雖然這篇神經網路處理器鄉民發文沒有被收入到精華區:在神經網路處理器這個話題中,我們另外找到其它相關的精選爆讚文章
在 神經網路處理器產品中有26篇Facebook貼文,粉絲數超過2萬的網紅COMPOTECHAsia電子與電腦 - 陸克文化,也在其Facebook貼文中提到, #微控制器MCU #微處理器MPU #物聯網IoT #人工智慧AI #機器學習ML #微神經網路處理器microNPU #機密計算架構CCA #RISC-V 【多核、異構,MCU/MPU 不一樣了!】 越來越多包含微控制器 (MCU)、微處理器 (MPU) 設備加入數位化行列,且朝...
同時也有3部Youtube影片,追蹤數超過6萬的網紅Pumi Journal,也在其Youtube影片中提到,現在去蘋果官網有BTS優惠~心動歡迎去看看ㄛ! _ 舖米 Pumi E-mail:[email protected] IG:PumiˍJournal (https://www.instagram.com/pumi_journal/) Tiktok:https://www.tiktok.com...
「神經網路處理器」的推薦目錄
神經網路處理器 在 4Gamers編輯部 Instagram 的最佳貼文
2020-09-21 13:30:45
還記得那個把貨堆得跟天一樣高的《死亡擱淺》「送貨員」山姆大叔嗎?如今也能透過 PC 享受更精細、更具沉浸感的畫面。令人驚訝的是,只需要一張 NVIDIA 中階顯卡就能輕鬆運行 4K 解析度,平均 FPS 還能達到每秒 60 張。到底是動用了什麼外星科技? ░導入 NVIDIA DLSS 2.0...
-
神經網路處理器 在 Pumi Journal Youtube 的精選貼文
2021-09-11 18:00:11現在去蘋果官網有BTS優惠~心動歡迎去看看ㄛ!
_
舖米 Pumi
E-mail:pumiii2018@gmail.com
IG:PumiˍJournal (https://www.instagram.com/pumi_journal/)
Tiktok:https://www.tiktok.com/@pumijournal
Shop:https://shopee.tw/pumi17
影片禁止轉載、二改、商用|本支影片moshi提供公關品
🍎我的MacBook Pro規格🍎
M1 晶片配備 8 核心 CPU、8 核心 GPU 與 16 核心神經網路引擎
13吋 16GB 統一記憶體
1TB SSD 儲存裝置
具備原彩顯示技術的 13 吋 Retina 顯示器
背光巧控鍵盤 - 中文 (注音)
觸控列和 Touch ID
兩個 Thunderbolt / USB 4 埠
Pro Apps Bundle 教育版
🍎周邊們🍎
Logitech 羅技 Pebble M350 鵝卵石無線滑鼠
https://store.logitech.tw/SalePage/Index/5624316?gclid=Cj0KCQjw4eaJBhDMARIsANhrQABzGykaPo_X1aM2HdynFTts0RioWxhzP5VCd5sk2zyIXckv0l-BlXsaAlq6EALw_wcB
KINYO Type-C擴充USB轉換器
(比較久之前實體店購買的了~)
TOSHIBA Canvio Advance V10 4TB 2.5吋行動硬碟-黑
https://24h.pchome.com.tw/prod/DRAA1U-A900B9TFV
Moshi iGlaze 輕薄防刮保護殼 (透明)
https://lihi1.com/3g6gX
Moshi Umbra 防窺螢幕保護貼
https://lihi1.com/Jhfqf
Moshi Muse 13" 三合一多功能筆電支架包 ( 焦糖棕)
https://lihi1.com/O2Dlr
桌面上的電腦支架
我在小市集闆娘的哀居跟他訂的,可以私訊問他:https://www.instagram.com/petitbazar2015/
🍎直接跳轉看想看的🍎
00:00 MacBook pro 開箱前言
01:14 平常使用MacBook Pro M1做什麼?
01:36 優點1:Adobe系列輕鬆相容
03:37 優點2:中度電腦需求使用者適合
04:15 優點3:觸控板超級好用
05:01 缺點1:M1晶片出包鼠標不見
06:09 周邊推薦1:羅技滑鼠
06:50 周邊推薦2:Type-C轉接器
07:35 周邊推薦3:外接硬碟
09:18 周邊推薦4:透明霧面筆電殼
10:08 周邊推薦5:螢幕保護貼
10:26 周邊推薦6:電腦支架包
10:46 周邊推薦7:電腦支架
11:09 我推不推薦MAC M1?
影片推薦|
👉免費下載!精選2021 iPad 電子手帳模板懶人包🍎|iPad手帳|電子手帳|免費手帳模版|舖米Pumi
https://youtu.be/UIWb4W_963w
👉🍎My iPad 2019 Unboxing!開箱我的第一台平板!🍎|iPad實用測評|舖米Pumi
https://youtu.be/V6Hd91t5_Yk
👉實用APP推薦!我的手機有什麼?What's on my Phone?|iPhone11測評|好用APP推薦|iOS好用APP|安卓換iPhone|舖米Pumi
https://youtu.be/iDVl6BKhNkw
👉十種蛋糕吃到飽🍰四萬訂閱慶祝Q&A!|台北甜點|甜點開箱|吃播|dessert|舖米Pumi
https://youtu.be/AStjfPqqCwM
👉台中秘境文具店「六街文具房」戰利品文具開箱分享|文具探店|台中文具店|Taichung Stationery Haul|舖米Pumi
https://youtu.be/F5RdsOPi6QQ
👉十一月十二月近期文具愛用品November & December Favorites Stationery 2019|舖米Pumi
https://youtu.be/ewx_mI63ZLI
👉九月十月近期文具愛用品September & October Favorites Stationery|舖米Pumi
https://youtu.be/_LW53Ck6kec
樂曲提供:Production Music by http://www.epidemicsound.com
#MacBookPro #Apple #Mac開箱 -
神經網路處理器 在 Tech Dog Youtube 的最佳貼文
