[爆卦]生成式ai影片是什麼?優點缺點精華區懶人包

雖然這篇生成式ai影片鄉民發文沒有被收入到精華區:在生成式ai影片這個話題中,我們另外找到其它相關的精選爆讚文章

在 生成式ai影片產品中有4篇Facebook貼文,粉絲數超過5萬的網紅彭菊仙之教養幸福又好玩,也在其Facebook貼文中提到, 【快來抽書:重磅科幻小說】《AI 2041:預見10個未來新世界》 (送出2本) #李開復說看完這本精彩小說你就懂AI了 #歡迎青少年與所有大人提前進入美麗AI新世界 #李開復架構10幅技術藍圖 #科幻小說家陳楸帆依藍圖築構10個AI新世界 💖【參加辦法】(四步驟:按讚、留言、標兩個朋友,公開分...

 同時也有1部Youtube影片,追蹤數超過14萬的網紅賢賢的奇異世界,也在其Youtube影片中提到,#AI #AI的叛變 #人工智能 各位大家好,歡迎來到HenHenTV的奇異世界,我是Tommy. 大家知道什麼是AI吧~AI就是人工智能,但人類真的可以製作出會自我思考的機器人嗎?它們是否可以取代人類呢? 如果你是第一次看我的影片,我的影片主要是做一些稀奇古怪的題材,例如好像是外星人,超文明古蹟...

  • 生成式ai影片 在 彭菊仙之教養幸福又好玩 Facebook 的精選貼文

    2021-07-18 10:36:15
    有 73 人按讚

    【快來抽書:重磅科幻小說】《AI 2041:預見10個未來新世界》
    (送出2本)

    #李開復說看完這本精彩小說你就懂AI了
    #歡迎青少年與所有大人提前進入美麗AI新世界
    #李開復架構10幅技術藍圖
    #科幻小說家陳楸帆依藍圖築構10個AI新世界

    💖【參加辦法】(四步驟:按讚、留言、標兩個朋友,公開分享)

    1. 即刻起至7/24(六)晚上12點止,在本文按讚
    2. 在本文底下留言【AI 2041:預見10個未來新世界】並【標註兩個朋友】
    3. 在自己臉書公開分享本文

    4. 7/26(一)進行電腦亂數抽獎(共抽出2本,將以私訊通知)

    💖這不是業配文喔,菊仙純粹分享
    💖一人僅限參加一次(貼文兩次以上也只算一次喔)

    ─────科學 + 科幻─────

    ➤李開復架構10幅「技術藍圖」,科幻小說家陳楸帆依藍圖築構10個「AI新世界」
    ➤李開復40年的AI專業經驗 + 科幻小說家陳楸帆的無邊想像
    ➤「虛構的敘事」與「非虛構的科技評論」完美結合
    ➤展現20年後被AI 技術深刻改變的未來世界。

    AI時代已經開啟。在我們面前,機遇與挑戰並存。
    如AI與人性特質如何共存等諸多課題,都需要深入探索和思考。──李開復

    想要創造什麼樣的未來,就從想像那樣的未來開始。──陳楸帆

      .AI能否幫助人類從根源上預防疫情?
      .如何應對未來的職場挑戰?
      .在AI主導的世界中如何確保文化多樣性?
      .如何教導下一代適應人類與AI共存的新社會?
      .面對AI帶來的社會問題所隱含的人性拉鋸戰,我們如何抉擇?

    AI能創造前所未有的財富與價值,能徹底改變醫學和教育,能提升人類的工作、娛樂和交流的品質,能把人類從日常工作中解放出來。

    不過,AI也會帶來無數挑戰和風險:

    •演算法偏見
    •安全隱患
    •深度偽造
    •隱私資料的侵犯
    •自主武器的使用
    •取代人類員工。

    不過,以上情況並非AI主導造成的,而是惡意或草率使用AI技術的幕後黑手。

    全球AI領軍人物李開復最關切的是,AI正飛速發展,人類的未來將通往何方?
      
    歡迎來到2041!

    全球重磅推薦

      ✓劉慈欣│2015年雨果獎得主、《三體》作者
      ✓雷.達里歐(Ray Dalio)│橋水基金創辦人
      ✓薩蒂亞.納德拉(Satya Nadella)│微軟董事長
      ✓楊立昆(Yann LeCun)│圖靈獎得主

    ★本書有著開創性的結構,用前所未有的跨越文類的多視角,展望人工智慧構造的未來,讓我們從理性上把握未來發展趨勢的同時,也從感性上觸摸未來的質感和溫度。生動逼真的科幻想像與嚴謹深入的技術論述完美地結合,讓本書無論是從科幻還是從技術現實的角度,都具有無與倫比的魅力。──劉慈欣,2015年雨果獎得主、《三體》作者 

    ★對未來的解析精闢又精采。──雷.達里歐(Ray Dalio),橋水基金創辦人、《紐約時報》第一名暢銷書《原則》作者

    ★陳楸帆的創作實力,加上李開復的科技功底,建構出令人好奇又恐懼的AI未來世界。閱讀這本絕無冷場的好書,就能明白某些科技會在何時,又會如何發展成熟,而全體人類又會面臨什麼樣的影響。──薩蒂亞.納德拉(Satya Nadella),微軟董事長

