[爆卦]算術平均數是什麼?優點缺點精華區懶人包

雖然這篇算術平均數鄉民發文沒有被收入到精華區:在算術平均數這個話題中,我們另外找到其它相關的精選爆讚文章

在 算術平均數產品中有6篇Facebook貼文,粉絲數超過457的網紅C.C.M Math,也在其Facebook貼文中提到, 【數感生活——成長率、幾何平均數,偶爾還有算術平均數】 最近成長率又成為熱門的時事議題。某位教授先用相加的算術平均數,得出台灣4年來的成長率為2.44%。被抨擊「怎麼可以用算術平均數來算成長率,成長率是類似複利的概念,要用相乘再開根號的幾何平均數才對」 之後,該教授又貼了一則文章,解釋算術...

 同時也有6部Youtube影片,追蹤數超過531的網紅MR. SHEN,也在其Youtube影片中提到,喜歡的人記得訂閱~按讚~分享 講義可以由下列粉絲團下載 沈老師全系列連結: 1.沈老師系列1:看數學史學數學 https://www.facebook.com/mathteachershen.tw/ 2.沈老師系列2:從生活中學數學 https://www.facebook.com/沈老師系列...

  • 算術平均數 在 C.C.M Math Facebook 的最讚貼文

    2019-11-07 13:10:19
    有 3 人按讚


    【數感生活——成長率、幾何平均數,偶爾還有算術平均數】

    最近成長率又成為熱門的時事議題。某位教授先用相加的算術平均數,得出台灣4年來的成長率為2.44%。被抨擊「怎麼可以用算術平均數來算成長率,成長率是類似複利的概念,要用相乘再開根號的幾何平均數才對」

    之後,該教授又貼了一則文章,解釋算術平均數跟幾何平均數在這個情況下是很接近的,所以方便起見他用算術平均數,並附上了數據與程式碼。

    當然程式驗證是沒問題的,不過比起程式,數學上的驗證同樣重要且有趣。許多網友已經指出,若是要講究嚴謹,使用「泰勒展開式」會是一個不錯的工具,來證明在面對成長率這種議題時,當成長率不大,算術平均數的確是幾何平均數的近似值。

    在這邊,我們提供一個更簡單的,必然曾經出現在各位國高中黑板上的算式來解釋。

    首先,
    (1+a)(1+b)=1+(a+b)+ab
    當a、b都很小,以台灣成長率來說最高不超過0.03。你可以想像ab的值最大也只有0.0009,小到可以忽略了。所以我們可以得到
    (1+a)(1+b)≈1+(a+b)

    同樣的道理,推展到4個年度的成長率相乘(是不是覺得數學能夠推展的特性真是很棒很好用呢?),成長率分別是a、b、c、d,可以得到
    (1+a)(1+b)(1+c)(1+d)≈1+(a+b+c+d)

    假設這四年的(幾何)平均成長率是g,同樣可以寫出
    (1+g)(1+g)(1+g)(1+g)≈1+(g+g+g+g)=1+4g

    整理後就能得到
    g≈(a+b+c+d)/4
    的結果,近似符號右邊是算術平均數,左邊的g則是幾何平均數。

    以上,就是為什麼算術平均數跟幾何平均數在這個狀況下,答案會差不多的原因。不過我們要強調,兩者的根本意義完全不同,不能只因為「在某些狀況」答案很接近,就覺得選哪個都無所謂,不明究裡的方便主義會出問題的。舉個反差很大的例子,倘若某年成長100%,隔年衰退50%。

    則算術平均數是(100-50)/2=25,平均成長25%。可真正的成長狀況是2x0.5=1,根本沒有成長,幾何平均數是0%。
    這時候就差很多了。數據可以有不同的解讀,但回到數學本身,正確答案只有一個。

    PS: 感謝 張宏彬 (Hung-Bin Chang)博士協助勘誤XD 也歡迎網友熱心補充泰勒展開式版的說明 ( Sean Huang博士不來一下嗎) ~

    PS2: 我們沒有要幫該教授辯護的意思,基本上我認為在沒有解釋清楚的前提下就使用算術平均數去近似,是有失嚴謹的,儘管事後他有補充說明。撰寫這篇文章的本意只是試圖用數學的角度,讓大家理解為什麼,以及在什麼情況下,算術平均數與幾何平均數得到的結果近似。

  • 算術平均數 在 台灣賦格 Taiwan Fugue Facebook 的精選貼文

    2019-08-21 19:47:17
    有 1,351 人按讚


    先不說中國國民黨打錯馬英九的名字(寫成馬英久),連平均經濟成長率也都計算錯誤!

    實際上,馬英九政府執政八年平均經濟成長率只有1.86%,根本不是2.4%。

    #交給專業的來打臉國民黨

    [你從來就沒懂過的平均經濟成長率]
    (為了公平,以5/20上任後之第3季Q3開始計算,更改第四項計算之結果)

    說別人不及格的國民黨,才是真的不及格。平均經濟成長率怎能用算術平均數計算??!!
    居然將8年的經濟成長率加在一起,再除以8,算出錯誤的2.83%。

    先說總結:
    流量變動率無法用算術平均和幾何平均計算。

    馬英九的8年(2008Q3-2016Q2)流量調整型幾何平均經濟成長率為1.86%,跟國民黨算的2.83%差距近1%的嚴重偏差。

    而蔡英文的3年(2016Q3-2019Q2)平均之"預估"結果為2.05%。

    一、算術平均根本不能計算流量變動量!

