立即Follow @businessfocus.presslogic 【字跡被仿】未來更難辨別真偽簽名?企業研發模仿人類筆跡機器人⠀
·⠀
每天都需要動筆簽名或寫字的你是否已厭倦了呢?根據《新浪財經》的報導,國外一家名為筆跡公司(The Handwriting Company)和美國著名大學布朗大學...
立即Follow @businessfocus.presslogic 【字跡被仿】未來更難辨別真偽簽名?企業研發模仿人類筆跡機器人⠀
·⠀
每天都需要動筆簽名或寫字的你是否已厭倦了呢?根據《新浪財經》的報導,國外一家名為筆跡公司(The Handwriting Company)和美國著名大學布朗大學(Brown University)共同研發出一款能夠模仿他人筆跡的AI機器人。據悉這該機器人不但能夠複製相似度極高的字跡,而且能夠寫出不同語言的字。該公司表示,該機器人能夠為使用者製作手寫文本,從而減少工作量。⠀
.⠀
研發過程中,負責人將系統分為兩種模型,一個負責文字筆劃,一個則負責將把寫字工具移動到另一個需要寫字的地方。最開始的時候,研究人員將日語字符輸入「海明威」寫字機器人,隨後機器人就能透過算法與預測能力來複製各國語言的文字。據悉「海明威」能夠揣摩他人筆跡並從中模仿他人的字跡,而且據說模仿效果非常逼真,基本上需要透過專家鑑定才能辨別本人和機器人的字跡。「海明威」不但能寫出跟本人字跡相似度極高的字跡,而且寫字速度非常快,幾乎只要2分鐘就能夠寫完人類需要15分鐘才能寫好的文字數量。⠀
.⠀
在這之前,寫字機器人曾一度成為眾人議論的焦點。今年初,曾有一位初中生因為用從網路上購買的寫字機器人來抄作業而引起各家媒體報導。隨後這款能夠模擬人類筆跡的寫字機器人就在網路上引起討論,更有中國地區的商家表示寫字機器人的銷量一度暴增,甚至處於缺貨狀態。據悉被上述初中生使用寫字機器人只要連結電腦就能直接操作,非常方便。該事件的發生也引發民眾對於機器人普及化後是否會被用於不良用途的相關討論。⠀
.⠀
Text by BusinessFocus Editorial⠀
.⠀
#BF今日科技⠀
.⠀
#money #investment #business #finance #life #startup #startups #management #company #expert #follow4follow#like4like #igers #instafollow #followforfollowback
相似度算法 在 阿尼尛 Anima Facebook 的精選貼文
#你知道尛 │ 你知道小星星跟ABC在法律上是實質相同的歌嘛?
----------------------------
金曲獎最佳年度歌曲的《刻在我心底的名字》深陷抄襲疑雲,近日同樣因為歌曲相似度而在網路上引發熱議的,還有發行首張單曲就席捲音樂界的18歲歌手Olivia Rodrigo。
Olivia Rodrigo今年5月發行的新歌Good 4 U被國外網友點名抄襲了搖滾樂團Paramore在2007年推出的Misery Business。如果你還沒聽過這首歌,以下是附timecode的YT連結:
➤ Olivia Rodrigo - Good 4 U (2021):
https://youtu.be/gNi_6U5Pm_o?t=44
➤ Paramore- Misery Business (2007):
https://youtu.be/aCyGvGEtOwc?t=37
仔細聽可以發現兩首歌的和弦非常相似。事實上,Paramore的主唱Hayley Williams與前吉他手Josh Farro事後還被Olivia Rodrigo列成該首歌的共同作曲人。這種擷選原曲旋律後重新填詞的作法,稱為「插值」(Interpolation)。
插值在流行音樂裡是相當常見的做法,Ariana Grande、Bon Jovi、David Bowie、Ed Sheeran、Flo Rida、Kanye West、Nicki Minaj、Taylor Swift與披頭四等都曾在歌曲中插入其他藝術家的原曲旋律。
擅長樂理分析的YouTuber亞當‧尼利(Adam Neely)從和弦(chords)、旋律曲線(Melodic Contour)、各小節的升降音等面向下去比較,發現一個有趣的事實:Good 4 U、Misery Business、Boulevard Of Broken Dreams與We Are Never Ever Getting Back Together都有相同的和弦編曲(chord progression)、主調(target tone)、切分音(syncopation)與結構。
有興趣的人可以跳轉到下面的timecode比較這四首歌的差異(泰勒絲的We Are Never Ever Getting Back Together真的嚇歪我,跟Paramore的Misery Business有夠像):