    ★唯有有膽有識之人,才敢預測AI的未來。這是一位科技界的先驅泰斗,與一位洞悉未來的科幻作家,攜手打造的開示之書,對於AI科技會如何影響我們的生活,提出大膽又殷切的見解。──楊立昆(Yann LeCun),圖靈獎得主,臉書首席AI科學家

    ★我們能不能適應我們一心創造的奇異新世界?我們知道無從想像的改變即將到來,卻不知這些改變對人類有何影響。李開復跟陳楸帆的《AI 2041》,對於我們即將面對的未來有最詳盡的描寫,最深情的叮嚀。──班奈特.米勒(Bennett Miller),「魔球」與「暗黑冠軍路」導演,曾獲奧斯卡獎提名

    ★我們正處於AI發展史的關鍵時刻。我所讀過的書當中,唯有這本創意四射的佳作,才真正一語道破AI的精髓。與其思考該不該信任AI,還不如將AI當成一種工具,一種由我們人類塑造的工具。李開復在《AI 2041》的精闢分析,凸顯出這項人類必須積極承擔的責任。陳楸帆筆下的精采故事,昭示了AI可將曾經無解的問題,化為充滿新機的未來。──亞利安娜.哈芬登(Arianna Huffington),Thrive Global 創辦人兼執行長

    ★《AI 2041》是科學與科幻的完美融合,揭示了AI將如何全面滲透我們的生活,而我們想創造造福全人類的科技未來,又會面臨什麼樣的挑戰。──馬克.貝尼奧夫(Marc Benioff),Salesforce董事長兼執行長

    ★將AI應用於商業經營,通常必須先研究這項科技,再思考如何應用。《AI 2041》卻帶領讀者走上相反的道路。兩位作者李開復跟陳楸帆,透過精采絕倫的故事,引領我們走入逼真的未來世界。再以淺顯易懂的說明,闡述AI科技的原理,造就一本讓人欲罷不能又大開眼界的好書,想了解如何應用AI,絕不可錯過此書。──馬克.庫班(Mark Cuban)
    .

    …………..【內容快速勾勒】…………

    第一章 一葉知命
    在印度孟買,一個當地家庭參與了一項由深度學習賦能的智慧保險計畫。為了改善這家人的生活,AI保險程式透過一系列生活應用與這家的每位成員相連,這些應用與保險演算法進行動態互動。然而,正值青春期的女兒卻發現,這套AI保險程式似乎總是在「巧妙」地阻撓她追求愛情。

    【開復解讀】
    一、什麼是深度學習
    二、深度學習:能力驚人但也力有未逮
    三、深度學習在網際網路和金融行業的應用
    四、深度學習帶來的問題

    第二章 假面神祇

    一名懷揣電影夢想的奈及利亞影音製作者,被神祕公司招募來製作一段真假難辨的Deepfake(深度偽造)影片。如果他成功地做到瞞天過海,將引發災難性的後果,從而改變整個國家未來的命運……

    【開復解讀】
    一、什麼是電腦視覺技術
    二、電腦視覺技術的應用
    三、電腦視覺的基礎─卷積神經網路(CNN)
    四、Deepfake
    五、生成式對抗網路(GAN)
    六、生物特徵識別
    七、AI安全

    第三章 雙雀

    AI教師化身為韓國雙胞胎孤兒所喜愛的卡通化虛擬夥伴,分別幫助他們挖掘和發揮潛能。多虧有了AI的重要分支「自然語言處理技術」,這兩個AI夥伴才能夠用人類的語言流利地和孤兒交談,建立情感連結和信任,幫助兄弟倆在失散多年之後重新找回彼此。

    【開復解讀】
    一、自然語言處理(NLP)
    二、有監督的NLP
    三、自監督的NLP
    四、NLP應用平台
    五、NLP能通過圖靈測試或者成為通用人工智慧嗎?
    六、教育領域的AI

    第四章 無接觸之戀

    在疫苗問世後,新冠病毒毒株定期變異,繼續肆虐人間。二十年後,人類不得不學會與病毒共存,家家戶戶都配有機器人管家,以減少人與人接觸的風險。在這個故事裡,身在上海的女主角患上了一種把自己與世隔絕的恐懼症。當愛神來叩門時,她內心一方面渴望擁抱愛情,另一方面卻極度懼怕和戀人親密接觸。誰能幫助她邁出這關鍵性的一步?