    給個範例就知道了,
    今天流進杯子的水是10毫升,明天20毫升,後天30毫升,共有10+20+30=60毫升;
    成長率各為100%和50%,所以算術平均為75%;
    驗算一下:
    10*1.75=17.5;
    10*1.75*1.75 = 30.625;
    10+17.5+30.625=58.125,少於60毫升,根本低估了,所以不是75%。

    就好像給你薪水,以為給到60元,但老闆其實只有給你58.125元,而且現在是在算GDP,單位是兆來算,60兆跟58.125兆,差了1.875兆。

    二、所以改用幾何平均就可以嗎?

    錯了,幾何平均只能代表初、末兩個定值,同樣不能代表流量變動量。

    以幾何平均計算相同問題,
    10變20,再變30,共有10+20+30=60;
    幾何平均算法為[(30/10)^(1/2)-1]*100%=73.2%;
    驗算:
    10*1.732=17.32;
    10*1.732*1.732=30;
    10+17.32+30=57.32,低於60,所以是低估。

    如果是10變5,再變30,共有10+5+30=45;
    成長率各為-50%和500%;
    用『算術平均』是225%;
    驗算:
    10*3.25=32.5;
    10*3.25*3.25=105.625;
    10+32.5+105.625=148.125,遠高於45,嚴重高估。

    而『幾何平均』答案依然是73.2%,驗算總數量仍是57.32,高於45,反而現在變成高估了,所以幾何平均完全不理會中間上下變動的過程。

    三、所以要用的是流量調整型幾何平均計算,並利用定點趨近法 (fixed-point iteration)才是正確的!

    流量調整型幾何平均是利用總數值去計算,而非單純的兩個單點的幾何平均,可以計算到數值變高變低的變化量,如果變化量線性相關係數趨近為1,則流量調整型幾何平均與單點的幾何平均可視為相同。

    也就是不管你是10、5、30還是10、20、30,都忠實呈現總數量給你去計算。

    假設變化為2年,公式為
    g(%)= {[Y/y0 - (1 + g) ]^(1/2) - 1}*100%
    或是 Y/y0 = (1 + g) + (1 + g)^2

    g為流量調整型幾何平均經濟成長率;
    y0為第一年的數值;
    Y為y0以外的總數值,即y1 + y2;

    所以依範例,10 (y0) 變5 (y1),再變30 (y2),Y=5+30=35,y0 =10,套入公式,答案為43.65%。
    驗算:
    10*1.4365=14.365;
    10*1.4365*1.4365=20.635,
    10+14.365+20.635=45,總數值正確。

    若是10變20,再變30,Y=20+30=50,y0 =10,套入公式,答案為79.13%。
    驗算:
    10*1.7913=17.913
    10*1.7913*1.7913=32.087,
    10+17.913+32.087=60,總數值正確。

    套入原本的實例來講:
    今天流進杯子的水是10毫升,明天5毫升,後天30毫升,所以流進共45毫升。
    用流量調整型幾何平均算,
    35/10=(1+x)+(1+x)^2,x=0.4365=43.65%,
    回算一下,第一天10毫升,第二天14.365毫升,第三天20.635毫升,相加總共45毫升。

    四、所以馬英九和蔡英文的平均經濟成長率各為多少呢?

    2007Q3-2008Q2之GDP為13,688,630,設為y0;而馬英九2008Q3-2016Q2,八年總GDP為119,105,935,設為Y。
    套入公式
    g(%)= {[Y/y0 - (1 + g) - (1 + g)^2 -......- (1 + g)^7 ]^(1/8) - 1}*100% ,答案為1.86%。

    2015Q3-2016Q2之GDP為16,932,463,設為y0;而蔡英文2016Q3-2018Q2,三年總GDP為52,908,976,設為Y。
    套入公式
    g(%)= {[Y/y0 - (1 + g) - (1 + g)^2 ]^(1/3) - 1}*100% ,答案"預估"為2.05%。

  • 算術平均數 在 今日訊息 Day to Day Facebook 的最佳貼文

    2019-03-20 17:09:40
    有 21 人按讚

    【Excel實用教學】Excel幫你算數學!包含加權平均與標準差
    > 底下留言「加權平均」就私訊你方法!

    加權平均數與算術平均數類似,不同點在於,
    數據中的每個點對於平均數的貢獻並不是相等的,
    有些點要比其他的點更加重要。
    在面對多個數據需要做整理和計算時,
    經常會需要利用excel計算標準差和加權平均數兩個數值。
    如果你還不會,就趕快留言拿連結吧!

    ————————————————
    加入LINE@ https://pse.is/BTV9U
    追蹤Instagram https://pse.is/BHPHU
    前往官網 https://pse.is/BSLBC

    智慧互動技術提供 EILIS 智慧互動助理

你可能也想看看

搜尋相關網站