[爆卦]科技大學錄取分數2020是什麼?優點缺點精華區懶人包

雖然這篇科技大學錄取分數2020鄉民發文沒有被收入到精華區:在科技大學錄取分數2020這個話題中,我們另外找到其它相關的精選爆讚文章

在 科技大學錄取分數2020產品中有1篇Facebook貼文,粉絲數超過8,723的網紅BennyLeung.com,也在其Facebook貼文中提到, 【BBC中文網】算法:日常和人生十字路口陪伴你的「無形之手」 大數據、算法、人工智能、互聯網、物聯網 ...... 科技的發展為人類生活帶來各種便利的同時,也在靜悄悄地決定著人們的生活軌跡和命運。 假設,如果中國有一年取消高考,用算法根據歷年成績給每個應屆畢業生打分,然後大學根據這個分數決定是否...

  • 科技大學錄取分數2020 在 BennyLeung.com Facebook 的最佳貼文

    2020-08-24 07:28:31
    有 19 人按讚

    【BBC中文網】算法:日常和人生十字路口陪伴你的「無形之手」

    大數據、算法、人工智能、互聯網、物聯網 ...... 科技的發展為人類生活帶來各種便利的同時,也在靜悄悄地決定著人們的生活軌跡和命運。

    假設,如果中國有一年取消高考,用算法根據歷年成績給每個應屆畢業生打分,然後大學根據這個分數決定是否錄取,錄取到什麼專業?

    英國今年的中學畢業生對算法的這種威力有切身體驗。

    因為新冠疫情而取消了決定數萬名中學畢業生命運的考試,用電腦算法 ( algorithm)給學生打分,讓機器根據學校往年的考試結果,經過一番運算,得出今年畢業生的成績。

    決定命運的是高中畢業生的A-level 考試也決定了能否上大學,能上哪所大學。初中畢業,不再上學而開始求職謀生的,需要憑GCSE考試成績去找工作。如果凖備繼續上學,日後申請大學時,這組成績也是重要參考數據。

    除了這種「十字路口」式的人生關鍵節點,算法在現代人生活中很多方面扮演著「無形之手」的角色,而我們未必知道。

    BBC科技事務記者克雷頓(James Clayton)和克萊恩曼(Zoe Kleinman)梳理了幾個算法左右命運的平台。

    社交媒體

    從許多方面來看,社交媒體平台基本上就是龐然大物般的算法。

    它們根據你所提供的,以及來自其他各種渠道的數據,確定你的興趣、愛好、口味,然後為你推送更多它們認為你喜歡的內容。

    這些數據包括你點的每一個「讚」,看的每一條訊息或視頻,點擊的每一個鏈接,都被記錄存檔。大部分應用軟件還會從你的上網習慣和特點,以及地理位置等信息提取更多數據,關於你的數據。這些數據用來判斷你喜歡什麼,哪些內容吸引你的眼球,能讓你在網上流連。

    這個算法對你了解越多,對你生活的影響力就越大。 除了推送更多合你口味的內容,它自然還會用這個知識向你推銷產品。

    社交媒體公司收集儲存的數據也被用來訂製個人化的廣告,定向投放,而且精凖度高得令人咂舌。

    當然,這類算法也會犯很嚴重的錯誤,惹大禍。比如它發現極端的、刺激的、重口味的、充滿仇恨和煽動性的內容,在社交媒體上很吃香,比平淡普通的內容更賺眼球、點擊和轉發更多。所以有些人髮現自己收到各種極端主義的、暴力的、仇恨的推送內容。

    臉書針對民權問題做過一次內部審計,審計報告中明確提到,公司必須盡一切所能阻止它的算法把用戶「驅趕到極端主義自我強化的迴音室裏去」。

    算法還有一個盲點,那就是對種族歧視和仇恨類產品不加分辨地推送,導致投訴甚至吃官司。

    保險

    保險公司需要評估風險,要做精算,無論是房產險、汽車險、壽險、醫療險,保費的多少依據這個評估結果來定。

    許多人不知道的是,保險業很早就開始探索利用歷年積累儲存的數據來分析、預測未來;在電腦和算法尚未普及的時候就開始了。

    有了算法,保險公司如虎添翼。

    哈克尼斯(Timandra Harkness)是這方面專家,有一部關於大數據的專著(Big Data: Does Size Matter)。

    有些顯而易見但人們通常不太在意的事,背後就有算法的無形之手。

    她舉了個例子,比如家庭住址的郵編就決定了你的保費高低,而你在這些問題上毫無發言權,完全被動。

    你的房產或車保險保費在搬家後漲了還是降了,跟你個人沒有直接關係,而是跟這個地區的其他居民曾經,或者在多大程度上可能成為犯罪分子的受害者,或者遭遇水淹,或者出車禍,等等。

    現在比較普遍的行車記錄儀,汽車上的「黑匣子」,可以用來記錄司機的駕車習慣,如果記錄顯示車主基本上是安全駕駛,即使其他指標都屬於高風險群體,他/她的汽車險保費也可能降低。

    這是利用算法制定個人化保險產品的一個例子。

    保險行業的 實質是風險分攤,人人交保費,需要的人從錢庫裏取。個人化的保險產品能否普及,或許還需要算法來幫忙,確定這類新業務對保險公司有何利弊。

    醫療

    人工智能(AI)在疾病診斷方面的應用日益普及,有些地方AI甚至可以提出治療方案和療法建議。

    2020年1月一項研究結果顯示,通過X光片子診斷乳癌,算法的表現超過醫生。

    其他例子也有,比如可以預測子宮癌患者生存率的工具,這個工具還能幫助確定治療方案。

    倫敦大學學院(UCL)研發的人工智能可以分辨出哪些病人最容易忘記就診預約,因此需要提醒服務。

    海量數據是訓練人工智能的必要前提。這就涉及到許多棘手的問題,包括病人隱私和個人數據保護。

    2017年,英國信息委員會裁定,皇家自由醫院NHS信託沒有妥善保管病人數據,跟谷歌的人工智能子公司DeepMind分享了160萬病人的數據。

    警務

    大數據和機器學習對警察機構來說具有顛覆性的巨大潛力。

    理論上,算法具備了科幻作品中描述的那種「預測警務」(predictive policing)的功能,可以利用歷年刑事罪案的數據分析來確定警察資源的部署。

    問題在於這種算法有先天缺陷,容易產生算法偏見,甚至形成算法種族歧視。

    科技智庫WebRoots Democracy專家喬杜里(Areeq Chowdhury)解釋說,這就跟算法確定考試分數類似,實際上是根據別人過往的學業表現來給你打分,有什麼道理?

    他說,根據算法,一個特定社區很可能被不成比例地突出和強調。

    國防和安全智庫RUSI今年稍早發表了一份報告,闡述算法在警務實踐中的應用。

    報告提出一些需要關注的問題,包括沒有全國統一的凖則,也沒有影響評估機制。

    另一個需要深入研究的問題是算法如何放大、加劇種族主義傾向。

    警務部門已經在使用的人臉識辨技術受到批評,矛頭集中在用於機器學習的數據庫是否會導致算法種族主義。

    比如,用於人臉識別的攝像機識別白人更凖確,是否因為它們背後的數據庫裏白人的面部數據更多?

    這方面,數據是否足夠多,足夠多元化,就至關重要。

    喬杜里說,最應該避免的是因為算法誤判而錯抓無辜。

    #科技 #社會

你可能也想看看

搜尋相關網站