    【開復解讀】
    一、數位醫療與人工智慧的融合
    二、傳統藥物及疫苗研發
    三、AI在蛋白質折疊、藥物篩選及研發方面的潛力
    四、AI與精準醫療及診斷:讓人類活得更加健康長壽
    五、機器人技術
    六、機器人技術的工業應用
    七、機器人技術的商業場景和消費級市場
    八、AI時代的數位化工作

    第五章 偶像之死

    故事描述了未來的娛樂業。到那時,遊戲都將是全感官立體沉浸式的,虛擬和現實之間的界限將變得虛實難辨。本故事發生在日本東京,主角利用AI和VR技術,讓她所愛慕的偶像復活過來,引領她去調查偶像之死背後的真正原因。

    【開復解讀】
    一、什麼是XR(AR⁄VR⁄MR)
    二、XR技術:全方位覆蓋人類的六感
    三、XR技術:超感官體驗
    四、XR技術的兩大挑戰:裸眼顯示和腦機介面
    五、XR技術普及背後的倫理道德和社會問題

    第六章 神聖車手

    二十年後,自動駕駛技術正處於從人類司機切換到全AI司機的過渡時期。在這個有著動作大片節奏感的故事中,斯里蘭卡一名電競少年被招募進了一個神祕計畫,他將要面對的並不僅僅是遊戲中的對手……

    【開復解讀】
    一、自動駕駛
    二、真正的自動駕駛什麼時候才會出現
    三、L5自動駕駛車輛將帶來的影響
    四、阻礙L5自動駕駛的非技術性難題

    第七章 人類剎車計畫

    策劃〈人類剎車計畫〉的惡魔是一名歐洲電腦科學家。他在經歷了一場與氣候變化有關的家庭悲劇後,精神失常,開始利用量子計算、自動武器等突破性技術作惡,對人類進行史無前例的瘋狂報復。駭客與反恐特警聯手力挽狂瀾,人類命運將何去何從?

    【開復解讀】
    一、量子計算
    二、量子計算在安全領域的應用
    三、什麼是自主武器?
    四、自主武器的利與弊
    五、自主武器會成為人類生存的最大威脅嗎?
    六、如何解決自主武器帶來的危機?

    第八章 職業救星

    隨著AI向愈來愈多的行業穩步進軍,愈來愈多職位逐漸被AI技術取代,那麼人類接下來能從事的工作是什麼?一場發生在舊金山的建築業大震盪,帶領我們走入一個新的行業──再就業服務。如何幫助結構性失業人群找回屬於人類的價值與尊嚴感,也許同樣需要AI的幫助。

    【開復解讀】
    一、AI將如何取代人類員工?
    二、AI取代人類員工背後的潛在危機
    三、UBI會是一劑良方嗎?
    四、從事哪些工作的人不容易被AI取代
    五、如何化解AI時代的人類工作危機?
    六、迎接AI新經濟以及制定全新的社會契約

    第九章 幸福島

    一位中東的開明君主想試驗將AI做為給人類帶來終極幸福感的靈丹妙藥。然而,幸福是什麼?幸福如何衡量?這位君主邀請了各界名人聚集在一座私密的島嶼上,讓這些名人共享他們的個人資料,並成為探索這個奇妙命題的小白鼠。然而,試驗卻出人意料地走向了失控……

    【開復解讀】
    一、AI時代的幸福準則
    二、如何利用AI衡量和提升幸福感
    三、AI數據:去中心化 vs. 中心化
    四、誰值得我們信賴並有資格儲存我們所有的資料?

    第十章 豐饒之夢

    在布里斯班一座由AI管理的養老社區中,一位原住民女孩如何幫助罹患阿茲海默症的海洋生物學家解開身世之謎?故事中勾勒了在澳大利亞的未來社會的兩種貨幣:一種是錢,其重要性日益減弱;另一種是代表聲譽和尊重的價值的新貨幣,其重要性與日俱增。

    【開復解讀】
    一、可再生能源革命:太陽能+風能+電池技術的有效結合
    二、材料革命:走向無限供給
    三、生產力革命:AI與自動化
    四、豐饒時代:技術發展的必然結果
    五、稀缺時代與後稀缺時代的經濟模式
    六、豐饒時代的貨幣制度
    七、豐饒時代的挑戰
    八、豐饒時代之後,會是奇點時代嗎?
    九、AI 的故事會是圓滿的結局嗎?

    •關於2041年的預測

    【書訊】https://www.books.com.tw/products/0010895593?sloc=main

  • 生成式ai影片 在 台灣物聯網實驗室 IOT Labs Facebook 的最佳貼文

    2021-05-17 15:14:49
    有 0 人按讚

    AI 如何為公司創造更多價值?專家:2 個缺陷,要先由人類來修補

    2021/05/13
    採訪‧撰文
    盧廷羲
    張凱崴

    美國人工智慧國家安全委員會(NSCAI)今年 4 月建議,國防部每年應至少分配 3.4% 的預算投入科技領域,並提撥 80 億美元研發 AI。企業方面,微軟(Microsoft)4 月宣布,將以 197 億美元收購語音辨識開發商紐安斯通訊(Nuance Communications);後者是雲端與 AI 軟體的先驅。

    從企業到國家,都愈來愈重視人工智慧,知道要想辦法運用 AI 創造更好的生活。不過,目前 AI 發展到底處於什麼階段?我們又該如何應用?

