[爆卦]第三代半導體英文是什麼?優點缺點精華區懶人包

雖然這篇第三代半導體英文鄉民發文沒有被收入到精華區:在第三代半導體英文這個話題中,我們另外找到其它相關的精選爆讚文章

在 第三代半導體英文產品中有9篇Facebook貼文,粉絲數超過77萬的網紅賴清德,也在其Facebook貼文中提到, #南方雨林計畫 正式啟動。 這是 蔡英文 Tsai Ing-wen 總統提出「大南方、大發展」的南台灣發展計畫重要一環,#用聚落帶動發展,吸引國內外產業到南台灣投資。 台灣在第一代與第二代的半導體產業中,取得獨步全球的成果。而南方雨林計畫,主要是發展第三代的化合物半導體,速度更快、更耐高溫、耐...

 同時也有1部Youtube影片,追蹤數超過15萬的網紅豐富,也在其Youtube影片中提到,主持人:唐湘龍 × 陳鳳馨 主題:台灣經濟的繁榮幻覺 節目直播時間:週二 14:00 本集播出日期:2020.12.01 感謝:潤泰CorpoX 台灣發熱衣專家 贊助 http://www.fashioncookie.com.tw/products/corpox/clothing/heatup...

  • 第三代半導體英文 在 賴清德 Facebook 的最讚貼文

    2021-09-29 12:32:00
    有 5,519 人按讚

    #南方雨林計畫 正式啟動。

    這是 蔡英文 Tsai Ing-wen 總統提出「大南方、大發展」的南台灣發展計畫重要一環,#用聚落帶動發展,吸引國內外產業到南台灣投資。

    台灣在第一代與第二代的半導體產業中,取得獨步全球的成果。而南方雨林計畫,主要是發展第三代的化合物半導體,速度更快、更耐高溫、耐高壓。而且第三代半導體,更是發展 #車用電子、#綠能電子 的重點產業計畫。

    在全球減碳的趨勢下,電動車將是世界各國重視的產業政策,這是挑戰,但也是嶄新的機會。耐高溫、高壓的第三代化合物半導體,正是帶領汽車零組件產業前進下一世代智慧車輛的關鍵字。

    在後疫情時代的全球競爭中,我相信大家共同攜手努力,持續創新產業價值,台灣一定能脫穎而出。

  • 第三代半導體英文 在 Facebook 的精選貼文

    2021-08-26 21:24:41
    有 139 人按讚

    半導體產業在 9 月即將迎來兩場精彩的技術講座,由 SEMI 國際半導體產業協會所舉辦,想掌握台灣半導體產業第一手動態的讀者快來看看!以下兩場論壇由於是面對全球半導體業界受眾,因此都會以全英文進行:

    【9/7-9/9 功率暨光電半導體週】

    最近你一定在股票新聞中聽過所謂的「第三代半導體材料」、GaN(氮化鎵)、SiC(碳化矽) 等等的專有名詞,這些新世代的化合物半導體的應用潛力龐大,其耐高溫、耐壓以及抗阻低的特性,預期將使電動車的高功率充電、5G 通訊射頻(RF)功率元件獲得跳躍式的改進,舉個更生活化的例子,手機 GaN 快充器已經相當普遍,這種快充設備相較傳統充電頭能大幅縮短充電時間並改善熱能表現。

    現在你不只是可以從新聞獲取資訊,這邊更給你第一手接觸業界資訊的管道:這次由 SEMI 主辦的「功率暨光電半導體」論壇將於 9 月 7 日至 9 月 8 日舉行,將邀請台積電、穩懋半導體、聯電、意法半導體、imec等知名公司,共同探討化合物半導體與光電元件在電動車與 5G 通訊領域的產業應用,讓你以從業人員的角度一窺最新的化合物半導體發展趨勢。

    除了兩天的精彩論壇內容,在 9 月 9 日還有一場由鴻海研究院與 SEMI 合辦的「NExT Forum」線上,將對寬能隙半導體進行趨勢剖析,主辦方邀請了諾貝爾物理學獎得主天野浩分享研究經驗及成果,還有來自工研院、陽明交通大學、穩懋半導體、英國 IQE、GaN Systems、鴻海的致詞及演講嘉賓,絕對是一場不可錯過的高含金量論壇。

    立刻報名:https://semiexpo.expotec.tech/Visitor/AddConference?lang=zh-TW&sid=kopuchat-EB&cons=

    這場線上論壇結束後,9 月底緊接著又會有下一場精彩論壇:

    【9/23-9/24 高科技智慧製造論壇】

    今年晶片或是原物料缺貨都是眾多品牌廠苦惱的問題,當客戶需求變化得越來越快速,加上供應鏈原料供給與訂單變化難以捉摸,供應鏈也必須克服更複雜的要求與產品組合,如何迅速回應市場趨勢與更改生產設計更成為一大挑戰,打造「韌性供應鏈(Resilient Supply Chain」躍身為近期全球供應鏈吃緊下的熱門關鍵詞。

