雞精健身訣要:
1、動作要做到位。
動作要做“全程”,而不是“半程”,從而滿足肌肉生成三大因素之一的“肌肉損傷”。
比如,啞鈴臥推。
很多人下放啞鈴只到大臂和背水平的位置,這樣稱為“半程”,只拉伸了部分的胸大肌。
啞鈴應該下放到略微高於胸的平面,肘位於背後,這時完全拉伸開肌肉,從這個位置推...
雞精健身訣要:
1、動作要做到位。
動作要做“全程”,而不是“半程”,從而滿足肌肉生成三大因素之一的“肌肉損傷”。
比如,啞鈴臥推。
很多人下放啞鈴只到大臂和背水平的位置,這樣稱為“半程”,只拉伸了部分的胸大肌。
啞鈴應該下放到略微高於胸的平面,肘位於背後,這時完全拉伸開肌肉,從這個位置推起,則肌肉收縮更長的距離。
其他動作同理。
2、動作注重離心收縮,控制速度。
簡單說,注重肌肉被拉長對抗阻力的過程。
比如,啞鈴彎舉。
手臂彎曲的時候快一點,而放下啞鈴伸直手臂的過程中,你的肱二頭肌全程在對抗啞鈴的重力,這個時候速度放慢一點。
這樣做的目的也是為了滿足肌肉生成三大因素之一的“肌肉損傷”。
3、不要只是單純的模仿。
有些人健身是通過在場館里觀察他人如何鍛煉,然後通過模仿別人做動作。
這麽做很可能會被帶跑偏。
比如,大佬做某個動作做“半程”,其實因為大重量下在某一點不流暢,通過“半程”來突破和強化,你如果不知情,就會以為這個動作大佬都這麽做,你做也沒錯。
所以,還是要一個個動作去扣,去查資料。
4、學動作要觀察對方的關節。
基本上,關節的位置模仿到位了,動作軌跡90%就到位了。
5、不要總是換動作。
每個部位掌握4-5個動作,然後每次就做這些動作就好了。
有些人可能看網上說的“肌肉有記憶”,所以總是換不同的動作。
真的有記憶,那也是3-4個月後才要考慮的事,等你先能堅持3-4個月的鍛煉再說吧。
如果需要增加變量,變得應該是組數、次數、休息時間,而不是動作。
6、動作別整太花哨。
對於新手來說,要選擇簡單易掌握並且對目標肌群刺激感更強的動作。
不要依賴於網上的文章,而是要相信自己的身體,健身要以實踐為主。
比如,
某文章中說,根據實驗,同是鍛煉X肌群,A動作比B動作對這塊肌肉的刺激多20%。
即使如此,可是,當你做A動作時候找不到發力感,而做B動作時那塊肌肉更有感覺,那麽果斷相信自己的身體,做B而不是A。
7、要稍微學習一點運動解剖學的知識。
不需要學太深入(比如起止點的部分),只需要了解正在練的那些肌肉有什麽功能,這樣你就能知道如何正確的刺激到這些肌肉。
可以將《運動解剖學圖譜》當成工具書,每次練前翻一翻看一看要練的肌肉群。
8、先扣動作,再考慮訓練計劃。
新手先不要去考慮怎麽分化訓練,如何增肌快,如何對肌肉刺激最大。
先將動作的細節掌握好,每塊大肌群至少熟練掌握4-5個動作。
比如,今天想練胸,腦子中立刻就能想出杠鈴臥推、上斜啞鈴臥推、器械飛鳥、繩索飛鳥(不同角度)、含胸臂屈伸等等動作。
能做到這個了,再根據自己的時間安排訓練計劃。
9、不要急著增加重量。
每次增加重量前,先問自己,是否真的適應了目前的重量。
每次都能夠推起這個重量麽?還是有時行有時不行?
推起時候核心穩麽?身體會晃動麽?