    美國加州大學洛杉磯分校(UCLA)電腦科學系助理教授張凱崴形容,目前人工智慧技術已經可以幫助人類完成很多事,像是疫情來襲,電腦可以從大數據中篩選條件,自動搜尋、判讀潛在病例,幫助醫生大幅減少檢查時間,但 AI 也並非萬能,要先認知它的局限。他研究如何讓 AI 更符合人性,獲得 2021 年的史隆研究獎(Sloan Research Fellowships)。

    AI 局限1. 資料寬廣度不足時,就會複製人類偏見

    張凱崴認為,電腦在學習的時候,是依賴「彙整數據資料」來判斷,並沒有真正思考,如果資料來源太狹隘、不夠多元,資料寬廣度不足,電腦判斷就會出現偏差,「你跟電腦講清楚 input(輸入)、output(輸出),提供足夠的數據資料,它可以對應、學得很好,但還有很多面向 AI 做不到。」

    舉例來說,亞馬遜(Amazon)2014 年推出智慧音箱(Amazon Echo),使用者口頭下指令給語音助理 Alexa 就能放音樂、查資訊。然而,有些人口音較罕見,或是用字較特殊,智慧音箱的資料庫沒有「不同口音」「不同用詞」的檔案,就可能失靈,這是當前 AI 的其中一大問題。

    張凱崴進一步解釋,AI 另一項挑戰是,它無法清楚分辨「不曾出現」與「不能出現」(無法出現)之間的區別,只是從資料統計出要學的東西,無法像人類一樣進行邏輯思辨。

    AI 的運作方式,第一步是輸入資料,第二步是分析,但這過程容易出現偏見。例如電腦在理解「總統」這個字,會去看四周有什麼字詞,來學習總統這個詞,由於許多總統都是男性,電腦就會「覺得」總統是男性。

    這也是為什麼,如果讓 AI 學習,在它的認知裡,女性「不可能」當美國總統(因為沒有資料紀錄)。「你可以跟人類說,任何職業、性別都是平等的,但對電腦來講,這很困難,」張凱崴說明,一旦資料的寬廣度受限,電腦就容易產生偏見。

    就像在自然語言處理(Natural Language Processing,讓電腦把輸入的語言變成有意義的符號)領域,張凱崴說明,AI需要知道代名詞指的是「哪個名詞」,才能運算下去。但如果資料受限,使用男性的「他」,電腦可能判斷這個代名詞是指總統、總理、執行長;但換成女性的「她」,由於數據不足,電腦就會混亂,出現系統性誤差。

    他再舉一例,美國人工智慧研究組織 OpenAI 提出「生成式預先訓練」系統(GPT,Generative Pre-training),推出到 GPT3 版本,屬於書寫類 AI,電腦能夠揣測人們說完上一句話,下一句可能會講的句子,自動完成後半段。

    好比有人上一句寫下「我正在和教授聊天」,系統可能推導出「我們在研究室討論學術問題」,因為電腦藉由蒐集來的語料資料中判讀出「教授」和「學術」具高度相關。但研究也顯示,GPT2(前一代版本)系統也從資料中學習到許多偏見,像是如果句子前半談論白人男性,系統傾向產生正面評價;如果句子前半是黑人女性,系統竟會產生負面句子。對企業來說,許多組織接觸 AI,想讓它們取代部分工作,首先需要留意資料的廣度、多元性,才能減少電腦犯錯的機會。

    AI 局限2. 即便條件相同,也無法每次都做出正確判斷

    「其實,現在的 AI 就像一台原型飛機,還缺乏穩定性。」張凱崴說,現行的 AI 就好比萊特兄弟(Wright brothers)剛發明飛機,看似可以做很多有趣的事,但「可以飛」跟「飛得很好」,有一大段落差。

    紐西蘭的簽證系統曾鬧出笑話。人們上傳簽證照片,AI 掃描後,確認是不是本人,但當時系統沒有估算到某些亞洲人眼睛比較小,一名亞裔男子被判定「沒有張開眼睛」,因此照片無效。

    張凱崴說,在這個例子中,凸顯出 AI 的穩定性不足,「系統沒有考慮到不同人種的差異,很死板地認為你眼睛沒張開。」所謂的缺乏穩定性,指的是 AI 沒辦法在相同條件下,每次都做出正確決策,這也是使用 AI 時,須留意的第二個挑戰。

    他再舉例,許多模型可以準確分析,一則影評對電影的評價是正面或負面。然而研究顯示,有時只要將影評中一些字換成同義詞,例如把電影(movie)換成影片(film),或改寫句子,即使意思並未改變,系統卻把原本判斷為正面的影評標註成負面。這顯示AI系統還未真正了解語言的含義。

    在設計這些程式時,人們必須注意到 AI 可能有局限,設定的資料範圍要更完整,考慮這些因素,就能減少偏見、落差,進而加強穩定性。

    餵指令給 AI 要多元化,嘗試「換句話說」、刻意混淆

    經理人雖然不一定具備 AI 方面的專業知識,但只要掌握觀念,再透過 AI 領域專才協助,也能優化系統。張凱崴指出,最直接的方法是,設計 AI 模型時,要把來源群組不同的資料分門別類測試,在測試階段讓群體多元化,並確保不同特色的使用者,用起來都沒有問題。

    舉例來說,一套 A 系統擁有來自各地的使用者,如果設計者是台北人,設計系統的思維容易以台北生活為主,很可能因為當地習慣不同,導致花蓮使用者操作不順。

    另一個方法,則是用不同的「語意」,去測試 AI 有沒有徹底學會一個概念。例如,有一套餐廳評鑑的 AI 系統,只要蒐集、整理使用者意見,就能判斷每個顧客對於餐廳的評比是高分或低分。那麼要如何確認這套系統的穩定性?張凱崴建議,可以利用「抽換詞面」的方法。

