[爆卦]無法辨識的網路無網路存取是什麼?優點缺點精華區懶人包

雖然這篇無法辨識的網路無網路存取鄉民發文沒有被收入到精華區:在無法辨識的網路無網路存取這個話題中,我們另外找到其它相關的精選爆讚文章

在 無法辨識的網路無網路存取產品中有16篇Facebook貼文,粉絲數超過0的網紅,也在其Facebook貼文中提到, 太太太太美了吧! 寶寶攝影機是近年來大家都很關注的育兒好物之一,茜茜家用pixsee已經快要一年,當看到pixsee推出 #全球限量精品新色『pixsee Stardust』時,我簡直要尖叫了! 小香是不少女生的夢想,茜茜想買的不只是包,還有經典雙色粗花呢外套,粗毛呢與細節都超美的啊。但當媽以後...

  • 無法辨識的網路無網路存取 在 Facebook 的最讚貼文

    2021-08-29 12:51:56
    有 102 人按讚

    太太太太美了吧!

    寶寶攝影機是近年來大家都很關注的育兒好物之一,茜茜家用pixsee已經快要一年,當看到pixsee推出 #全球限量精品新色『pixsee Stardust』時,我簡直要尖叫了!

    小香是不少女生的夢想,茜茜想買的不只是包,還有經典雙色粗花呢外套,粗毛呢與細節都超美的啊。但當媽以後要買東西總是會東想西想...pixsee推出的這款新色布料,選用小香御用供應商『英國百年織品品牌~倫敦Linton』,選用柔軟細緻的經紗和緯紗,再經過收緊、梳理、針織等多道工序,繁複又獨特的紡織技術創造出細密又立體的質感。

    #是精品也是實用的寶寶攝影機
    包或外套少說10-20萬起跳,但pixsee Stardust只要萬元,忍不住偷偷算了一下,也太划算😆😆😆

    除了美美的,擺在家裡看著心情就好(跟買包是一樣的心情啊)
    寶寶攝影機的好茜茜一樣要來分享~

    /

    茜茜曾經在二寶時有買過他排得不好經驗,所以懷三寶時也是很猶豫,後來星星出生,忙碌的生活,還有不只一個孩子要照顧,讓我覺得還是很需要有寶寶攝影機的幫忙,於是開始著手爬文。

    當然也有先被某牌寶寶攝影機的業配燒到,後來爬文看了論壇&社團討論,感覺很明顯的評價兩極...

    後來也有人分享給我,他的真實使用經驗:
    ⚠️外殼品質很差 參差不齊
    ⚠️進入APP的準備畫面大約需要比想像中更長時間,無法及時看見寶寶狀況
    ⚠️口鼻偵測並不如想像中好用,會經常性提醒,只要小孩撇頭、翻身、手遮住便會不斷的提醒(過度靈敏),後來朋友因為覺得精準度很差加上提醒升很吵,便關閉了這個功能。(這點讓我很傻眼)
    ⚠️機器與wifi網路經常性斷訊或者連結不上(但家裡電腦電視手機連結wifi事非常穩定)

    (以上大家上網搜尋都可以查得到相關評論)

    我完全被滅火...
    當然也看了其他品牌,但就是沒有到很中的,直到好友推薦PIXSEE給我。

    我一看到藍綠色的可愛小惡魔外型,就一見鐘情,一查才知道,原來是台灣第一大筆電代工品牌 #仁寶電腦 所開發設計,pixsee的爸爸也太狂了吧!

    收到實品後,質感好到爆炸,實際使用拍的照片真的超超超清楚,連接網路也非常順,而且幫上我很多忙,茜茜真的好喜歡,喜歡到要來推坑大家超開心的哈哈哈😆😆😆

    /

    #為什麼選擇pixsee呢

    當時我我看他的幾點功能很吸引我,茜茜也一起寫出我真實的實用心得:

    🔸160度超廣角不失真|6層全玻璃光學鏡頭
    有看到茜茜前幾天分享的照片,就知道真的有夠廣!
    就算只是放在不太高的平台上,也可以從天花板照到地板,視野範圍非常廣。
    (這個照片我會之後都放在心得文中,IG限動也會持續發)

    還有抗反射、防眩光鍍膜,所以照片真的有夠清楚,畫質很好,是可以洗出照片的那種等級唷。

    🔸夜嬰近紅光科技|夜視功能超清楚
    在全暗,一點點燈都沒開的房間中,居然還是很清楚,可以看見寶寶的表情和動作,讓我很驚艷!
    不是那種淡淡灰灰的,而是有立體感的,如果是分床或分房睡,半夜不用再頻繁起床查看寶寶。

    🔸高畫質FULL HD
    不是只有HD,而是更高階的FULL HD,真正的高畫質看得見!

    🔸哭聲辨識|新手爸媽很有用
    這個功能我覺得很新奇,雖然因為生到三寶,早已經練就聽哭聲就知道需求,但覺得這個功能超級能幫助新手爸媽!