➤ Green Day - Boulevard Of Broken Dreams (2005):
https://youtu.be/Soa3gO7tL-c?t=78
➤ Taylor Swift - We Are Never Ever Getting Back Together (2010):
https://youtu.be/WA4iX5D9Z64?t=48
根據統計,1990年至2016年間告示牌排行榜前100名的歌曲中,有300多首歌可被歸入常見的四大和弦編曲裡、佔總數的12.3%;可見受歡迎的流行歌存在某種被偏好的編曲旋律,也就是所謂的「金曲公式」。
近年在著作權法的規範下,時常發生兩首聽起來截然不同的歌被判定為「實質相同」的狀況,像是披頭四吉他手George Harrison的歌曲My Sweet Lord被控侵權The Chiffons的歌曲He so Fine,或是Katy Perry的Dark Horse被控抄襲Marcus Gray的福音歌Joyful Noise。
想自證「自己沒有在無意間聽過這首歌」在法庭上極為困難,被告極有可能花費大把金錢卻仍落得敗訴的下場。
為了避免剛起步音樂人的創意被版權規範扼殺在搖籃裡,擁有音樂學位、會寫程式的律師迪米安(Damien Riehl)的諾亞(Noah Rubin)推出All The Music計畫:用演算法將一個八度內所有的音階排列組合譜寫成包含12個音符的旋律,並將旋律無償提供給大眾使用。
迪米安表示,這些數據在被存入外接硬碟後立即享有著作權的保護,如果AI譜寫出的旋律可受著作權保護,他們將以公共領域貢獻(CC0)形式授權給大家;若AI的創作不具著作權,那麼任何人都可使用這些旋律,避免人們再因為旋律的實質相同而被告上法院。
#迪米安跟諾亞真的帥慘了 #音樂法律程式三棲還心懷天下蒼生 #只能respect #尛編
Source: Adam Neely, All The Music
#刻在 #刻在我心底的名字 #OliviaRodrigo #Good4U #Paramore #MiseryBusiness #AdamNeely #AllTheMusic
相似度算法 在 Facebook 的最佳解答
四兩撥千斤! 創新工場首席科學家AI大牛周明博士率瀾舟團隊刷新CLUE新紀錄,輕量化模型孟子一鳴驚人!
本週,中文語言理解權威評測基準CLUE榜單,被「低調」刷新。
不同的是,不是大公司、不是超大模型……
一個新面孔,一個輕量化模型,首戰即登頂,四兩撥千斤。
CLUE榜單近年來由巨頭——騰訊、搜狗、華為、阿里達摩院輪番霸榜的格局,被首次打破。
瀾舟科技-創新工場推出的孟子模型,以十億參數完成了此前百億、千億參數模型刷新的紀錄。
這也是瀾舟科技首次對外曝光,背後團隊負責人,正是創新工場首席科學家、全球AI大牛周明博士。以下文章解釋了這個模型的原理,文章來自《量子位》微信公眾號,經授權轉載。
▎輕量化模型孟子?
孟子,基於瀾舟團隊自研技術研發的大規模預訓練語言模型。
包括創新工場、上海交通大學、北京理工大學等單位參與聯合研發。
可處理多語言、多模態數據,同時支持多種文本理解和文本生成任務,能快速滿足不同領域、不同應用場景的需求。
孟子模型基於Transformer架構,僅包含十億參數量,基於數百G級別涵蓋互聯網網頁、社區、新聞、電子商務、金融等領域的高質量語料訓練。
但誰也沒想到,小模型卻有大智慧,一經登場,打破格局。
CLUE,中文語言理解領域最具權威性的測評基準,涵蓋文本相似度、分類、自然語言推理、閱讀理解等共10項語義分析和理解類子任務。
該榜單競爭激烈,幾乎是業內所有自然語言理解玩家必爭之地。
騰訊、搜狗、華為、阿里達摩院等更是輪番霸榜刷新紀錄。
而且隨著大參數模型愈演愈烈,CLUE還漸有巨頭壟斷之勢。
因為百億、千億甚至萬億參數的大模型,已然不再是創業或其他玩家可與之爭鋒。
萬萬沒想到,瀾舟科技-創新工場團隊出手,四兩撥千斤。
因為孟子,走的是基於輕量級、高效訓練的研究路線,致力於構建十億級別的小模型,充分發揮已有參數下的模型潛力,有利於快速、低成本地落地現實業務場景。
孟子預訓練模型性能比肩甚至超越千億大模型,在包含文本分類、閱讀理解等各類任務上表現出色。
相對已有的中文語言模型,孟子模型實現了多項突破性進展:
1) 堅持「小而精」的輕量化訓練策略。實現在同等模型規模下,遠超公開模型的性能。作為精巧的小模型,對標「巨無霸」,小模型性能超越千億規模模型。
2)使用知識圖譜增強模型,讓 AI 真正獲得知識。孟子模型具備頂尖的語言理解能力,在權威CLUE中文理解評測的總排行榜,以及分類排行榜和閱讀理解排行榜均位列第一,刷新三項榜單世界紀錄。總排行榜分數突破84分,逼近人類基準分數(85.61)。
3)靈活的領域和場景適應能力,方便快速定制和應用。基於T5-style的端到端生成的訓練範式,同步適配BERT-style的判定式架構,既能理解也能生成。便於適配行業應用,覆蓋廣泛業務場景。
當然,隨著孟子一鳴驚人,也必然能讓輕量化模型研究來到聚光燈下。
▎原理方法和應用?