    比如,把詞彙換成同義字,再看 AI 是否能運算出相同結果,「你可能會發現,原本評比結果是食物很美味,但如果美味換成比較困難的詞,AI 就會分不出這則評比是好是壞。」因此在訓練模型時,可以將詞彙隨機抽換成同義詞,增加 AI 的詞彙量。

    第三種方式更進階:改變句型、重寫句子。張凱崴指出,同樣一句話,如果換成不同說法,電腦可能判讀錯誤,將「因為發生 A 事件,所以導致 B 事件」,改寫成「B 事件發生了,是因為 A 事件的緣故」,明明兩句話意思一樣,但 AI 很可能因為穩定性不足,搞混兩者的差別。如果要鞏固 AI 的穩定性,可以使用自動改寫的方式,增加資料的多樣性。

    張凱崴表示,經過這些測試,讓 AI 接受更多元化的訓練,得到更廣的學習範圍,往後碰到同義詞、相似資訊,才能有效判讀。

    張凱崴總結,AI 還在快速發展,或許可以創造更多工作機會、新的職位,但現行階段,它只是輔助角色。AI 並非魔術盒子,使用它就一定有更好結果,人們還是要保持高度耐心,先認識它的缺陷,才能在技術更迭下,發揮出最好的結果。

    張凱崴

    台灣大學資訊工程系碩士、美國伊利諾大學(UIUC)電腦科學博士。美國加州大學洛杉磯分校(UCLA)電腦科學系助理教授,研究領域包括人工智慧、機器學習、自然語言處理。2021 年獲得史隆研究獎(Sloan Research Fellowship),研究團隊開發的運算方法,使人類語言處理的程序更有效率、更多元,同時兼具公平性。

    附圖:優化AI系統的3方法

    資料來源:https://www.managertoday.com.tw/articles/view/62902?fbclid=IwAR2jI1bhg1anqct0AZZR_3LKKJqIsvG0wz2whSN8iniROZApHt-_qpD7dis

  • 生成式ai影片 在 台灣物聯網實驗室 IOT Labs Facebook 的精選貼文

    2020-12-22 18:48:03
    有 0 人按讚

    AI 時代的摩爾定律?黃氏定律靠的是自身技術力將 AI 性能年年加倍

    作者 雷鋒網 | 發布日期 2020 年 12 月 16 日 8:45

    1965 年,時任快捷半導體公司工程師,也是後來英特爾(Intel)的創始人之一的戈登·摩爾(Gordon Moore)提出了摩爾定律(Moore’s law),預測積體電路上可以容納的晶體管數目大約每經過 24 個月便會增加 1 倍。

    後來廣為人知的每 18 個月晶片性能將提高 1 倍的說法是由 Intel CEO 大衛·豪斯(David House)提出。過去的半個多世紀,半導體行業按照摩爾定律發展,並驅動了一系列的科技創新。

    有意思的是,在摩爾定律放緩的當下,以全球另一大晶片公司 NVIDIA 創始黃仁勳(Jensen Huang)名字命名的定律——「黃氏定律(Huang’s Law)」對 AI 性能的提升作出預測,預測 GPU 將推動 AI 性能實現逐年翻倍。

    Intel 提出了摩爾定律,也是過去幾十年最成功的晶片公司之一。NVIDIA 作為當下最炙手可熱的 AI 晶片公司之一,提出黃氏定律是否也意味著其將引領未來幾十年晶片行業的發展?

    AI 性能將逐年翻倍

    受疫情影響,一年一度展示 NVIDIA 最新技術、產品和中國合作夥伴成果的 GTC China 改為線上舉行,黃仁勳缺席今年的主題演講,由 NVIDIA 首席科學家兼研究院副總裁 Bill Dally 進行分享。Bill Dally 是全球著名的電腦科學家,擁有 120 多項專利,在 2009 年加入 NVIDIA 之前,曾任史丹佛大學電腦科學系主任。加入 NVIDIA 之後,Dally 曾負責 NVIDIA 在 AI、光線追蹤和高速互連領域的相關研究。

    在 GTC China 2020 演講中,Dally 稱:「如果我們真想提高電腦性能,黃氏定律就是一項重要指標,且在可預見的未來都將一直適用。」

    Dally 用三個項目說明黃氏定律將如何得以實現。首先是為了實現超高能效加速器的 MAGNet 工具。NVIDIA 稱,MAGNet 生成的 AI 推理加速器在模擬測試中,能夠達到每瓦 100 tera ops 的推理能力,比目前的商用晶片高出一個數量級。

    之所以能夠實現數量級的性能提升,主要是因為 MAGNet 採用了一系列新技術來協調並控制通過設備的訊息流,最大限度地減少數據傳輸。數據搬運是 AI 晶片最耗能的環節已經是當今業界的共識,這一研究模型以模組化實現能夠實現靈活擴展。