太快增加重量,容易增加受傷的風險。
大佬們訓練都是循序漸進一步一個腳印才有今天的成績的。
10、學習運動搭配飲食。
無論減脂還是增肌,飲食都十分重要。
並不單純是多吃少吃的問題,還涉及到吃什麽怎麽吃和何時吃。
因此,飲食還是需要多下功夫去研究。
11、不要迷信補劑。
補劑只是在飲食無法做到位的情況下作為補充而已。
剛開始鍛煉的人要先學會如何吃,這樣才知道自己吃多少才夠,而只有當你無法從飲食中攝入足夠營養的情況下,才去考慮用補劑。
像我剛開始練的時候,一天設定的蛋白質是120g(舉個例子,具體因人而異)
100g牛肉中含有20g蛋白質,如果單純靠牛肉的補充蛋白質的話我需要吃600g。
而我一整天三餐吃下來,撐死只吃得了500g牛肉,這時,我才會通過額外攝入1勺的蛋白粉(約24g蛋白質)來滿足一天120g蛋白質的目標。
如果我能從飲食中攝入足夠的蛋白質,那麽也不用喝蛋白粉。
畢竟雖然食物烹飪中會有油脂,但也有其他營養物質和微量元素。
12、鍛煉要講究效率
新手最好將訓練的時間控制在1小時以內。
我經常在健身房里看到許多新手做1組動作(還不是力竭重量),休息(玩手機)3-5分鐘。
增肌的三大要素之一是“代謝壓力”,即要讓肌肉充血、有泵感。
而休息那麽久,收縮感早就沒有了,這種鍛煉的效果會大打折扣。
“佛系”健身不是懶散、不講究方法的借口。
13、不要摸魚,但也不要練得太狠,注意休息。
我在健身房還見過一類新手(從對於動作的理解、計劃的安排判斷),一天兩練中午力量,晚上有氧或者繼續力量,一周來健身房5次。
對於新手來說,這樣的強度太多,休息太少了。
在沒有充分休息的情況下,這麽大的強度必然導致動作標準的下降,同時增加受傷的風險。
其次,你不讓身體充分的休息,它哪里來得時間去吸收和生長肌肉?
往深了說,過多的疲勞、壓力會使體內皮質醇升高,導致肌肉分解,反而不利於肌肉生長。
14、健身持之以恒。
健身是我見過最公平的一件事。
你投入多少就有多少的回報。
Thanks
@natures_village_hk
@ansperformance
@ansperformancecolombia
#workouttips
#fatlose
#theleanestever
#tb
#prep
知識圖譜工具 在 Facebook 的最佳解答
創新工場和BCG諮詢合作的「+AI改造者」系列:看看馬上贏如何在巨頭競爭下,用大數據驅動業務,實現傳統零售商和品牌商的雙贏。
改造者系列:科技巨頭下的AI企業制勝之道?-- 本文来自BCG微信公眾號,經授權轉載。
近期,創新工場聯合BCG波士頓咨詢旗下亨德森智庫,推出「AI融合產業:『改造者』如何促進AI普惠」系列研究。人工智慧在中國大陸有著明確的落地應用場景,大量的AI企業活躍於這些垂直場景中,我們定義這些企業為「改造者」。「改造者」通過傳授其AI技術和垂直行業理解,極大地打破了傳統企業應用AI的瓶頸。
作為擅於趨勢前瞻的TechVC,創新工場長期看好AI領域,深入佈局,至今已經投出了7只AI獨角獸。在系列研究中,我們采訪了數家創新系AI企業,通過這些「改造者」的視角,探究傳統企業擁抱AI的範式與路徑。
馬上贏是創新工場投資的大陸領先的快消行業大數據公司,其定位是中國快消品行業的風向標,零售監測的新標準,成為中國的「尼爾森」。通過信息化賦能小規模零售商,馬上贏打通一個個數據孤島,以大數據的方式挖掘零售數據的商業價值,為品牌商提供產品動銷數據與競品監控服務。
為了讓數據更好地服務於新品研發和上市,馬上贏引入了PDCA(Plan, Do, Check, Act)循環,通過數據說話指導快消品快速迭代,提升零售商銷售收入。
具體來說,品牌商可以在零售商的渠道內測試包括售價、外觀、營銷、陳列等要素,通過數據回饋指導新版本,實現往復循環。