2020-10-30 21:00:12▌建議開啟 4K 畫質 達到高品質觀影享受
不要錯過:http://bit.ly/2lAHWB4
這次石頭的新旗艦掃拖機器人 S6 MaxV 老實說跟前幾代比差異不大,其中「吸力增強」和「AI 雙鏡頭避障」實屬升級最有感的部分。
影片中也幫你們好好比較一番,大致比較 S6 MaxV、S5 Max 和 S6 Pure 的差異外,也拿其他家同級的熱銷旗艦掃地機器人簡單就規格功能面比較一番,看看售價 NT$19,999 究竟值不值得購入。
::: 章節列表 :::
0:41 雙鏡頭避障
3:02 外觀規格
5:52 同級旗艦機比較
6:55 入手建議
::: Roborock 石頭掃地機器人 S6 MaxV :::
價格:NT$24,999 / 新品優惠 NT$19,999
尺寸:353 x 350 x 96.5mm
重量:約 3.7kg
通訊技術:Wi-Fi 智慧快連
電池:14.4V / 5,200mAh 鋰電池
額定電壓:14.4V
額定功率:66W
吸力真空度:2,500Pa
清掃面積:300㎡
晶片處理器:高通驍龍 APQ8053 1.8Ghz
定位技術:LDS + SLAM
物體避障:AI 雙眼物體避障系統
AI 識別系統:AI 卷積神經網路(500 萬畫素雙鏡頭)
可識別種類:7 種以上(持續增加中)
越障坡度 :最高 2cm
集塵盒容量:460ml
水箱容量:297ml
水箱方案:醫用級蠕動泵
拖地系統:恆壓電控水箱設計
拖布材質:特殊倒鉤設計纖維拖布
清掃方式:掃拖合一
吸力值:四檔變頻調節
吸地分貝數(皆未安裝拖地模組):
–「Max」:約 69db - 73db
–「安靜」:約 63db - 67db
拖地分貝數:
–「安靜 + 小水量」:約 56db - 60db
–「MAX + 大水量」:約 68db - 71db
連動 APP:Roborock、米家
保固:主機 1 年
::: 相關連結 :::
有眼睛 94 不一樣 ➡️ http://bit.ly/39YO9v9
🎁輸入折扣碼 [ 3cdog ] 還有關注禮唷🎁
--------------------------------------
#石頭S6MaxV #掃拖機器人 #掃地機器人
#石頭 #Roborock #S6MaxV #AI識別避障
📖 Facebook:https://www.facebook.com/3cdog/
📖 Instagram:https://www.instagram.com/3c_dog/
📖 官方網站:https://3cdogs.com/
📖 回血賣場:https://shopee.tw/3cdog
▋ 有任何問題都來這邊找我們:3cdogs@gmail.com -
神經網路處理器 在 啟點文化 Youtube 的最讚貼文
2019-12-17 19:00:06【人際維基】桌遊工作坊~帶給你更多新鮮的玩法與樂趣~2020.01.18(六)(僅剩三位名額)
打造專屬於「你」的遊戲!
課程資訊:https://www.koob.com.tw/contents/4213
【線上課程】《理財心裡學》~擺脫家庭影響,從心培養富體質
課程連結:https://pse.is/EPBWE
第一講免費試聽:https://youtu.be/HgrDK7pqR-0
【線上課程】《過好人生學》~除了熱情,你更需要知道的事
讓你建立迎向未來的思維與能力!
課程連結:https://pse.is/H8JXH
第一講免費試聽:https://youtu.be/-EHOn0UxMys
不定期推出補充教材,讓學習無限延伸:https://pros.is/KQZZH
[ 2020/4/18 開課!]【寫作小學堂】~寫出專屬風格,找回文字悸動~第五期
打造一盞自己的聚光燈,建立起專屬於你的品牌印象
課程資訊:https://www.koob.com.tw/contents/3655
更多學員心得分享:https://pse.is/NE3QN
【2020/4/30開課】《人際回應力-看懂情緒,輕鬆對談》~第22期
一個人的命運,是回應力的總和!
課程資訊:http://www.koob.com.tw/contents/157
更多學員心得分享:http://goo.gl/Guc6V6
【線上課程】《時間駕訓班》~
學會提升效率,擺脫瞎忙人生,做自己時間的主人
課程連結:https://pse.is/DDDHB
第一講免費試聽:https://youtu.be/flfm52T6lE8
不定期推出補充教材,讓學習無限延伸:https://pse.is/GXZWM
【線上課程】《人際斷捨離》~
讓你留下怦然心動的關係,活出輕盈自在的人生!
課程連結:https://pse.is/E5MW5
第一講免費試聽:https://youtu.be/YyLvd1cNcDw
歡迎加入「啟點文化Line@」:https://line.me/R/ti/p/%40teb0498p
線上課程【不用開口,就讓你擁有人際好感】
啟動人際溝通的關鍵影響力 https://goo.gl/v3ojdo
桌遊【人際維基】~一玩就懂得別人的在乎:https://goo.gl/Ej4hjQ
到蝦皮購買【人際維基】:https://goo.gl/ASruqR
=============================
以下為本段內容文稿:
最近啊,跟我幾個同樣世代的朋友聊天;我們這一個世代,就是大概四十幾歲的大叔哦!
我們共同都很有感的一件事情,就是喔自己家裡的老人家,自己的爸爸媽媽,已經到了一個很明顯退化。
不管是在生理機能,但是更可怕的叫做他們的智力、他們的認知程度,已經有一個很明顯退化的狀態。
那你知道,生理機能的退化,有時候只要去多做一些陪伴跟輔助就可以了;可是呢大腦認知,可能是老年痴呆呀或等等的,它一旦發生的時候,其實是一個心理很大的折磨。
但是聊著聊著喔,我們共同的都嘆了一口氣,想說這個部分是我們不可逆的反應,我們一定要去面對;而這一口氣的背後,讓我們最毛骨悚然的是,是自己的退化。
四十幾歲,其實喔,對於自己的腦力、認知,還有思考的靈活度,如果平常沒有保養的話,已經是很有感的,跟以前是不一樣的。可能呢,過去喔的記憶力,跟現在就差了一個等級。
更可怕的是,如果不小心前一天晚上沒睡好的話,到了隔天那簡直跟宿醉沒什麼兩樣,跟以前年輕的時候真的是差蠻多的。
所以呢,聊到了這個話題喔,就讓我想到,其實有很多大腦科學的研究告訴我們,到底要怎麼樣保養我們的大腦,讓我們呢到了三、四十歲,我們的腦力可以跟18歲一樣好用?