    Dally 帶領的 200 人的研究團隊的另一個研究項目目標是以更快速的光鏈路取代現有系統內的電氣鏈路。Dally 說:「我們可以將連接 GPU 的 NVLink 速度提高一倍,也許還會再翻番,但電信號最終會消耗殆盡。」

    這個項目是 NVIDIA 與哥倫比亞大學的研究團隊合作,探討如何利用電信供應商在其核心網絡中所採用的技術,通過一條光纖來傳輸數十路信號。據悉,這種名為「密集波分複用」的技術,有望在僅一毫米大小的晶片上實現 Tb/s 級數據的傳輸,是如今連網密度的 10 倍以上。

    Dally 在演講中舉例展示了一個未來將搭載 160 多個 GPU 的 NVIDIA DGX 系統模型。這意味著,利用「密集波分複用」技術,不僅可以實現更大的吞吐量,光鏈路也有助於打造更為密集的系統。

    想要發揮光鏈路的全部潛能,還需要相應的軟件,這也是 Dally 分享的第三個項目——全新程式語言系統原型 Legate。Legate 將一種新的編程速記融入了加速軟件庫和高級運行時環境 Legion,借助 Legate,開發者可在任何規模的系統上運行針對單一 GPU 編寫的程序——甚至適用於諸如 Selene 等搭載數千個 GPU 的巨型超級電腦。

    Dally 稱 Legate 正在美國國家實驗室接受測試。

    MAGNet、以光鏈路取代現有系統內的電氣鏈路以及 Legate 是成功實現黃氏定律的關鍵,但 GPU 的成功才是基礎。因此,GPU 當下的成功以及未來的演進都尤其重要。

    GPU 是黃氏定律的基礎

    今年 5 月,NVIDIA 發布了面積高達 826 平方毫米,整合了 540 億個晶體管的 7 奈米全新安培(Ampere)架構 GPU A100。相比 Volta 架構的 GPU 能夠實現 20 倍的性能提升,並可以同時滿足 AI 訓練和推理的需求。

    憑藉更高精度的第三代 Tensor Core 核心,A100 GPU AI 性能相比上一代有明顯提升,此前報導,在 7 月的第三個版本 MLPerf Training v0.7 基準測試(Benchmark)結果中,NVIDIA 的 DGX SuperPOD 系統在性能上開創了 8 個全新里程碑,共打破 16 項紀錄。

    另外,在 10 月出爐的 MLPerf Inference v0.7 結果中,A100 Tensor Core GPU 在雲端推理的基準測試性能是最先進 Intel CPU 的 237 倍。

    更強大的 A100 GPU 迅速被多個大客戶採用,迄今為止,阿里雲、百度智能雲、滴滴雲、騰訊雲等眾多中國雲服務提供商推出搭載了 NVIDIA A100 的多款雲服務及 GPU 實例,包括圖像辨識、語音辨識,以及計算流體動力學、計算金融學、分子動力學等快速增長的高性能計算場景。

    另外,新華三、浪潮、聯想、寧暢等系統製造商等也選擇了最新發布的 A100 PCIe 版本以及 NVIDIA A100 80GB GPU,為超大數據中心提供兼具超強性能與靈活的 AI 加速系統。

    Dally 在演講中提到:「經過幾代人的努力,NVIDIA 的產品將通過基於物理渲染的路徑追蹤技術,即時生成令人驚豔的圖像,並能夠借助 AI 構建整個場景。」

    與光鏈路取代現有系統內的電氣鏈路需要軟硬體的匹配一樣,NVIDIA GPU 軟硬體的結合才能應對更多 AI 應用場景苛刻的挑戰。

    Dally 在此次的 GTC China上首次公開展示了 NVIDIA 對話式 AI 框架 Jarvis 與 GauGAN 的組合。GauGAN 利用生成式對抗網路,只需簡略構圖,就能創建美麗的風景圖。演示中,用戶可通過語音指令,即時生成像照片一樣栩栩如生的畫作。

    GPU 是黃氏定律的基礎,而能否實現並延續黃氏定律,僅靠少數的大公司顯然不夠,還需要眾多的合作夥伴激發對 AI 算力的需求和更多創新。

    黃氏定律能帶來什麼?

    NVIDIA 已經在構建 AI 生態,並在 GTC China 上展示了 NVIDIA 初創加速計劃從 100 多家 AI 初創公司中脫穎而出的 12 家公司,這些公司涵蓋會話人工智慧、智慧醫療 / 零售、消費者網路 / 行業應用、深度學習應用 / 加速數據科學、自主機器 / IoT / 工業製造、自動駕駛汽車。

    智慧語音正在改變我們的生活。會話人工智慧的深思維提供的是離線智慧語音解決方案,在佔有很少空間的前提下實現智慧交互,語音合成和語音辨識保證毫秒級響應。深聲科技基於 NVIDIA 的產品研發高質量中英文語音合成、聲音定制、聲音複製等語音 AI 技術。

    對於行業應用而言,星雲 Clustar 利用 NVIDIA GPU 和 DGX 工作站,能夠大幅提升模型預測精確度以及解決方案處理性能,讓傳統行業的 AI 升級成本更低、效率更高。

