直接在知乎裡搜索你想瞭解或學習的知識點可能更有效率。
如果你意猶未盡,覺得自己剛活動開筋骨,還想挑戰更高層次,歡迎進入“探險模式”。⟹請跳轉至【問題200】
否則,“休閒模式”到此結束。⟹請離開此問答
【問題200】探險模式 | 主要學什麼?
“探險模式”需要有挑戰精神。電腦科學的世界技術演進快,脈絡複雜,要想在探索時不迷路,你得通過有順序、有系統地學習電腦知識,慢慢構建出一張可以在未來幫你走得更遠的思維地圖來。
在“探險模式”裡,電腦就不止是一件能快速計算的工具了。電腦更像是我們大腦的一種延伸。這既包括認知能力的延伸,也包括認知邏輯的延伸。隨著學習深入,大家會逐漸體會到電腦所具有的多維度能力:
電腦是一種可以表示不同類型資訊(數、符號、文字、語音、圖像、視頻、虛擬空間、抽象邏輯)的“資訊管理機”;
同時,電腦也是一種可以連續執行指令以完成特定的資訊處理任務的“指令處理機”;
同時,電腦還是一種可以在知識與邏輯層面完成特定推理任務的“知識推理機”;
同時,電腦也是一種可以從人類給定的資料或自我生成的資料中總結規律,建立模型,自主完成某些決策的“智慧學習機”。
“探險模式”的目標就是盡可能準確地認識電腦,掌握有關電腦運行的最基本規律。有了這些基礎。未來在大學期間或工作中,你就能更容易地設計電腦軟硬體系統,或是設計出碳基大腦(人類)與矽基大腦(機器智慧)之間的最佳協作方案。
【問題201】探險模式 | 我的英語水準足夠嗎?
蘋果每年秋季的新品發佈會,不加字幕的話,你能聽懂多少?
能聽懂大部分:建議在學習電腦的過程中,盡可能使用英文教材、英文文檔。
能聽懂小部分:建議將原來準備學電腦的時間,分出一部分來學英語。
只能聽懂“你好”“再見”之類:⟹請離開此問答。然後,把原來準備學電腦的時間用於學英語,六個月後再回來。
【問題202】探險模式 | 我的數學水準足夠嗎?
如果你是數學和數學應用小能手——較複雜的數學問題總能快速找到核心思路,或快速簡化為簡單問題;很容易就能將抽象概念映射到具體的數學圖形,或將數學問題與相應的現實問題關聯在一起:請繼續探險之旅。
如果你應付正常數學課程感到吃力:建議將原來準備學電腦的時間,分出一部分來學數學。
如果你還搞不清楚什麼是方程、函數、集合、概率……:⟹請離開此問答。然後,把原來準備學電腦的時間用於學數學,六個月後再回來。
【問題203】探險模式 | 為什麼強調英語和數學?
(1)統計上說,最好的電腦參考資料大都是英文寫的,最好的電腦課程大都是用英文講的,最新的電腦論文大都是用英文發表的。
(2)函數、方程、坐標系、標量、向量、排列組合、概率這些中學數學裡會初步學習到的數學知識,是電腦科學的基礎。
【問題204】探險模式 | 電腦知識那麼多,正確的學習順序是什麼?
最重要的順序有兩個。建議先從順序一開始,學有餘力時兼顧兩個順序。
順序一:自底向上,即,自底層原理向上層應用拓展的順序。
電腦原理的基礎知識:
為什麼每台電腦(包括手機)都有CPU、記憶體和外部設備?
(馮·諾依曼體系結構的)記憶體中為什麼既可以存儲資料,也可以存儲指令?
CPU是如何完成一次加法運算的?
程式設計語言的基礎知識:
資料類型,值,變數,作用域……
語句,流程控制語句……
過程、方法或函數,類,模組,程式,服務……
編譯系統的基本概念:
電腦程式是如何被解釋或編譯成目標代碼的?
演算法和資料結構的基礎知識:
陣列,向量,鏈表,堆,棧,二叉樹,樹和圖……
遞迴演算法,排序演算法,二叉樹搜索演算法,圖搜索演算法……
應用層的基礎知識:
為什麼電腦需要作業系統?設備驅動程式是做什麼的?