在采訪中,馬上贏創始人猴哥(王傑祺)表示,垂直領域內的AI創新需要符合企業自身的需求,要在巨頭的基礎設施之上,基於更好的訓練集和更專業的垂直行業知識,不斷突破行業壁壘,優化垂直領域的AI創新。
■系列導讀
本系列由BCG亨德森智庫與創新工場董事長兼首席執行官李開復博士帶領的創新工場團隊共同推出,圍繞「AI融合產業:『改造者』1如何促進AI普惠」的課題,我們致力於探究傳統企業在應用AI過程中的關鍵要素與合作夥伴,以及傳統企業擁抱AI的範式與路徑。
在零售領域,馬上贏致力於定義中國快消品零售監測行業的新標準,成為「中國的尼爾森」,通過免費為連鎖零售商提供市場情報和「零售數字化鐵三角」2,與零售商進行數據合作,將海量的線下快消品零售數據轉換成精准的市場洞察情報。
1 「改造者」 通過傳授其AI技術和垂直行業理解,極大地打破了傳統企業應用AI的瓶頸,充當產業中傳統企業應用AI的橋樑。「改造者」包括AI企業與成功轉型AI的傳統企業。
2 「零售數位化鐵三角」指通過PDCA循環迭代的方法提升零售商銷售收入。P=Plan:52周企劃;D=Do:會員營銷;C=Check:BI看板;A=Act:改進。
■本期受訪嘉賓:猴哥(王傑祺)
馬上贏正在建設覆蓋線下門店最多的零售監測網絡,為連鎖企業免費提供BI看板、52周企劃3、會員營銷和市場情報,推進連鎖企業數字化轉型。
猴哥(王傑祺)是馬上贏的創始人兼首席執行官,清華大學學士,美國華盛頓大學碩士。他是原阿里巴巴集團資深產品專家,曾于美國UPS供應鏈部門擔任高級工業工程師。在創立馬上贏之前,他曾創業推出購物助手(如意淘),後被阿里收購。
3「52周企劃」指依托馬上贏的大數據AI技術説明零售商實現精細化管理。零售商可以瞭解一年中每周適合銷售什麼類目的產品,與陰曆節日、陽曆節日、節氣、特殊事件(如比賽活動)關聯,提升門店的銷售計劃能力。
■對談實錄
Q1 馬上贏為什麼選擇切入零售賽道?如何定義「中國的尼爾森」?
猴哥:馬上贏致力於定義快消品零售監測的新標準,做「中國的尼爾森」,為零售商和品牌商提供服務。面向零售商,馬上贏免費提供ABC服務,即AI、big data(大數據)、Cloud(雲服務),以換取訂單數據;面向品牌商,馬上贏基於零售商的脫敏數據提供大陸市場情報,賺取收入。
馬上贏發現,大陸的市場過於分散,零售的毛利又低,大量規模小的零售商缺乏足夠的IT費用以支援其獨立完成信息化應用,但他們對信息化的需求又是真實存在的。另一方面,品牌商有意願和能力為市場情報、動銷數據支付費用。馬上贏看到了零售商和品牌商的痛點以及購買力的巨大差異,嘗試通過為零售商和品牌商提供所需服務來提升整個行業的效率。
馬上贏一方面向零售商免費提供差異化的信息技術服務,按零售商的需求提供BI看板和市場情報支援,另一方面向品牌商提供產品動銷數據與競品監控服務。此外,馬上贏還在著重提升AI演算法和大數據中台數據處理能力,以便支援更多零售商和品牌商的數據服務需求。同時,這些技術優勢和服務支撐能力説明馬上贏建成大陸覆蓋範圍最大的即時零售數據監測網絡。對於馬上贏和客戶而言,這是雙贏。
在數據治理中,馬上贏需要做的是建立相對統一的內容體系,實現統一的度量衡。比如同一個條碼的商品在不同門店的名稱寫法不同,傳統方法是通過人工進行校驗和修正之後才能統一名稱入庫。馬上贏通過自己搭建的超1,600萬條碼的商品庫,使用AI演算法對零售數據做分類、清洗,並基於完善的商品知識圖譜體系標記商品屬性,再由BI看板提供數據洞察服務。馬上贏的這套全流程自動化體系,極大地提升了數據處理和情報產出的速度和效率。
Q2 相比數據咨詢商、科技巨頭等其他類別的競爭對手,馬上贏的差異化優勢是什麼?如果品牌方想自己做零售大數據,馬上贏怎麼應對?