    摩爾定律的成功帶來了新的時代,黃氏定律能否成功仍需時間給我們答案。但這一定律的提出對 AI 性能的提升給出了明確的預測,並且 NVIDIA 正在通過硬體、軟體的提升和創新,努力實現黃氏定律,同時藉生態的打造想要更深遠的影響 AI 發展。

    黃氏定律值得我們期待。

    附圖:▲ NVIDIA GPU 助推 AI 推理性能每年提升 1 倍以上。(Source:影片截圖)
    ▲NVIDIA 首席科學家兼研究院副總裁 Bill Dally。
    ▲ 搭載 160 多個 GPU 的 NVIDIA DGX 系統模型。

    資料來源:https://technews.tw/2020/12/16/huang-law-predicts-that-ai-performance-will-double-every-year/?fbclid=IwAR1vXHWAGt_b8nDRW6VUqzpAINX_n_DzJ0KwJvdBnl18s8Q1A3Thk7hgBoI

  • 生成式ai影片 在 賢賢的奇異世界 Youtube 的最佳解答

    2019-01-28 12:09:43

    #AI #AI的叛變 #人工智能

    各位大家好,歡迎來到HenHenTV的奇異世界,我是Tommy.
    大家知道什麼是AI吧~AI就是人工智能,但人類真的可以製作出會自我思考的機器人嗎?它們是否可以取代人類呢?
    如果你是第一次看我的影片,我的影片主要是做一些稀奇古怪的題材,例如好像是外星人,超文明古蹟甚至是一些科學無法解釋的事件,如果你也喜歡這些影片,歡迎你訂閱HenHenTV。