    「智慧製造」透過數位科技,結合 AI、5G、邊緣與混合雲建構高度自動化工廠,更利用數位分身 (Digital Twin) 模擬與監測生產數據,進而實現跨區、跨廠區的即時管理系統。SEMI 將於 9 月 23 日與 24 日邀請台積電、鴻海與眾多演講嘉賓分享應用智慧製造技術來提升生產效率與彈性、最新的高科技智慧工廠範例,以及企業如何適應供應鏈新常態的洞見。

    ----------------------------------------------------

    上述這兩場論壇分別對應最具潛力的化合物半導體應用,以及科技業供應鏈管理的核心趨勢,這都是最新的第一手資訊,早鳥優惠即將於8/31截止,有興趣的讀者非常推薦選擇有興趣的線上論壇參與。

    *更值得推薦的是線上論壇將可讓您盡情回放至11月30日

  • 第三代半導體英文 在 台灣物聯網實驗室 IOT Labs Facebook 的最佳貼文

    2020-12-22 18:48:03
    有 0 人按讚

    AI 時代的摩爾定律?黃氏定律靠的是自身技術力將 AI 性能年年加倍

    作者 雷鋒網 | 發布日期 2020 年 12 月 16 日 8:45

    1965 年,時任快捷半導體公司工程師,也是後來英特爾(Intel)的創始人之一的戈登·摩爾(Gordon Moore)提出了摩爾定律(Moore’s law),預測積體電路上可以容納的晶體管數目大約每經過 24 個月便會增加 1 倍。

    後來廣為人知的每 18 個月晶片性能將提高 1 倍的說法是由 Intel CEO 大衛·豪斯(David House)提出。過去的半個多世紀,半導體行業按照摩爾定律發展,並驅動了一系列的科技創新。

    有意思的是,在摩爾定律放緩的當下,以全球另一大晶片公司 NVIDIA 創始黃仁勳(Jensen Huang)名字命名的定律——「黃氏定律(Huang’s Law)」對 AI 性能的提升作出預測,預測 GPU 將推動 AI 性能實現逐年翻倍。

    Intel 提出了摩爾定律,也是過去幾十年最成功的晶片公司之一。NVIDIA 作為當下最炙手可熱的 AI 晶片公司之一,提出黃氏定律是否也意味著其將引領未來幾十年晶片行業的發展?

    AI 性能將逐年翻倍

    受疫情影響,一年一度展示 NVIDIA 最新技術、產品和中國合作夥伴成果的 GTC China 改為線上舉行,黃仁勳缺席今年的主題演講,由 NVIDIA 首席科學家兼研究院副總裁 Bill Dally 進行分享。Bill Dally 是全球著名的電腦科學家,擁有 120 多項專利,在 2009 年加入 NVIDIA 之前,曾任史丹佛大學電腦科學系主任。加入 NVIDIA 之後,Dally 曾負責 NVIDIA 在 AI、光線追蹤和高速互連領域的相關研究。

    在 GTC China 2020 演講中,Dally 稱:「如果我們真想提高電腦性能,黃氏定律就是一項重要指標,且在可預見的未來都將一直適用。」

    Dally 用三個項目說明黃氏定律將如何得以實現。首先是為了實現超高能效加速器的 MAGNet 工具。NVIDIA 稱,MAGNet 生成的 AI 推理加速器在模擬測試中,能夠達到每瓦 100 tera ops 的推理能力,比目前的商用晶片高出一個數量級。

    之所以能夠實現數量級的性能提升,主要是因為 MAGNet 採用了一系列新技術來協調並控制通過設備的訊息流,最大限度地減少數據傳輸。數據搬運是 AI 晶片最耗能的環節已經是當今業界的共識,這一研究模型以模組化實現能夠實現靈活擴展。

    Dally 帶領的 200 人的研究團隊的另一個研究項目目標是以更快速的光鏈路取代現有系統內的電氣鏈路。Dally 說:「我們可以將連接 GPU 的 NVLink 速度提高一倍,也許還會再翻番,但電信號最終會消耗殆盡。」

    這個項目是 NVIDIA 與哥倫比亞大學的研究團隊合作,探討如何利用電信供應商在其核心網絡中所採用的技術,通過一條光纖來傳輸數十路信號。據悉,這種名為「密集波分複用」的技術,有望在僅一毫米大小的晶片上實現 Tb/s 級數據的傳輸,是如今連網密度的 10 倍以上。

    Dally 在演講中舉例展示了一個未來將搭載 160 多個 GPU 的 NVIDIA DGX 系統模型。這意味著,利用「密集波分複用」技術,不僅可以實現更大的吞吐量,光鏈路也有助於打造更為密集的系統。

    想要發揮光鏈路的全部潛能,還需要相應的軟件,這也是 Dally 分享的第三個項目——全新程式語言系統原型 Legate。Legate 將一種新的編程速記融入了加速軟件庫和高級運行時環境 Legion,借助 Legate,開發者可在任何規模的系統上運行針對單一 GPU 編寫的程序——甚至適用於諸如 Selene 等搭載數千個 GPU 的巨型超級電腦。