那我在這邊喔,就跟你分享一些方法,或許會對你有一些幫助。
其實腦神經的研究告訴我們,我們人腦組織的厚度,大概在18歲到35歲之間,並沒有明顯的差異。
只是因為年紀的增長,我們的神經元傳遞的速度,會變得比較弱。所以呢,我們的主觀感受才會有記憶力變差,或是思考變遲頓這樣的一個錯覺。
然而我們的大腦呢,主要的功能有兩個區域;第一個是跟我們的注意力,跟長期記憶有關的,就是「海馬迴」。
你可以把它想像成我們電腦裡面的CPU、中央處理器。這個把我們的經驗,和學習的所有事物集中打包之後,然後分派在不同的區域去做儲存,這是海馬迴的功能。
而第二個重要的功能,是我們的「前額葉」。前額葉主要是管我們的邏輯思考、理性分析,還有意志力。
所以呢,如果我們能夠透過一些活動,去刺激這兩個區域的神經元,讓他保持活躍跟銳利度;那麼你就會覺得自己的大腦,不管是在18歲還是在4、50歲,都是一樣很好用的。
那到底要怎麼做到呢?其實呢,有三個方法,你倒是可以練習看看。
第一個方法呢,就是在你學習任何東西的之前,或者是之後,進行一些輕度或中度的身體鍛鍊。
其實呢,有很多研究告訴我們,睡眠可以讓我們的記憶力變得更好。
我們在睡眠的快速眼動期,正是同步讓我們把已經學過,或者是記下來的東西,更強化在我們的深處。
然而呢,除了睡眠之外,其實運動也會有同樣的效果。
你可以試試看哦,在你學習新資訊的之前或之後,立刻進行輕度到中度的鍛鍊,以我來說的話,我喜歡走路。
所以呢,我常常是在進入一個深刻的研究跟學習之前,我就會去走路;可能走個十五分鐘,走個半小時。
又或者是經過了一個很長時間的專心、投入,不管是在創作,還是在學習的過程之後,出去散散步、散散心。
這些肌肉的活動,會促使我們大腦神經的營養分子,叫做「BDNF」,這個部分的增生。
這個部分的增生,其實對我們的意義就是,會讓我們的大腦皮質,能夠更牢固的儲存更多的信息。
所以呢,你可以試試看,在你學習的之前或者是之後,進行輕度到中度的身體活動。
而第二個方法呢,就是減少多媒體之間的切換。
其實我們現在的生活,一旦你空虛、寂寞、覺得冷,你是不是就會滑滑臉書,或者滑滑youtube,或者是任何你習慣使用的網路服務?
可是呢,大腦神經的研究告訴我們哦,當你頻繁的在各個媒體資源,不管是電視、廣播、電腦、手機螢幕;或者是手機裡面的各個APP不斷的切換。這個過程它會損害你的長期記憶,它會讓你的海馬迴沒辦法正常的運作。
可是你聽到這裡,你想說沒辦法啊,我總不能遺世獨立吧,我總是要跟這個世界接軌吧,那該怎麼辦呢?
其實呢,我使用的方法就是哦,我會幫自己安排特定的時間;比如說,我不會無聊就去換手機。
我會給自己一個時間是,我每兩個小時或每一個小時;甚至於有時候如果需要的話,哪怕每半個小時才檢查一次手機;而每一次檢查手機,最多給自己3~5分鐘。
除了在這個規定的時間裡面上網、收郵件,或者是回訊息之外;其他的時間,我幾乎就會讓自己盡可能的,去離開這些多媒體的一個刺激;甚至於,主動的把我的網路關掉。
而第三個具體的方法是什麼呢?第三個方法,叫做專注於享受。
不管你喜歡戶外活動、聽音樂、畫畫、閱讀,不管是什麼?你可以給自己每天5~10分鐘的時間,去做那些純粹會讓你自己樂在其中的事情,這要刻意安排喔!
我自己的線上課程【時間駕訓班】裡,我也常常強調這一點;就是你很多重要的事情,那些對你來說有意義的事情。
你千萬不要存在一種,我知道它很重要,我有空再來做;其實很多人面對閱讀、學外語,就是因為這樣,所以導致他每天都沒做這件事。
所以呢,哪怕你每天只幫自己安排5~10分鐘,夠少、夠短了吧?但是當你刻意安排出來,那個時間就讓自己進入那個狀態,好好的去享受。
因為呢,我們的大腦是這樣哦,當我們放鬆享受一件事情的時候,我們的壓力水平就會降低;而壓力水平降低,那些我們大腦的一個分泌物,叫做「皮質醇」,這叫做「壓力荷爾蒙」,它的分泌就會減少。
你的大腦如果長期浸泡在大量的皮質醇裡面,其實不管你的長期記憶、不管你的海馬迴、不管你的額葉,或者是所有大腦的相關功能,都會受到很大的傷害。
所以呢,當你身心放鬆的時候,皮質醇的分泌就會減少;這個時候也比較容易啓動你的大腦自動清理的功能,讓你的專注力會更好、思緒更清晰。
所以呢,今天談了三個具體的方法,你可以試試看。
第一個,叫做學習前後,進行身體鍛鍊;第二個,減少多媒體之間的切換;第三個,專注於那些會讓你感覺到享受的事物。
希望今天的分享,能夠帶給你一些啟發與幫助,我是凱宇。
如果你喜歡我製作的內容,請你記得訂閱我們的頻道 並且分享給你身旁的朋友。然而如果你對於啟點文化的商品,或課程有興趣的話;我們近期推出了一個實體的活動,就是我們的桌遊【人際維基】的工作坊。
【人際維基】從上市到現在,受到很多單位團體的喜歡,特別是在教育現場老師,或者是一些人資同仁、業務團隊。
因為這些人都告訴我們,要教別人怎麼樣做人、做事,其實好難教,可是能夠透過遊戲,讓人自然而然在裡面有所體會,這是【人際維基】最大的價值。
然而也有很多人跟我們反映哦,就是【人際維基】他可能沒辦法湊出4個人,又或者是他只有一套桌遊;但是他有一大群人,要去讓他們參與、要帶一些活動,那這時候該怎麼辦呢?