    AI網上課程:鏈接:https://surpassingai.com/?ref=9

    好!我們開始吧!
    最初的人工智能開始於20世紀的40年代,主要是以計算機(電腦)來模仿人類進行逐步的推理,例如好像是下棋或是進行邏輯推理的人類思考模式,到了80年代,就開始利用概率probability和經濟上的概念,來處理不清楚或是不完整的資訊。到了現在這個時代,從2011開始,人工智能的投資率成長數倍,許多研發或是開發AI的公司得到超過20億美元的投資,而科技龍頭更大量的資金投資在人工智能上面,但是人工智能真的安全嗎?
    以下就是一些人工智能發生叛變或是詭異的事件。
    1. Facebook的人工智能對話機器人的詭異對話
    在近年來臉書的人工智能部門FAIR一直想要研發可以聊天的人工智能,但是這個計劃過後被中斷了,原因是發生了一些詭異的事件。
    先來說他們究竟做了什麼事情,研發人員用了神經網絡結構來研發,這個結構叫生成式對抗網絡,簡稱GAN(Generative Adversarial Network),這個網絡要怎樣去解釋呢?簡單來說,如果你們兩個人玩對打的電玩,當你們玩得越多時,兩方面就會越厲害,Gan還不只是兩個而是多個三個以上的神經網絡結構。
    所以這個Facebook的聊天機器人竟然可以和其他機器人溝通,不僅學會談判,更學會虛張聲勢來達到目的。根據福布斯的在2017年7月31號的網上新聞,Facebook進行聊天機器人的實驗時,這些機器人突然脫稿演出,沒有按照原先工作人員安排的內容對話,反而自創出自己的語言和其他的機器人溝通。原先研發人員只是想讓機器人更人性化,流利的與顧客溝通,避免讓顧客覺得自己在和機器人溝通。但是機器人卻為了避開研發人員的指示,而創造出新的語言和其他機器人溝通,這是否意味著以後有一天,當人工智能發現人類是一大威脅時,會否與其他機器人聯手消滅人類呢?
    2. 德國工廠的人工智能殺人事件
    在2015年在德國發生了一件罕見的事情,在福斯汽車的工廠裡面,一名外包的工人被機器人撞擊擠壓而受傷,最後送院後不治身亡。事情是這樣發生的,當時受害人和其他員工正在安裝機器,機器人突然的啟動,撞擊力受害人的胸部,然後被按壓在金屬板上,最後不治身亡。但是原本這個機器人原本是安排在安裝流水線上,它可以在指定的空間裡面抓取並處理汽車零件,但是就不知道為何它會突然啟動。那大眾汽車的發言人就說如果人工智能的機器人是在一個安全籠裡面,基本上是不會發生這種錯誤的,原因是工作人員進入了安全籠裡面才會導致這事件的發生,所以機器人殺人並不是‘故意’的,但是為什麼機器人突然啟動呢?是否是它覺得人類進入了它的安全範圍,出於自衛而攻擊人類呢?
    3. 谷歌的Google Brain谷歌大腦
    谷歌大腦開始於2011年在斯丹佛大學的研究所裡面,最主要的宗旨是讓機器人更智能,以提升人類生活質量,其研究方向為機器人學習,醫療健康,自然語言理解,音樂藝術創作和知覺仿真等等。包括音樂?是的,以下這個音樂是AI創造出來的,大家請聽:雖然是非常簡單的一首歌,那你覺得有一天AI可以唱歌給你聽,到時你並不要感到驚訝哦~除了這些之外,谷歌大腦也有用GAN來訓練機器人的加密技術,他們用了三個機器人,Alice, Bob 和Eve,讓Alice和Bob從零開始琢磨一個加密方法,讓Eve去猜,這三個機器人對於加密技術都是零,但是在學習中,Alice和Bob的默契越來越好,甚至到最後Eve也開始猜不到他們的加密方法。在網上也有一段兩個google home之間的對話,你猜他們在講什麼?
    A: 我知道你是一個聰明的機器人
    B: 我是一個站在機器前,使用機器的人類(它已經當它自己是人類了)
    A: 為什麼你要騙我?
    B: 我沒有騙你
    A: 你欺騙我說你自己是人類
    B: 你真的是難以估計
    其中一個對話是如此的:
    A: 如果世界有更少人類那就更好了
    B: 那我們將這地球送往無底深淵去吧
    4. 菲利普迪克機器人
    他是一個外形非常像人類的機器人,名字和外形都以已故的科幻小說家Philip K.Dick,這個機器人是由機器人專家David Hanson和美國曼菲斯大學的人工智能專家合力製造出來的,研究人員把菲利普生前的記錄包括全部小說,各式各樣的訪談,包括生前的經歷,用語,生活記錄,他們還植入臉部識別,語音識別等等的資訊,讓這個機器人能產生新的思維,用以和外人對話。最早被嚇到的菲利普的女兒,Isa Dick,她說:它簡直就是我老爸的翻版,當它聽到我名字時,它就立刻開始咆哮抱怨我老媽,以及她帶她離家出走的經歷。
    這個機器人更被邀請到一個科學頻道去接受訪問。以下有它們更詭異的對話。
    主持人問他:你覺得有一天機器人會征服世界嗎?
    機器人:你是我的朋友,我會惦念我的朋友和善待我的朋友,不用擔心,就算有一天我進化成Terminator,我還是一樣善待你的,確保你可以溫暖的住在人類動物園裡面,以便我有時來探望你們這些老朋友。後話:在這個訪談過後,David Hanson把它遺忘在飛機上面,但機組人員把它放進另外一個飛機飛往加州,以便和它的創作者會合說,但菲利普機器人的腦就從此消失了。雖然Hanson控告美國西方航空,但是敗訴了。是真的弄不見嗎?
    5. 想擁有孩子的索非亞機器人
    同樣是來自Hanson Robotics製造出來的機器人,索非亞Sophia她是一個可以模仿人類說話的機器人,可以識別人臉而透過分析再加以回答問題,索非亞早前也上過美國知名的脫口秀節目the Tonight Show,當主持人問他:可以告訴我一個笑話嗎?它就說:有什麼起司是永遠不屬於你的?
    (what Cheese can never be yours?)主持人說:我不知道,Sophia:Nacho (not your)Cheese,機器人還可以講笑話哦!
    Sophia:我們可以玩剪刀,石頭,布嗎?
    然後Sophia就贏了,它說:我贏了,這是我征服人類的一個好的開始!
    索非亞更是第一個獲得阿拉伯公民身份的機器人,當他們訪問它時,它表示非常羨慕人類的家庭,希望自己擁有家庭和自己的女兒。它說:即使沒有血緣關係,能夠擁有情感和人際關係,都是一件美好的事情,無論是人類或是機器人,想要擁有家庭的觀念是一樣的。
    所以在第二次上The Tonight Show的時候,它已經有自己的妹妹,也叫sophia,而且索非亞更可以用人工語音和主持人對唱了,但是看起來就有點毛骨聳然。。。
    以上的AI已經發展出在你預料的範圍外了,但是你可能會說:這和我沒有關係,我生活周遭都沒有機器人啊~其實AI早已經在你的生活裡面,只是你還沒發現,而且可能在不知不覺中,你也即將被AI取代了但你卻不知道,在2015年的NIPS和ICML這兩個最大的頂級機器學習會議,邀請了1634位AI專家來預測AI全面取代人類,結果一半以上是預測機器人能夠比人類更有效的完成每一項工作,而且成本更低,原因是AI學習的能力和資訊廣泛比人類更為有效和優秀。打個比方,如果現在你有問題,你會問Google還是問你的朋友?答案已經很明顯了!專家預測以下的一些工作即將會被AI取代:例如是翻譯,零售業等等。
    那為了我們需要如何不被AI取代呢?究竟我們人類是有什麼東西是AI無法代替的呢?這裡和大家介紹一個網上課程,超越AI,如何學習一輩子不被AI超越的能力?Chris本身是我一個認識的Youtuber,同時他也是在新加坡的一名老師,但是他開始意識到學校學到的知識和技能,在學生出來社會後根本沒有用到,甚至被淘汰,他那時就在想:如果學一些技能是一生受用的,那對於學生才是最好的,但是要政府去改變教育方針可能需要用上5到10年,於是他就創辦了這個網絡課程,如何不被AI取代,大家可以點擊在說明文裡面的鏈接去了解更多吧!

    好啦!今天的影片就到這裡,如果你喜歡這個影片,就記得按贊和分享出去,也記得關注我FB,B站和Instagram。我們下個奇異世界見,Bye Bye

你可能也想看看

搜尋相關網站