在輕量化模型算法研究方面,基於自研的基於語言學知識、知識圖譜和領域數據增強等技術,從模型架構(包括基礎層Embedding表示和交互層Attention機制)到預訓練策略進行了全方位改進。
具體有四方面:
1) 模型結構方面,將語義角色、詞性標註等語言學特徵融合到Embedding表示中,基於句法約束引入註意力機制中,從而提升模型對語言學知識的建模能力。
2) 訓練策略上,引入基於實體知識和Discourse的Mask機制,強化模型對語言成分和語篇關係的表徵。
3) 為進一步提高訓練效率,使用了大模型蒸餾和初始化小模型策略。
4) 為更好地將孟子模型適應垂直領域如金融、營銷,使用了領域數據繼續訓練並構造相應的提示模版(Prompt),取得了明顯的性能提升。
基於以上算法策略,實現從語料中高效學習涵蓋詞級、句子級和語篇級知識,大幅提升語言模型提煉語言結構和語義信息能力,以及良好的領域遷移能力,適應廣泛的產品應用場景。
另外,在Finetune的進展方面,如何將預訓練模型用於各項任務?
瀾舟團隊也有總結,從數據增強、知識蒸餾、遷移訓練、訓練優化等方面展開了一些探索,進一步提升語言模型的性能:
1) 數據增強:使用領域相關數據;
2) 知識蒸餾:基於Teacher-Student自蒸餾提升訓練效率;
3) 遷移訓練:結合課程學習的思想,由易到難訓練下游模型;
4) 訓練優化:使用多種訓練目標,多角度提升模型能力;
而且孟子還已經展開了垂直化領域應用。
基於領域適應技術,孟子模型已深度垂直化賦能相應行業。典型的例子為適用於金融領域的孟子模型,領域適應策略主要包含兩大方面:
1) 通過大規模的泛金融領域語料,將通用孟子模型遷移到金融領域。金融版孟子模型已經應用於多個金融行業的合作企業,在金融知識圖譜搭建、脫水研報、公告抽取等多個任務上獲得了出色的表現。
2) 通過大規模的營銷領域語料,將孟子模型遷移到數字營銷領域,完成了營銷文案生成、新聞摘要等多項任務,將用於行業頭部的數字營銷公司和多個世界五百強企業的合作之中。
瀾舟方面還透露,孟子模型已在多個領域成功落地實踐,衍生出多項行業領先的產品,涵蓋文本生成、行業搜索、機器翻譯等諸多領域。
並且毫無疑問的是,因為輕量級模型具有的模型參數較少、快速推斷的特點,更易於線上部署和推廣到移動設備中,自然不會局限於現有應用和場景,接下來還會有更廣泛的研究和應用場景中。
▎瀾舟團隊?
最後,也簡單介紹本次一鳴驚人的新面孔瀾舟科技。
瀾舟科技是創新工場孵化的一家認知智能公司。公司創始人——周明博士。
AI領域內,周明已不用過多介紹,他是公認的世界級AI科學家,自然語言處理領域的代表性人物。
周明博士在2020年加盟創新工場,擔任創新工場首席科學家。
而瀾舟科技則針對商業場景的數字化轉型,基於大數據、知識圖譜和行業模型,提供新一代的信息檢索、知識推理和商業洞見技術和相關產品。
據稱目前已與國內外幾十所著名高校和十餘個相關領域的頭部企業建立了穩定的合作關係。
值得注意的是,瀾舟科技除了大牛坐鎮,其實也是行業趨勢的體現。
引用創新工場董事長兼CEO李開復最新分享來說:
AI的發展可以按照兩個時間點劃分。
第一個時間點是2015年,以CNN為核心的計算機視覺技術讓機器超越了人類,帶來了人臉識別、智能質檢、無人零售、智慧城市、無人駕駛等商機。
而第二個時間點出現在2019年,以大模型為代表的自然語言方向取得突破性進展,讓NLP從數據、信息走向知識和洞見成為可能,將會在翻譯、語音識別、法律、金融、新聞、廣告、醫療、娛樂等大賽道帶來機遇。
「如果說CNN造就了今天計算機視覺領域的突破和眾多應用,預訓練大模型+微調也將帶來自然語言的百花齊放的發展,用數據智能驅動各類業務的升級。瀾舟科技在周明老師的帶領下取得了今天的成果,在新機遇面前躬身入局,一起發掘NLP領域的黃金發展期」,李開復說到。
相似度算法 在 iThome Facebook 的最讚貼文
臺北榮總聯手飛利浦,以數十年癌症登記資料庫的大腸癌資料,訓練一套AI系統,透過歷史資料相似度分析來提供預後預測和治療歷程建議;AI偏見人人喊打?孫民:在特定行銷領域反而有其好處;AutoML還不夠用,北京清華開源圖學(Graph)自動機器學習工具AutoGL;百度開源生醫專用運算平臺PaddleHelix,包括RNA二級結構預測、大規模分子預訓練、藥物-靶點親和力預測和成藥性預測等演算法模型。