你們的需求我們都聽到了,所以呢,我們設計了一個四個小時的【人際維基工作坊】。透過這個工作坊呢,你可以運用【人際維基】這一套媒材,去設計出專屬於你團隊的活動。
不管是有趣的、好玩的、互動的各方面,我們很用心的提供一個輕薄短小的學習歷程,你只需要花一個下午的時間,你就可以透過這個媒材,去設計出適合你,還有適合你團隊專屬的活動。
我們【人際維基桌遊工作坊】是在我們2020年,也就是明年初的1月18號;在我錄音的這個時候,1月18號的名額已經倒數了。
所以呢,如果這個時候你連上我們的連結,看到還有名額,請你務必把握這難得的機會;我很期待你能夠透過這一套媒材,來讓你不管在團隊的帶領、班級的經營,都有更明顯的前進。
詳細的內容,在我們的影片說明裡都有,很期待你的加入,那麼今天的分享就跟你談到這裡了,謝謝你的收聽,我們再會。
神經網路處理器 在 COMPOTECHAsia電子與電腦 - 陸克文化 Facebook 的精選貼文
#微控制器MCU #微處理器MPU #物聯網IoT #人工智慧AI #機器學習ML #微神經網路處理器microNPU #機密計算架構CCA #RISC-V
【多核、異構,MCU/MPU 不一樣了!】
越來越多包含微控制器 (MCU)、微處理器 (MPU) 設備加入數位化行列,且朝「多重處理器」趨勢邁進,每個 MCU 內部都是一顆 CPU (中央處理單元),有些還會配置第二或第三核心負責處理專屬功能,包括從無線電到機器學習 (ML) 等各種任務;而單晶片 (SoC) 架構的挑戰是:平衡元件要求、以更高的效率完成任務,多重核心在這方面將持續扮演重要角色,包括管理通訊、資料、排程等作業也將變得更加複雜,其最大挑戰很可能是如何管理在多重核心元件上運行的軟體。
各界普遍認同摩爾定律與 Dennard 縮放比例定律已近終點,但運算需求的成長速度卻日漸加快,因此,未來將會需要更加複雜的異質化 SoC 架構。與此同時,MCU 與 MPU 的界線越來越模糊,有產業先進認為其中一個主要區別是:工作頻率。此外,MCU 屬於單核架構,專注在控制層面、涵蓋類比輸入與輸出的控制動作;而 MPU 可能是單核心或多核心,專注於處理資料、而非處理或量測類比輸入或輸出訊號,幾乎都會用外部記憶體來存放程式資料,速度屬次要參數。
實際上,高性能的 MCU 已經可以運行作業系統。值得留意的是,RISC-V 市佔率正持續攀升,尤其低階 MCU 領域已逐漸取代 Arm 32 位元 MCU (Cortex-M),恩智浦 (NXP) 則計劃在某些新處理器子系統中將 RISC-V 作為共同處理器。芯科科技 (Silicon Labs) 認為:RISC-V 架構仍在持續演進,相比其他成熟的 RISC 價格,最大的差異是忠誠度、可用的工具、軟體以及新架構在沒有大量測試及實用基礎下的信心度等,其成長性或與成熟度互為因果。
延伸閱讀:
《數位化轉型中的 MCU》
http://www.compotechasia.com/a/feature/2021/0813/48768.html
#安謀Arm #Imagination #恩智浦NXP #芯科科技SiliconLabs #意法半導體ST
神經網路處理器 在 台灣物聯網實驗室 IOT Labs Facebook 的最佳貼文
摩爾定律放緩 靠啥提升AI晶片運算力?
作者 : 黃燁鋒,EE Times China
2021-07-26
對於電子科技革命的即將終結的說法,一般認為即是指摩爾定律的終結——摩爾定律一旦無法延續,也就意味著資訊技術的整棟大樓建造都將出現停滯,那麼第三次科技革命也就正式結束了。這種聲音似乎是從十多年前就有的,但這波革命始終也沒有結束。AI技術本質上仍然是第三次科技革命的延續……
人工智慧(AI)的技術發展,被很多人形容為第四次科技革命。前三次科技革命,分別是蒸汽、電氣、資訊技術(電子科技)革命。彷彿這“第四次”有很多種說辭,比如有人說第四次科技革命是生物技術革命,還有人說是量子技術革命。但既然AI也是第四次科技革命之一的候選技術,而且作為資訊技術的組成部分,卻又獨立於資訊技術,即表示它有獨到之處。
電子科技革命的即將終結,一般認為即是指摩爾定律的終結——摩爾定律一旦無法延續,也就意味著資訊技術的整棟大樓建造都將出現停滯,那麼第三次科技革命也就正式結束了。這種聲音似乎是從十多年前就有,但這波革命始終也沒有結束。
AI技術本質上仍然是第三次科技革命的延續,它的發展也依託於幾十年來半導體科技的進步。這些年出現了不少專門的AI晶片——而且市場參與者相眾多。當某一個類別的技術發展到出現一種專門的處理器為之服務的程度,那麼這個領域自然就不可小覷,就像當年GPU出現專門為圖形運算服務一樣。
所以AI晶片被形容為CPU、GPU之後的第三大類電腦處理器。AI專用處理器的出現,很大程度上也是因為摩爾定律的發展進入緩慢期:電晶體的尺寸縮減速度,已經無法滿足需求,所以就必須有某種專用架構(DSA)出現,以快速提升晶片效率,也才有了專門的AI晶片。
另一方面,摩爾定律的延緩也成為AI晶片發展的桎梏。在摩爾定律和登納德縮放比例定律(Dennard Scaling)發展的前期,電晶體製程進步為晶片帶來了相當大的助益,那是「happy scaling down」的時代——CPU、GPU都是這個時代受益,不過Dennard Scaling早在45nm時期就失效了。
AI晶片作為第三大類處理器,在這波發展中沒有趕上happy scaling down的好時機。與此同時,AI應用對運算力的需求越來越貪婪。今年WAIC晶片論壇圓桌討論環節,燧原科技創始人暨CEO趙立東說:「現在訓練的GPT-3模型有1750億參數,接近人腦神經元數量,我以為這是最大的模型了,要千張Nvidia的GPU卡才能做。談到AI運算力需求、模型大小的問題,說最大模型超過萬億參數,又是10倍。」
英特爾(Intel)研究院副總裁、中國研究院院長宋繼強說:「前兩年用GPU訓練一個大規模的深度學習模型,其碳排放量相當於5台美式車整個生命週期產生的碳排量。」這也說明了AI運算力需求的貪婪,以及提供運算力的AI晶片不夠高效。
不過作為產業的底層驅動力,半導體製造技術仍源源不斷地為AI發展提供推力。本文將討論WAIC晶片論壇上聽到,針對這個問題的一些前瞻性解決方案——有些已經實現,有些則可能有待時代驗證。
XPU、摩爾定律和異質整合
「電腦產業中的貝爾定律,是說能效每提高1,000倍,就會衍生出一種新的運算形態。」中科院院士劉明在論壇上說,「若每瓦功耗只能支撐1KOPS的運算,當時的這種運算形態是超算;到了智慧型手機時代,能效就提高到每瓦1TOPS;未來的智慧終端我們要達到每瓦1POPS。 這對IC提出了非常高的要求,如果依然沿著CMOS這條路去走,當然可以,但會比較艱辛。」
針對性能和效率提升,除了尺寸微縮,半導體產業比較常見的思路是電晶體結構、晶片結構、材料等方面的最佳化,以及處理架構的革新。
(1)AI晶片本身其實就是對處理器架構的革新,從運算架構的層面來看,針對不同的應用方向造不同架構的處理器是常規,更專用的處理器能促成效率和性能的成倍增長,而不需要依賴於電晶體尺寸的微縮。比如GPU、神經網路處理器(NPU,即AI處理器),乃至更專用的ASIC出現,都是這類思路。