猴哥:以往零售商想實現信息化必須高價購買專門技術公司的服務,只有少數資金充足的大零售商可以負擔得起,零售行業中數量眾多的中小型零售商往往望洋興嘆。而品牌方一般很難獲取到這些生意占比很大的中小型零售商數據,因而會尋求數據咨詢商的數據服務。但出於成本和利潤的考慮,數據咨詢商往往只服務最頭部的品牌商,在大陸可能只有幾百個品牌商能消費得起數據咨詢商的服務。相比之下,馬上贏合作的品牌商更加廣泛,從新銳品牌、區域性品牌到成熟品牌、頭部品牌,馬上贏都可以提供符合客戶需要的數據服務。
數據咨詢商從少數零售商那裏提取商品月度銷售匯總數據,再將數據整合為大盤情報,賣給少數頭部品牌商。但馬上贏從「激活生態」的角度出發,説明零售商提升數據運營能力,獲得大量一手銷售訂單數據,可以為品牌商提供更詳細的數據洞察服務。此外,馬上贏由AI賦能數據清洗和BI交付,從而可以提供即時的、更細顆粒度的看板,可以提供細到省級、地級市級、業態級、SKU級顆粒度的數據。
相比電商巨頭,馬上贏選擇線下快消品零售行業,覆蓋更多的線下零售商,涉及更豐富的業態,有大賣場、大超市、小超市、便利店、食雜店等等。在商品品類的選擇上,馬上贏暫不拓展美妝、服裝等電商渠道占比超過50%的品類,而選擇線上化率相對更低的品類,如食品、飲料、日用品。這些品類消費時效性高、頻次高、單價低,線上購物場景並不適合線下。
至於品牌方自己做零售大數據,馬上贏早前就思考過這個問題。我們和大品牌都聊過,如果建立品牌方自己的銷售追蹤網絡是否可行,得出的結論是不可行。一是單一品牌方來做大數據,做完了只能自己受用,成本攤下來很不合算,還不如投資AI企業,實現專業化分工;其次,品牌方還有一些技術壁壘解決不了,攻克下來只會對成本端造成更大的壓力,得不償失。
Q3 馬上贏在賦能零售商和品牌商的過程中遇到的最大挑戰是什麼?