網路通信的基本原理是什麼?流覽器是怎麼找到並顯示一個網頁的?
資料庫是做什麼用的?
虛擬機器是怎麼回事?
人工智慧系統的基礎知識:
先熟悉些線性代數、概率和數學優化的基礎知識。
什麼是機器學習?從簡單的線性回歸中體會機器學習的基本概念、基本思路。
什麼是神經網路?什麼是深度神經網路?為什麼神經網路可以完成機器學習任務?
如何使用PyTorch或TensorFlow實現簡單的深度學習功能?
順序二:自頂向下,即,自頂層抽象邏輯向下層具體邏輯拓展的順序。
• 電腦的本質是什麼?
• 什麼是圖靈機?什麼是通用圖靈機?
• 什麼是讀取﹣求值﹣輸出迴圈(Read–eval–print Loop,REPL)?
如何用自頂向下的方式理解(解析、解釋、編譯)一段程式碼?
• 靜態語言和動態語言的區別?
如何理解變數與資料類型之間的綁定關係?
• 什麼是函數式程式設計?
程式設計語言中,函數的本質是什麼?
函數為什麼可以像一個值一樣被表示、存儲、傳遞和處理?
• 什麼是物件導向?
類的本質是什麼?
如何用物件導向的方式定義個功能介面?
如何依據介面實現具體功能?
• 什麼是事件驅動?
什麼是事件?事件如何分發到接收者?
如何在事件驅動的環境中理解代碼的狀態和執行順序?
【問題205】探險模式 | 如何提高程式設計水準?
在掌握基本知識體系的基礎上,學好程式設計只有一條路:多程式設計,多參加程式設計比賽,多做程式設計題,多做實驗項目,多找實習機會——其中,能參與真實專案是最有價值的。
【問題206】探險模式 | 該從哪一門程式設計語言學起?
我個人推薦的程式設計入門語言(可根據情況任選):
Python
Java
Swift
C#
JavaScript / TypeScript
Ruby
……
可能不適合入門,但適合後續深入學習的語言:
C
C++
Go
Objective-C
組合語言
機器語言(CPU指令集)
Shell Script
Lua
Haskell
OCaml
R
Julia
Erlang
MATLAB
……
【問題207】探險模式 | 如何選參考書和參考資料?
(1)強烈推薦的參考書和參考資料:
• MIT、Stanford、CMU、UC Berkeley這四所大學中任何一個電腦專業方向使用的教學參考書或參考資料。網上可以查到這些學校電腦專業方向的課程體系,有的學校甚至公開了課程視頻。其中往往會列舉參考書和參考資料連結。
• 維琪百科(英文)上的數學、電腦科學相關條目。
• Github上star數在1000以上的開原始程式碼和開來源文件。
(2)強烈推薦但須小心辨別的參考資料:
知乎上的數學、電腦科學相關條目。使用時需要格外注意三件事:
儘量只看高贊答案或高贊文章;
辨別並避開廣告軟文;
辨別並避開純抖機靈的故事或段子。
Stack Overflow上的程式設計問題解答:
自己動手實驗,辨別解答是否有效。
CSDN上的程式設計問題解答:
自己動手實驗,辨別解答是否有效。
(3)其他推薦的參考書和參考資料:
國內專業作者寫作的專業技術書籍(豆瓣評分7分以上的)。
大廠(Google、Facebook、Microsoft、Amazon、阿裡、騰訊、百度、頭條等)資深工程師的技術公號、專欄、博客等。
著名圖書系列:如O’Reilly的動物封面的系列圖書(請注意最新版本和時效性)。
國內翻譯的著名技術圖書(譯本在豆瓣評分7分以上的)。
(4)儘量避免的參考書和參考資料:
• 已經過時的圖書或參考資料。
• 作者或譯者人數比章節數還多的專業圖書。
• 百度百科上的數學或電腦科學相關資料。
什麼什麼?你這篇問答居然沒有推薦一本具體的圖書?是,沒錯。如果你覺得即便有了上面的線索,自己還是找不到好書好資料,那也許你還是適合“休閒模式”⟹請跳轉至【問題100】