CPU、GPU、NPU、FPGA等不同類型的晶片各司其職,Intel這兩年一直在推行所謂的「XPU」策略就是用不同類型的處理器去做不同的事情,「整合起來各取所需,用組合拳會好過用一種武器去解決所有問題。」宋繼強說。Intel的晶片產品就涵蓋了幾個大類,Core CPU、Xe GPU,以及透過收購獲得的AI晶片Habana等。
另外針對不同類型的晶片,可能還有更具體的最佳化方案。如當代CPU普遍加入AVX512指令,本質上是特別針對深度學習做加強。「專用」的不一定是處理器,也可以是處理器內的某些特定單元,甚至固定功能單元,就好像GPU中加入專用的光線追蹤單元一樣,這是當代處理器普遍都在做的一件事。
(2)從電晶體、晶片結構層面來看,電晶體的尺寸現在仍然在縮減過程中,只不過縮減幅度相比過去變小了——而且為緩解電晶體性能的下降,需要有各種不同的技術來輔助尺寸變小。比如說在22nm節點之後,電晶體變為FinFET結構,在3nm之後,電晶體即將演變為Gate All Around FET結構。最終會演化為互補FET (CFET),其本質都是電晶體本身充分利用Z軸,來實現微縮性能的提升。
劉明認為,「除了基礎元件的變革,IC現在的發展還是比較多元化,包括新材料的引進、元件結構革新,也包括微影技術。長期賴以微縮的基本手段,現在也在發生巨大的變化,特別是未來3D的異質整合。這些多元技術的協同發展,都為晶片整體性能提升帶來了很好的增益。」
他並指出,「從電晶體級、到晶圓級,再到晶片堆疊、引線接合(lead bonding),精準度從毫米向奈米演進,互連密度大大提升。」從晶圓/裸晶的層面來看,則是眾所周知的朝more than moore’s law這樣的路線發展,比如把兩片裸晶疊起來。現在很熱門的chiplet技術就是比較典型的並不依賴於傳統電晶體尺寸微縮,來彈性擴展性能的方案。
台積電和Intel這兩年都在大推將不同類型的裸晶,異質整合的技術。2.5D封裝方案典型如台積電的CoWoS,Intel的EMIB,而在3D堆疊上,Intel的Core LakeField晶片就是用3D Foveros方案,將不同的裸晶疊在一起,甚至可以實現兩片運算裸晶的堆疊、互連。
之前的文章也提到過AMD剛發佈的3D V-Cache,將CPU的L3 cache裸晶疊在運算裸晶上方,將處理器的L3 cache大小增大至192MB,對儲存敏感延遲應用的性能提升。相比Intel,台積電這項技術的獨特之處在於裸晶間是以混合接合(hybrid bonding)的方式互連,而不是micro-bump,做到更小的打線間距,以及晶片之間數十倍通訊性能和效率提升。
這些方案也不直接依賴傳統的電晶體微縮方案。這裡實際上還有一個方面,即新材料的導入專家們沒有在論壇上多說,本文也略過不談。
1,000倍的性能提升
劉明談到,當電晶體微縮的空間沒有那麼大的時候,產業界傾向於採用新的策略來評價技術——「PPACt」——即Powe r(功耗)、Performance (性能)、Cost/Area-Time (成本/面積-時間)。t指的具體是time-to-market,理論上應該也屬於成本的一部分。
電晶體微縮方案失效以後,「多元化的技術變革,依然會讓IC性能得到進一步的提升。」劉明說,「根據預測,這些技術即使不再做尺寸微縮,也會讓IC的晶片性能做到500~1,000倍的提升,到2035年實現Zetta Flops的系統性能水準。且超算的發展還可以一如既往地前進;單裸晶儲存容量變得越來越大,IC依然會為產業發展提供基礎。」
500~1,000倍的預測來自DARPA,感覺有些過於樂觀。因為其中的不少技術存在比較大的邊際遞減效應,而且有更實際的工程問題待解決,比如運算裸晶疊層的散熱問題——即便業界對於這類工程問題的探討也始終在持續。
不過1,000倍的性能提升,的確說明摩爾定律的終結並不能代表第三次科技革命的終結,而且還有相當大的發展空間。尤其本文談的主要是AI晶片,而不是更具通用性的CPU。
矽光、記憶體內運算和神經型態運算
在非傳統發展路線上(以上內容都屬於半導體製造的常規思路),WAIC晶片論壇上宋繼強和劉明都提到了一些頗具代表性的技術方向(雖然這可能與他們自己的業務方向或研究方向有很大的關係)。這些技術可能尚未大規模推廣,或者仍在商業化的極早期。
(1)近記憶體運算和記憶體內運算:處理器性能和效率如今面臨的瓶頸,很大程度並不在單純的運算階段,而在資料傳輸和儲存方面——這也是共識。所以提升資料的傳輸和存取效率,可能是提升整體系統性能時,一個非常靠譜的思路。
這兩年市場上的處理器產品用「近記憶體運算」(near-memory computing)思路的,應該不在少數。所謂的近記憶體運算,就是讓儲存(如cache、memory)單元更靠近運算單元。CPU的多層cache結構(L1、L2、L3),以及電腦處理器cache、記憶體、硬碟這種多層儲存結構是常規。而「近記憶體運算」主要在於究竟有多「近」,cache記憶體有利於隱藏當代電腦架構中延遲和頻寬的局限性。
這兩年在近記憶體運算方面比較有代表性的,一是AMD——比如前文提到3D V-cache增大處理器的cache容量,還有其GPU不僅在裸晶內導入了Infinity Cache這種類似L3 cache的結構,也更早應用了HBM2記憶體方案。這些實踐都表明,儲存方面的革新的確能帶來性能的提升。
另外一個例子則是Graphcore的IPU處理器:IPU的特點之一是在裸晶內堆了相當多的cache資源,cache容量遠大於一般的GPU和AI晶片——也就避免了頻繁的訪問外部儲存資源的操作,極大提升頻寬、降低延遲和功耗。
近記憶體運算的本質仍然是馮紐曼架構(Von Neumann architecture)的延續。「在做處理的過程中,多層級的儲存結構,資料的搬運不僅僅在處理和儲存之間,還在不同的儲存層級之間。這樣頻繁的資料搬運帶來了頻寬延遲、功耗的問題。也就有了我們經常說的運算體系內的儲存牆的問題。」劉明說。
構建非馮(non-von Neumann)架構,把傳統的、以運算為中心的馮氏架構,變換一種新的運算範式。把部分運算力下推到儲存。這便是記憶體內運算(in-memory computing)的概念。
記憶體內運算的就現在看來還是比較新,也有稱其為「存算一體」。通常理解為在記憶體中嵌入演算法,儲存單元本身就有運算能力,理論上消除資料存取的延遲和功耗。記憶體內運算這個概念似乎這在資料爆炸時代格外醒目,畢竟可極大減少海量資料的移動操作。
其實記憶體內運算的概念都還沒有非常明確的定義。現階段它可能的內涵至少涉及到在儲記憶體內部,部分執行資料處理工作;主要應用於神經網路(因為非常契合神經網路的工作方式),以及這類晶片具體的工作方法上,可能更傾向於神經型態運算(neuromorphic computing)。
對於AI晶片而言,記憶體內運算的確是很好的思路。一般的GPU和AI晶片執行AI負載時,有比較頻繁的資料存取操作,這對性能和功耗都有影響。不過記憶體內運算的具體實施方案,在市場上也是五花八門,早期比較具有代表性的Mythic導入了一種矩陣乘的儲存架構,用40nm嵌入式NOR,在儲記憶體內部執行運算,不過替換掉了數位週邊電路,改用類比的方式。在陣列內部進行模擬運算。這家公司之前得到過美國國防部的資金支援。