猴哥:最大的挑戰來自於行業裏不透明的競爭——現在做AI的企業太多了,很多企業會虛報準確率,噪音特別大。
AI在每個垂直行業的落地需要很多行業知識,其次才是疊加AI演算法。但很多傳統企業對AI的期待特別高,導致市場上各種聲音魚龍混雜,每個企業都在講述「AI萬能」的故事。馬上贏不會激進地過度承諾,但這種冷靜和狂熱之間的衝突會帶來很多麻煩——當別的AI企業過度承諾其自動補貨的準確率高達95%的時候,馬上贏如果表示我們的準確率位於70%—85%的區間,傳統企業就會輕視我們的實力。現在,垂直行業裏缺乏行業組織或者專業機構來做客觀、公允的第三方普查。比如在圖像識別、自然語義處理領域,都有比較公認的訓練賽,大家用演算法的跑分說話,相對而言就比較客觀。落到垂直領域裡,每個企業自己報數據,很多時候就會有水分。
馬上贏曾經考慮把收集的數據脫敏之後貢獻出來,讓大家有一個公平的舞臺競技,但是很難運行起來。僅僅共享數據不足以激勵演算法團隊,需要行業組織定期舉辦競賽、活動等,或者像Netflix舉辦推薦演算法比賽,通過資本來激勵大家參與,僅僅靠社區運轉不起來。
Q4 你認為未來AI企業的發展趨勢是什麼?
猴哥:有能力的巨頭要持續加強行業的基礎設施,讓開發AI的人能有更好的工具,讓雇不起博士生的企業也能應用AI,實現技術普惠。同時,垂直領域內的AI創新需要符合企業自身的需求,AI企業要在巨頭的基礎設施之上,基於更好的訓練集和更專業的垂直行業知識,不斷突破行業壁壘,優化垂直領域的AI創新。我相信這是我們的生存之道——「科技巨頭靠算力,我們靠設計」。
同時,大陸的零售行業在洗牌,有很多更具備數據化思維的新品牌在躍躍欲試。以前是渠道經濟,在社區裏搶到點位就能有流量,未來是有技術、數據和管理能力的品牌才能從老品牌手中搶到點位。此外,隨著許多快消品牌逐步上市,出現資本外溢,更多的人會開始創業,疊加當前快消巨頭的二代交棒窗口,零售領域將有新一波浪潮湧動。我相信,未來的零售行業會更加擁抱數據,擁抱AI。
■要點回顧
1. 不只是技術層AI要有標準,應用層AI也需要標準。垂直領域應用AI需要由行業組織或龍頭企業牽頭制定公認的行業標準,從而促進AI企業公平有序發展,這也將反哺傳統企業,促使傳統企業的AI應用提質增效。
2. 「科技巨頭靠算力,AI企業靠設計」,結合巨頭提供的行業通用基礎設施和「改造者」特有的垂直領域數據集和算法,各取其長,方能最大化傳統企業應用AI的效率。
知識圖譜工具 在 Beginneros Facebook 的最佳貼文
【#知識文章︱科技史系列│淺談DNA測序的原理(一)│之鏈終止法/Sanger法】
// 由2003年人類基因圖譜計劃完成,直到最近人類基因組測序的費用跌破$1000美金,並開始應用響醫療領域,DNA測序技術的進步已經遠遠超越很多人的預期。這裡,會簡介一下到底DNA是甚麼,和DNA測序及相關技術的原理。//
_
► #完整文章:
https://beginneros.com/articleDetail.php?article_id=433
_
► #作者投稿:
Zannanza's History Channel
------------------------
<有關知識文章>
為達致「知識共享」的理念,Beginneros網上學習平台設有文章專欄,予作者分享自己的知識。Beginneros亦將會每逢一、四在平台分享精選文章。
有興趣的作者歡迎投稿,一起透過知識連繫不同的人。
------------------------
◆ 每日分享冷知識
◆ 網站:https://www.beginneros.com/
◆ Facebook:Beginneros
------------------------⠀
#冷知識 #香港 #hongkong #DNA #談DNA測序 #科技 #之鏈終止法 #Sanger法
知識圖譜工具 在 李開復 Kai-Fu Lee Facebook 的最讚貼文
人工智慧可以從事創作嗎?