    Dally 稱 Legate 正在美國國家實驗室接受測試。

    MAGNet、以光鏈路取代現有系統內的電氣鏈路以及 Legate 是成功實現黃氏定律的關鍵,但 GPU 的成功才是基礎。因此,GPU 當下的成功以及未來的演進都尤其重要。

    GPU 是黃氏定律的基礎

    今年 5 月,NVIDIA 發布了面積高達 826 平方毫米,整合了 540 億個晶體管的 7 奈米全新安培(Ampere)架構 GPU A100。相比 Volta 架構的 GPU 能夠實現 20 倍的性能提升,並可以同時滿足 AI 訓練和推理的需求。

    憑藉更高精度的第三代 Tensor Core 核心,A100 GPU AI 性能相比上一代有明顯提升,此前報導,在 7 月的第三個版本 MLPerf Training v0.7 基準測試(Benchmark)結果中,NVIDIA 的 DGX SuperPOD 系統在性能上開創了 8 個全新里程碑,共打破 16 項紀錄。

    另外,在 10 月出爐的 MLPerf Inference v0.7 結果中,A100 Tensor Core GPU 在雲端推理的基準測試性能是最先進 Intel CPU 的 237 倍。

    更強大的 A100 GPU 迅速被多個大客戶採用,迄今為止,阿里雲、百度智能雲、滴滴雲、騰訊雲等眾多中國雲服務提供商推出搭載了 NVIDIA A100 的多款雲服務及 GPU 實例,包括圖像辨識、語音辨識,以及計算流體動力學、計算金融學、分子動力學等快速增長的高性能計算場景。

    另外,新華三、浪潮、聯想、寧暢等系統製造商等也選擇了最新發布的 A100 PCIe 版本以及 NVIDIA A100 80GB GPU,為超大數據中心提供兼具超強性能與靈活的 AI 加速系統。

    Dally 在演講中提到:「經過幾代人的努力,NVIDIA 的產品將通過基於物理渲染的路徑追蹤技術,即時生成令人驚豔的圖像,並能夠借助 AI 構建整個場景。」

    與光鏈路取代現有系統內的電氣鏈路需要軟硬體的匹配一樣,NVIDIA GPU 軟硬體的結合才能應對更多 AI 應用場景苛刻的挑戰。

    Dally 在此次的 GTC China上首次公開展示了 NVIDIA 對話式 AI 框架 Jarvis 與 GauGAN 的組合。GauGAN 利用生成式對抗網路,只需簡略構圖,就能創建美麗的風景圖。演示中,用戶可通過語音指令,即時生成像照片一樣栩栩如生的畫作。

    GPU 是黃氏定律的基礎,而能否實現並延續黃氏定律,僅靠少數的大公司顯然不夠,還需要眾多的合作夥伴激發對 AI 算力的需求和更多創新。

    黃氏定律能帶來什麼?

    NVIDIA 已經在構建 AI 生態,並在 GTC China 上展示了 NVIDIA 初創加速計劃從 100 多家 AI 初創公司中脫穎而出的 12 家公司,這些公司涵蓋會話人工智慧、智慧醫療 / 零售、消費者網路 / 行業應用、深度學習應用 / 加速數據科學、自主機器 / IoT / 工業製造、自動駕駛汽車。

    智慧語音正在改變我們的生活。會話人工智慧的深思維提供的是離線智慧語音解決方案,在佔有很少空間的前提下實現智慧交互,語音合成和語音辨識保證毫秒級響應。深聲科技基於 NVIDIA 的產品研發高質量中英文語音合成、聲音定制、聲音複製等語音 AI 技術。

    對於行業應用而言,星雲 Clustar 利用 NVIDIA GPU 和 DGX 工作站,能夠大幅提升模型預測精確度以及解決方案處理性能,讓傳統行業的 AI 升級成本更低、效率更高。

    摩爾定律的成功帶來了新的時代,黃氏定律能否成功仍需時間給我們答案。但這一定律的提出對 AI 性能的提升給出了明確的預測,並且 NVIDIA 正在通過硬體、軟體的提升和創新,努力實現黃氏定律,同時藉生態的打造想要更深遠的影響 AI 發展。

    黃氏定律值得我們期待。

    附圖:▲ NVIDIA GPU 助推 AI 推理性能每年提升 1 倍以上。(Source:影片截圖)
    ▲NVIDIA 首席科學家兼研究院副總裁 Bill Dally。
    ▲ 搭載 160 多個 GPU 的 NVIDIA DGX 系統模型。

    資料來源:https://technews.tw/2020/12/16/huang-law-predicts-that-ai-performance-will-double-every-year/?fbclid=IwAR1vXHWAGt_b8nDRW6VUqzpAINX_n_DzJ0KwJvdBnl18s8Q1A3Thk7hgBoI

你可能也想看看

搜尋相關網站