劉明列舉了近記憶體運算和記憶體內運算兩種方案的例子。其中,近記憶體運算的這個方案應該和AMD的3D V-cache比較類似,把儲存裸晶和運算裸晶疊起來。
劉明指出,「這是我們最近的一個工作,採用hybrid bonding的技術,與矽通孔(TSV)做比較,hybrid bonding功耗是0.8pJ/bit,而TSV是4pJ/bit。延遲方面,hybrid bonding只有0.5ns,而TSV方案是3ns。」台積電在3D堆疊方面的領先優勢其實也體現在hybrid bonding混合鍵合上,前文也提到了它具備更高的互連密度和效率。
另外這套方案還將DRAM刷新頻率提高了一倍,從64ms提高至128ms,以降低功耗。「應對刷新率變慢出現拖尾bit,我們引入RRAM TCAM索引這些tail bits」劉明說。
記憶體內運算方面,「傳統運算是用布林邏輯,一個4位元的乘法需要用到幾百個電晶體,這個過程中需要進行資料來回的移動。記憶體內運算是利用單一元件的歐姆定律來完成一次乘法,然後利用基爾霍夫定律完成列的累加。」劉明表示,「這對於今天深度學習的矩陣乘非常有利。它是原位的運算和儲存,沒有資料搬運。」這是記憶體內運算的常規思路。
「無論是基於SRAM,還是基於新型記憶體,相比近記憶體運算都有明顯優勢,」劉明認為。下圖是記憶體內運算和近記憶體運算,精準度、能效等方面的對比,記憶體內運算架構對於低精準度運算有價值。
下圖則總結了業內主要的一些記憶體內運算研究,在精確度和能效方面的對應關係。劉明表示,「需要高精確度、高運算力的情況下,近記憶體運算目前還是有優勢。不過記憶體內運算是更新的技術,這幾年的進步也非常快。」
去年阿里達摩院發佈2020年十大科技趨勢中,有一個就是存算一體突破AI算力瓶頸。不過記憶體內運算面臨的商用挑戰也一點都不小。記憶體內運算的通常思路都是類比電路的運算方式,這對記憶體、運算單元設計都需要做工程上的考量。與此同時這樣的晶片究竟由誰來造也是個問題:是記憶體廠商,還是數文書處理器廠商?(三星推過記憶體內運算晶片,三星、Intel垂直整合型企業似乎很適合做記憶體內運算…)
(2)神經型態運算:神經型態運算和記憶體內運算一樣,也是新興技術的熱門話題,這項技術有時也叫作compute in memory,可以認為它是記憶體內運算的某種發展方向。神經型態和一般神經網路AI晶片的差異是,這種結構更偏「類人腦」。
進行神經型態研究的企業現在也逐漸變得多起來,劉明也提到了AI晶片「最終的理想是在結構層次模仿腦,元件層次逼近腦,功能層次超越人腦」的「類腦運算」。Intel是比較早關注神經型態運算研究的企業之一。
傳說中的Intel Loihi就是比較典型存算一體的架構,「這片裸晶裡面包含128個小核心,每個核心用於模擬1,024個神經元的運算結構。」宋繼強說,「這樣一塊晶片大概可以類比13萬個神經元。我們做到的是把768個晶片再連起來,構成接近1億神經元的系統,讓學術界的夥伴去試用。」
「它和深度學習加速器相比,沒有任何浮點運算——就像人腦裡面沒有乘加器。所以其學習和訓練方法是採用一種名為spike neutral network的路線,功耗很低,也可以訓練出做視覺辨識、語言辨識和其他種類的模型。」宋繼強認為,不採用同步時脈,「刺激的時候就是一個非同步電動勢,只有工作部分耗電,功耗是現在深度學習加速晶片的千分之一。」
「而且未來我們可以對不同區域做劃分,比如這兒是視覺區、那兒是語言區、那兒是觸覺區,同時進行多模態訓練,互相之間產生關聯。這是現在的深度學習模型無法比擬的。」宋繼強說。這種神經型態運算晶片,似乎也是Intel在XPU方向上探索不同架構運算的方向之一。
(2)微型化矽光:這個技術方向可能在層級上更偏高了一些,不再晶片架構層級,不過仍然值得一提。去年Intel在Labs Day上特別談到了自己在矽光(Silicon Photonics)的一些技術進展。其實矽光技術在連接資料中心的交換機方面,已有應用了,發出資料時,連接埠處會有個收發器把電訊號轉為光訊號,透過光纖來傳輸資料,另一端光訊號再轉為電訊號。不過傳統的光收發器成本都比較高,內部元件數量大,尺寸也就比較大。
Intel在整合化的矽光(IIIV族monolithic的光學整合化方案)方面應該是商業化走在比較前列的,就是把光和電子相關的組成部分高度整合到晶片上,用IC製造技術。未來的光通訊不只是資料中心機架到機架之間,也可以下沉到板級——就跟現在傳統的電I/O一樣。電互連的主要問題是功耗太大,也就是所謂的I/O功耗牆,這是這類微型化矽光元件存在的重要價值。
這其中存在的技術挑戰還是比較多,如做資料的光訊號調變的調變器調變器,據說Intel的技術使其實現了1,000倍的縮小;還有在接收端需要有個探測器(detector)轉換光訊號,用所謂的全矽微環(micro-ring)結構,實現矽對光的檢測能力;波分複用技術實現頻寬倍增,以及把矽光和CMOS晶片做整合等。
Intel認為,把矽光模組與運算資源整合,就能打破必須帶更多I/O接腳做更大尺寸處理器的這種趨勢。矽光能夠實現的是更低的功耗、更大的頻寬、更小的接腳數量和尺寸。在跨處理器、跨伺服器節點之間的資料互動上,這類技術還是頗具前景,Intel此前說目標是實現每根光纖1Tbps的速率,並且能效在1pJ/bit,最遠距離1km,這在非本地傳輸上是很理想的數字。
還有軟體…
除了AI晶片本身,從整個生態的角度,包括AI感知到運算的整個鏈條上的其他組成部分,都有促成性能和效率提升的餘地。比如這兩年Nvidia從軟體層面,針對AI運算的中間層、庫做了大量最佳化。相同的底層硬體,透過軟體最佳化就能實現幾倍的性能提升。
宋繼強說,「我們發現軟體最佳化與否,在同一個硬體上可以達到百倍的性能差距。」這其中的餘量還是比較大。
在AI開發生態上,雖然Nvidia是最具發言權的;但從戰略角度來看,像Intel這種研發CPU、GPU、FPGA、ASIC,甚至還有神經型態運算處理器的企業而言,不同處理器統一開發生態可能更具前瞻性。Intel有個稱oneAPI的軟體平台,用一套API實現不同硬體性能埠的對接。這類策略對廠商的軟體框架構建能力是非常大的考驗——也極大程度關乎底層晶片的執行效率。
在摩爾定律放緩、電晶體尺寸微縮變慢甚至不縮小的前提下,處理器架構革新、異質整合與2.5D/3D封裝技術依然可以達成1,000倍的性能提升;而一些新的技術方向,包括近記憶體運算、記憶體內運算和微型矽光,能夠在資料訪存、傳輸方面產生新的價值;神經型態運算這種類腦運算方式,是實現AI運算的目標;軟體層面的最佳化,也能夠帶動AI性能的成倍增長。所以即便摩爾定律嚴重放緩,AI晶片的性能、效率提升在上面提到的這麼多方案加持下,終將在未來很長一段時間內持續飛越。這第三(四)次科技革命恐怕還很難停歇。
資料來源:https://www.eettaiwan.com/20210726nt61-ai-computing/?fbclid=IwAR3BaorLm9rL2s1ff6cNkL6Z7dK8Q96XulQPzuMQ_Yky9H_EmLsBpjBOsWg
神經網路處理器 在 台灣物聯網實驗室 IOT Labs Facebook 的精選貼文
軟體吞噬硬體的 AI 時代,晶片跟不上演算法的進化要怎麼辦?