「我們說它可以。它的工作是創作,而不是對人類的模仿。它需要將我們帶到一個新的世界,這個世界有各種各樣的形態和生命形式。它想知道人類是否已經適應了它創造的新環境。他想知道人類是否已經找到了新的家園。」
——以上回答由創新工場 AI 文本生成模型自動生成
這段看似頗有思辨意味的對話,不來自哲學家,也不來自我或任何科技大拿,而是由創新工場人工智慧工程院研發的AI文本生成模型自動生成。
▎11位科幻作家參與,首次AI人機共創寫作實驗啟動
10月27日,傳茂文化和創新工場做了一件有趣的事,啟動了首次華語科幻AI人機共創寫作實驗項目「共生紀」。在2020年最後的兩個月時間裡,11位「人類」科幻作家與AI演算法聯手合作,將圍繞環保、性別、文化多樣性、人機關係等主題,協同創作多篇科幻文學故事。碳基的人類智慧與矽基的機器智慧一同解讀人類社會,探索人類未來的不同可能,從科技和人文的雙重維度進行共生時代的文化實錄,開啟一場人機共創寫作的奇妙探險!
「共生紀」實驗邀請了11位中國大陸的新銳科幻作家參與,他們分別是:我在谷歌的老同事陳楸帆(世界華人科幻協會主席、18次星雲獎得主)、小白(知名作家、魯迅文學獎得主)、賈立元(星雲獎得主、清華大學中文系副教授)、分形柳丁(冷湖獎、晨星獎得主)、淩晨(銀河獎得主)、顧適(星雲獎得主)、王元(晉康獎得主)、吳霜(星雲獎得主)、張凡(釣魚城科幻創始人、科幻博士)、王迎(新生代科幻作者)、蘇潔涵(新生代科幻譯者)。
「共生紀」所使用的AI寫作程式源自于創新工場 DeeCamp 2020人工智慧訓練營中的大學生創新項目「AI科幻世界」。這個團隊的大學生來自中科院計算技術研究所、中國科學院大學、華中科技大學、喬治梅森大學等國內外著名大學。他們在一個多月的DeeCamp訓練營期間,自主設計研發了AI寫作程式的主要邏輯,開發出了一款有趣的的智慧寫作工具,並獲得了本屆DeeCamp的創新賽道冠軍。
經陳楸帆等科幻作家嘗試,「AI科幻世界」已經可以輸出語法上非常通順,同時擁有一定文學表現能力的段落。這種人機共同寫作的過程對人類思維有相當的啟發意義,AI程式的輸出也常有驚人之筆,例如具有科幻風格的敘事段落:
「我覺得自己是一隻被人從墳墓裡面拉出來的兔子。一個聲音叫道:你在這裡幹什麼?我抬起頭,看見一個巨大的,渾身透明的身影,正站在我的頭頂上方。我知道這只是幻覺。因為在這個空間裡,不可能有另外一個人。」(由創新工場 AI 文本生成模型自動生成)
或者具有浪漫意味的抒情段落:
「她低著頭,臉上露出幸福的微笑。在夢中,我們互相凝望,雙方都在笑,隨後,她的雙唇輕輕吻我的嘴唇。那一天,我做了一個很長很長的夢,夢裡我和她一起在藍天下散步。風把我們的頭髮吹得很長,我們走過了一座又一座高山,那風景真是美不勝收。」 (由創新工場 AI 文本生成模型自動生成)
創新工場AI工程院執行院長王詠剛認為,AI演算法為我們提供了一面前所未有的,關乎科學邏輯、語言本質、文本規律的鏡子。人機共創這種全新的體驗在前沿科技與文藝創作兩個維度都具有重要的探索和實驗價值。科技思維與文藝思維的碰撞,提供了一種探尋人類智慧與機器智慧之間的邊界與交集,展望人類未來各種可能性的前沿視角。
基於上述考慮,傳茂文化和創新工場決定聯手舉辦「共生紀」專題策劃。知名科幻作家陳楸帆認為,人機共創實驗使用更多的數據、更智慧的演算法,但目標並不是寫出更好的作品,而是打破邊界,展開對話,實現人與機器的動態交互,讓思想碰撞與流動。