    🔸危險區域偵測
    這個一定要,特別適合在寶寶會翻身或爬以後開始使用。
    當靠近床邊(怕跌落受傷腦震盪),或是超出遊戲區範圍(怕爬到廚房等危險區),立馬通過APP快速提醒,非常優秀的功能。

    🔸溫濕度偵測器
    很喜歡這個功能,因為新生兒的身體狀況受到環境溫度濕度很大影響,皮膚過敏、熱疹濕疹都能事先預防。

    看氣象的溫度跟實際室內溫度是有落差的,所以這個很準,也能判斷要給寶寶穿厚薄或是除濕機要不要加強開。

    🔸感應寶寶哭聲放安撫音樂|高音質喇叭
    內建高音質喇叭與高感度麥克風,感應到寶寶的哭聲就會自動播放內建的多首安撫音樂(可以從APP設定要不要開啟這個功能),而且音質很好,音樂也讓人很放鬆。 #據說是各大品牌當中最高規格

    🔸雙向語音
    當寶寶哭的時候,還可以透過PIXSEE內建的喇叭功能,直接跟寶寶說話安撫,讓他以為媽媽還在身邊。當然也可以打開喇叭,有影像也聽得到寶寶在做什麼唷。(有請保姆的話很好用)

    我現在也會用於讓屁寶跟秦秦自己在房間睡,我透過PIXSEE來看他們有沒有乖乖睡還是在搗蛋,然後用雙向語音跟他們說話,他們就會比較乖,不會因為爸媽沒有陪睡就搗蛋不睡。

    🔸智慧拍照
    這攝影機真的有聰明,他把星星可愛的表情,不論是喜怒哀樂還是哭哭,或是大動作,還有和我互動的樣子,都會自動拍下來(也可以自己在APP裡按相機拍攝照片)

    我常常在看APP相簿時,發現擇PIXSEE拍到星星可愛睡臉與逗趣的小動作,當然還有委屈嘴(這個超難拍到的,每次手機拿起來就變成大哭哈哈哈)。

    🔸24小時視訊影片回播
    想知道發什麼事?
    或是想回看寶寶在睡覺中有沒有什麼反應,都可以透過APP中的視訊去找到想看的幾點幾分唷!
    覺得特別適合寶寶交給保姆或是家人照顧時使用。

    🔸寶寶成長樹、插畫相框、節慶動態賀卡

    🔸4URLove拼貼相簿
    不論是智慧自動拍攝,還是我按APP拍攝下來的照片,都會自動儲存在APP中,而且是以日期來建立相簿,並且顯示寶寶的月齡(ex:4個月1天 以此類推)

    🔸WIFI連線穩定
    茜茜是極度無法認受網路慢的人,所以如果點APP要看寶寶卻要連很久(對我來說10秒以上就是很久),我絕對會拿去退貨。畢竟手機收到通知,當然要立刻!馬上!從鏡頭畫面看到寶寶的狀況,才是能讓人安心使用的寶寶攝影機啊。

    如果還常常斷線,但還不如不要用,我目前用到現在都沒出現斷線的狀況唷。

    🔸個資保護完善、加密防護|台灣設計及製造
    因為用過小X,有親身感受到無線網路有不明大量上傳流量的狀況(抖),為了隱私和個資,不想把家庭生活曝光在奇怪的人手中,堅持選擇用台灣品牌、台灣製造!加上有加密防護,加強使用者身分驗證及資料存取管理防護,照片也都是商業等級雲端資料防護。

    還有一些小細節我覺得做得很好,但平常可能不會特別注意,像是:
    燈光是不會刺眼的綠光,不會覺得很亮影響睡眠。
    可與家人共享平台,跟老公一起注意寶寶狀況。

    當我跟雙寶在客廳玩或是有朋友來家裡聚餐,星星如果也在客廳午睡是一定被吵醒,所以我都讓他睡在房間裡,把手機的pixsee APP打開,隨時照看狀況(影像和聲音都是非常即時傳送的),讓我安心不少。

    不會像以前都會產生幻聽,一直開房門進去看,結果反而打擾寶寶的睡眠品質,醒來我也慘了,一點點自由時間都沒有啊啊啊啊

    面部偵測功能~即將上市🎉🎉🎉
    pixsee他爸是仁寶電腦,但他們仍不貿然推出這樣功能,經過嚴謹的研發與測試,將於中秋節時開放。不需重新購機,所有的pixsee都可以透過APP更新並擁有此新功能唷!(APP會自動通知更新)

    #早用早安心
    #必買育兒安心好物啊

    /

    上一團在IG限動和粉絲團分享的迴響都很大,非常多人私訊和跟團,以下兩個問題也是很常被問到的,一起說明:

    #寶寶攝影機要放在哪裡呢
    因為是超廣角,加上本身設計的底座就可以穩穩地放在任何平台,如果想要高一點也有可以另外購買的配件 #五合一支架 1支架、4段高度、5種模式

    1.高俯視|適合嬰兒床,可以照到整張嬰兒床平面
    2.低俯視|適合寶寶低躺椅
    3.高平視|適合在床上、客廳、餐廳,我也會用這個模式就可以一次看到整個房間,大床上的屁寶和秦秦,嬰兒床的星星
    4.低平視|適合玩玩具、 說故事、 寶寶爬行,尤其在地墊上玩玩具,或是遊戲區都很適合。
    5.壁掛|嬰兒床,可以照到整張嬰兒床平面

    #哪裡生產製造
    全機都是台灣品牌、台灣設計、台灣製造,最高規格的寶寶攝影機,上市上櫃大公司仁寶電腦所研發設計的品牌唷!