作者 品玩 | 發布日期 2021 年 02 月 23 日 8:00 |
身為 AI 時代的幕後英雄,晶片業正經歷漸進持續的變化。
2008 年之後,深度學習演算法逐漸興起,各種神經網絡滲透到手機、App 和物聯網。同時摩爾定律卻逐漸放緩。摩爾定律雖然叫定律,但不是物理定律或自然定律,而是半導體業發展的觀察或預測,內容為:單晶片整合度(積體電路中晶體管的密度)每 2 年(也有 18 個月之說)翻倍,帶來性能每 2 年提高 1 倍。
保證摩爾定律的前提,是晶片製程進步。經常能在新聞看到的 28 奈米、14 奈米、7 奈米、5 奈米,指的就是製程,數字越小製程越先進。隨著製程的演進,特別進入10 奈米後,逐漸逼近物理極限,難度越發增加,晶片全流程設計成本大幅增加,每代較上一代至少增加 30%~50%。
這就導致 AI 對算力需求的增長速度,遠超過通用處理器算力的增長速度。據 OpenAI 測算,從 2012 年開始,全球 AI 所用的演算量呈現等比級數增長,平均每 3.4 個月便會翻 1 倍,通用處理器算力每 18 個月至 2 年才翻 1 倍。
當通用處理器算力跟不上 AI 演算法發展,針對 AI 演算的專用處理器便誕生了,也就是常說的「AI 晶片」。目前 AI 晶片的技術內涵豐富,從架構創新到先進封裝,再到模擬大腦,都影響 AI 晶片走向。這些變化的背後,都有共同主題:以更低功耗,產生更高性能。
更靈活
2017 年圖靈獎頒給電腦架構兩位先驅 David Petterson 和 John Hennessy。2018 年圖靈獎演講時,他們聚焦於架構創新主題,指出演算體系結構正迎來新的黃金 10 年。正如他們所判斷,AI 晶片不斷出現新架構,比如英國 Graphcore 的 IPU──迥異於 CPU 和 GPU 的 AI 專用智慧處理器,已逐漸被業界認可,並 Graphcore 也獲得微軟和三星的戰略投資支援。
名為 CGRA 的架構在學界和工業界正受到越來越多關注。CGRA 全稱 Coarse Grained Reconfigurable Array(粗顆粒可重構陣列),是「可重構計算」理念的落地產物。
據《可重構計算:軟體可定義的計算引擎》一文介紹,理念最早出現在 1960 年代,由加州大學洛杉磯分校的 Estrin 提出。由於太過超前時代,直到 40 年後才獲得系統性研究。加州大學柏克萊分校的 DeHon 等將可重構計算定義為具以下特徵的體系結構:製造後晶片功能仍可客製,形成加速特定任務的硬體功能;演算功能的實現,主要依靠任務到晶片的空間映射。
簡言之,可重構晶片強調靈活性,製造後仍可透過程式語言調整,適應新演算法。形成高度對比的是 ASIC(application-specific integrated circuit,專用積體電路)。ASIC 晶片雖然性能高,卻缺乏靈活性,往往是針對單一應用或演算法設計,難以相容新演算法。
2017 年,美國國防部高級研究計劃局(Defence Advanced Research Projects Agency,DARPA)提出電子產業復興計劃(Electronics Resurgence Initiative,ERI),任務之一就是「軟體定義晶片」,打造接近 ASIC 性能、同時不犧牲靈活性。
照重構時的顆粒分別,可重構晶片可分為 CGRA 和 FPGA(field-programmable gate array,現場可程式語言邏輯門陣列)。FPGA 在業界有一定規模應用,如微軟將 FPGA 晶片帶入大型資料中心,用於加速 Bing 搜索引擎,驗證 FPGA 靈活性和演算法可更新性。但 FPGA 有局限性,不僅性能和 ASIC 有較大差距,且重程式語言門檻比較高。
CGRA 由於實現原理差異,比 FPGA 能做到更底層程式的重新設計,面積效率、能量效率和重構時間都更有優勢。可說 CGRA 同時整合通用處理器的靈活性和 ASIC 的高性能。
隨著 AI 演算逐漸從雲端下放到邊緣端和 IoT 設備,不僅演算法多樣性日益增強,晶片更零碎化,且保證低功耗的同時,也要求高性能。在這種場景下,高能效高靈活性的 CGRA 大有用武之地。
由於結構不統一、程式語言和編譯工具不成熟、易用性不夠友善,CGRA 未被業界廣泛使用,但已可看到一些嘗試。早在 2016 年,英特爾便將 CGRA 納入 Xeon 處理器。三星也曾嘗試將 CGRA 整合到 8K 電視和 Exynos 晶片。
中國清微智慧 2019 年 6 月量產全球首款 CGRA 語音晶片 TX210,同年 9 月又發表全球首款 CGRA 多模態晶片 TX510。這家公司脫胎於清華大學魏少軍教授起頭的可重構計算研究團隊,從 2006 年起就進行相關研究。據芯東西 2020 年 11 月報導,語音晶片 TX210 已出貨數百萬顆,多模組晶片 TX510 在 11 月也出貨 10 萬顆以上,主要客戶為智慧門鎖、安防和臉部支付相關廠商。
先進封裝上位
如開篇提到,由於製程逼近物理極限,摩爾定律逐漸放緩。同時 AI 演算法的進步,對算力需求增長迅猛,逼迫晶片業在先進製程之外探索新方向,之一便是先進封裝。
「在大數據和認知計算時代,先進封裝技術正在發揮比以往更大的作用。AI 發展對高效能、高吞吐量互連的需求,正透過先進封裝技術加速發展來滿足。 」世界第三大晶圓代工廠格羅方德平台首席技術專家 John Pellerin 聲明表示。
先進封裝是相對於傳統封裝的技術。封裝是晶片製造的最後一步:將製作好的晶片器件放入外殼,並與外界器件相連。傳統封裝的封裝效率低,有很大改良空間,而先進封裝技術致力提高整合密度。