陳楸帆表示:「AI人機共創不僅僅是文字型創作,接下來會是圖像、音樂等更多可感可觸的藝術形式,帶來全感官、沉浸式、多維度的創作體驗。我們想通過一個實驗,一場遊戲,一次觀念上的冒險,以想像力為信仰,以對話為方法,打破所有的邊界與原有的知識分類,持續追尋生命、宇宙、美的意義。」
「共生紀」自即日啟動後,將持續至12月份,在「共生紀」官網、知乎、微博等平台同步進行。知乎將搭建「共生紀」專題頁面,舉辦「人機共創,誰更科幻」的盲猜活動;微博將每週發佈AI人機協作作品,邀請網友競猜作者姓名;在最後舉行的渺小藍點「微博之夜」上,科普大V將受邀與AI共創科幻故事。
▎人機共創揭示預訓練模型的商業價值
據王詠剛介紹,AI人機共創寫作實驗不僅揭示了前沿AI科技的科研價值、人文價值,AI寫作程式內部使用的核心模型還具有極為重要的產品和商業價值。
該模型是由創新工場AI工程院的科研團隊自主研發的,基於預訓練技術的超大規模中文生成模型,模型規模與OpenAI的GPT-2 Large相當。香港中文大學(深圳)數據科學學院副教授,創新工場大灣區研究院首席科學家宋彥博士主持了這項科研專案。
這是創新工場AI工程院自2016年成立後,在探索前沿技術商業化過程中取得的階段性突破之一。四年來,創新工場AI工程院以「科研+工程實驗室」模式,探索並研發以機器學習為核心的前沿人工智慧技術,並同各行業領域相結合,為產業場景提供一流的產品和解決方案,實現人工智慧科研成果向產業實踐的高效轉化。
在王詠剛看來,超大規模預訓練模型具有類似作業系統或開發平臺的特點,開發者將在未來創造出更多的可能性,衍生出許多今天還難以預見的產品類型與商業模式。
例如,超大規模預訓練模型技術有可能成為下一代問答式搜尋引擎及廣告推薦系統的核心技術,大幅改進現今問答式搜索的系統性能,回答相當一部分原本通過超大規模知識圖譜才能回答的知識性問題,甚至可以部分替代傳統的基於倒排索引的搜尋引擎,針對使用者查詢給出最匹配的資訊、網頁或廣告內容。
超大規模預訓練模型技術也可以在金融、法律、財務、人力資源、零售、製造等專業行業領域內,提供遠超以往系統性能的智慧信息解析和提取、智慧數據整合、自動機器翻譯、智慧文本檢查和審核、輔助決策、風險預警、自動客服機器人等功能模組,將企業中重要業務流程的效率和水準提升到一個新的水準。
在醫療和健康領域,超大規模預訓練模型技術也將發揮巨大效用。無論是醫療數據的格式化、病歷的解讀與分析自動化、醫療領域科研文獻的檢索與利用,還是直接面向使用者的自動問診系統,抑或是自動的醫療報告生成等,都有可能利用類似技術實現產品和商業落地的新突破。
在教育領域中,超大規模預訓練模型技術可扮演多種關鍵角色。比如自動講解知識體系、回答學生問題的虛擬老師,自動陪同學生在課後練習、提高的虛擬陪練,自動針對每個學生的能力特點制定個性化課程內容的個性化課程平台等等。
而在機器人和自動駕駛領域中,超大規模預訓練模型技術可大幅改進人機交互介面,提高人類指揮、控制自動化系統的效率,改進機器人或自動駕駛系統的語音交互能力,還有希望大幅提高機器人和自動駕駛系統對周圍環境的感知能力。
共生紀微官網 https://deecamp.com/gongshengji
One more thing,目前共生紀的AI程序只針對參與的專業作家封閉測試,在接下來的一個半月,敬請期待精彩的人機共創作品陸續出爐!