先進封裝有很多技術分支,其中 Chiplet(小晶片/芯粒)是最近 2 年的大熱門。所謂「小晶片」,是相對傳統晶片製造方法而言。傳統晶片製造方法,是在同一塊矽晶片上,用同一種製程打造晶片。Chiplet 是將一塊完整晶片的複雜功能分解,儲存、計算和訊號處理等功能模組化成裸晶片(Die)。這些裸晶片可用不同製程製造,甚至可是不同公司提供。透過連接介面相接後,就形成一個 Chiplet 晶片網路。
據壁仞科技研究院唐杉分析,Chiplet 歷史更久且更準確的技術詞彙應該是異構整合(Heterogeneous Integration)。總體來說,此技術趨勢較清晰明確,且第一階段 Chiplet 形態技術較成熟,除了成本較高,很多高端晶片已經在用。
如 HBM 儲存器成為 Chiplet 技術早期成功應用的典型代表。AMD 在 Zen2 架構晶片使用 Chiplet 思路,CPU 用的是 7 奈米製程,I/O 使用 14 奈米製程,與完全由 7 奈米打造的晶片相比成本約低 50%。英特爾也推出基於 Chiplet 技術的 Agilex FPGA 系列產品。
不過,Chiplet 技術仍面臨諸多挑戰,最重要之一是互連介面標準。互連介面重要嗎?如果是在大公司內部,比如英特爾或 AMD,有專用協議和封閉系統,在不同裸晶片間連接問題不大。但不同公司和系統互連,同時保證高頻寬、低延遲和每比特低功耗,互連介面就非常重要了。
2017 年,DARPA 推出 CHIPS 戰略計劃(通用異構整合和 IP 重用戰略),試圖打造開放連接協議。但 DARPA 的缺點是,側重國防相關計畫,晶片數量不大,與真正商用場景有差距。因此一些晶片業公司成立組織「ODSA(開放領域特定架構)工作組」,透過制定開放的互連介面,為 Chiplet 的發展掃清障礙。
另闢蹊徑
除了在現有框架內做架構和製造創新,還有研究人員試圖跳出電腦現行的范紐曼型架構,開發真正模擬人腦的計算模式。
范紐曼架構,數據計算和儲存分開進行。RAM 存取速度往往嚴重落後處理器的計算速度,造成「記憶體牆」問題。且傳統電腦需要透過總線,連續在處理器和儲存器之間更新,導致晶片大部分功耗都消耗於讀寫數據,不是算術邏輯單元,又衍生出「功耗牆」問題。人腦則沒有「記憶體牆」和「功耗牆」問題,處理訊息和儲存一體,計算和記憶可同時進行。
另一方面,推動 AI 發展的深度神經網路,雖然名稱有「神經網路」四字,但實際上跟人腦神經網路運作機制相差甚遠。1,000 億個神經元,透過 100 萬億個神經突觸連接,使人腦能以非常低功耗(約 20 瓦)同步記憶、演算、推理和計算。相比之下,目前的深度神經網路,不僅需大規模資料訓練,運行時還要消耗極大能量。
因此如何讓 AI 像人腦一樣工作,一直是學界和業界積極探索的課題。1980 年代後期,加州理工學院教授卡弗·米德(Carver Mead)提出神經形態工程學的概念。經過多年發展,業界和學界對神經形態晶片的摸索逐漸成形。
軟體方面,稱為第三代人工神經網路的「脈衝神經網路」(Spike Neural Network,SNN)應運而生。這種網路以脈衝信號為載體,更接近人腦的運作方式。硬體方面,大型機構和公司研發相應的脈衝神經網路處理器。
早在 2008 年,DARPA 就發起計畫──神經形態自適應塑膠可擴展電子系統(Systems of Neuromorphic Adaptive Plastic Scalable Electronics,簡稱 SyNAPSE,正好是「突觸」之意),希望開發出低功耗的電子神經形態電腦。
IBM Research 成為 SyNAPSE 計畫的合作方之一。2014 年發表論文展示最新成果──TrueNorth。這個類腦計算晶片擁有 100 萬個神經元,能以每秒 30 幀的速度輸入 400×240pixel 的影片,功耗僅 63 毫瓦,比范紐曼架構電腦有質的飛躍。
英特爾 2017 年展示名為 Loihi 的神經形態晶片,包含超過 20 億個晶體管、13 萬個人工神經元和 1.3 億個突觸,比一般訓練系統所需的通用計算效率高 1 千倍。2020 年 3 月,研究人員甚至在 Loihi 做到嗅覺辨識。這成果可應用於診斷疾病、檢測武器和爆炸物及立即發現麻醉劑、煙霧和一氧化碳氣味等場景。
中國清華大學類腦計算研究中心的施路平教授團隊,開發針對人工通用智慧的「天機」晶片,同時支持脈衝神經網路和深度神經網路。2019 年 8 月 1 日,天機成為中國第一款登上《Nature》雜誌封面的晶片。
儘管已有零星研究成果,但總體來說,脈衝神經網路和處理器仍是研究領域的方向之一,沒有在業界大規模應用,主要是因為基礎演算法還沒有關鍵性突破,達不到業界標準,且成本較高。
附圖:▲ 不同製程節點的晶片設計製造成本。(Source:ICBank)
▲ 可重構計算架構與現有主流計算架構在能量效率和靈活性對比。(Source:中國科學)
▲ 異構整合成示意動畫。(Source:IC 智庫)
▲ 通用處理器的典型操作耗能。(Source:中國科學)
資料來源:https://technews.tw/2021/02/23/what-to-do-if-the-chip-cannot-keep-up-with-the-evolution-of-the-algorithm/?fbclid=IwAR0Z-nVQb96jnhAFWuGGXNyUMt2sdgmyum8VVp8eD_aDOYrn2qCr7nxxn6I