    #保固多久呢
    享有原廠保固1年。

    #可以使用多久呢
    從寶寶出生0個月就可以開始使用,一路用到5歲以上,更大之後,也可以當作守護全家安全的家用攝影機。要入手之前會猶豫不絕,但一入手開始用就覺得後悔 #後悔沒有早點買啊

    /

    茜茜x pixsee #全台獨家新色首團優惠🔥
    大大感謝廠商給茜茜這麼美的~小香新色首團,當然也是很努力幫大家凹優惠。

    【限量精品!pixsee Stardust】⚠數量稀少
    團購價$1xxxxx (原價$19700)
    ❶超值好禮:五合一支架$2900
    ❷加碼好禮:VIP訂閱方案1年$3600
    ❸加碼下單禮:LASSIG超柔手感竹纖維嬰兒包巾毯 款式隨機 (價值$1380)
    ❹茜茜限定禮:尚未曝光
    ㊙️ 茜茜團 最高優惠$13780,實在太狂啦 ㊙️

    #小毛呢和大毛的數量都非常稀少
    #先買先贏一定要一開團就跟緊緊

    【經典藍綠!pixsee 】
    團購價$8xxx (原價$9900)
    ❶超值好禮:五合一支架$2900
    ❷加碼好禮:VIP訂閱方案1年$3600
    ❸加碼下單禮:LASSIG超柔手感竹纖維嬰兒包巾毯 款式隨機 (價值$1380)
    ❹茜茜限定禮:尚未曝光
    ㊙️ 茜茜團 最高優惠$xxxx,買到賺到 ㊙️

    支架跟VIP訂閱都是另外購買,是茜茜用力凹來的喔換算下來~
    連線穩定+畫質好的寶寶攝影機,史上最划算就在茜茜團🔥

    💜開團時間:明午8/30(一) 中午12:30 Line@&社團優先開團
    💜心得文搶先看:https://ababa.tw/YH3sc/bfbf
    💜想要搶到小香Pixsee:
    ❶茜茜的Line@:https://ababa.tw/1fifW/bf210829 或搜尋Line ID: @ababa (前面一定要加@)
    ❷加入茜茜的社團『茜茜揪團瘋好物』:https://ababa.tw/cUbzA/bf210829
    ❸追蹤FB粉絲團『茜茜育兒生活好好玩』:https://ababa.tw/YnJuI/bf210829

    ~很建議追蹤我的IG,限動會持續更新最新的即時分享唷!
    ❹IG帳號 chienchien99 | https://ababa.tw/Cg54c/bf210829

    #一起來推坑
    #大家喜歡小香黑白還是經典藍綠呢

  • 無法辨識的網路無網路存取 在 台灣物聯網實驗室 IOT Labs Facebook 的精選貼文

    2021-07-27 11:56:34
    有 1 人按讚

    摩爾定律放緩 靠啥提升AI晶片運算力?

    作者 : 黃燁鋒,EE Times China
    2021-07-26

    對於電子科技革命的即將終結的說法,一般認為即是指摩爾定律的終結——摩爾定律一旦無法延續,也就意味著資訊技術的整棟大樓建造都將出現停滯,那麼第三次科技革命也就正式結束了。這種聲音似乎是從十多年前就有的,但這波革命始終也沒有結束。AI技術本質上仍然是第三次科技革命的延續……

    人工智慧(AI)的技術發展,被很多人形容為第四次科技革命。前三次科技革命,分別是蒸汽、電氣、資訊技術(電子科技)革命。彷彿這“第四次”有很多種說辭,比如有人說第四次科技革命是生物技術革命,還有人說是量子技術革命。但既然AI也是第四次科技革命之一的候選技術,而且作為資訊技術的組成部分,卻又獨立於資訊技術,即表示它有獨到之處。

    電子科技革命的即將終結,一般認為即是指摩爾定律的終結——摩爾定律一旦無法延續,也就意味著資訊技術的整棟大樓建造都將出現停滯,那麼第三次科技革命也就正式結束了。這種聲音似乎是從十多年前就有,但這波革命始終也沒有結束。

    AI技術本質上仍然是第三次科技革命的延續,它的發展也依託於幾十年來半導體科技的進步。這些年出現了不少專門的AI晶片——而且市場參與者相眾多。當某一個類別的技術發展到出現一種專門的處理器為之服務的程度,那麼這個領域自然就不可小覷,就像當年GPU出現專門為圖形運算服務一樣。

    所以AI晶片被形容為CPU、GPU之後的第三大類電腦處理器。AI專用處理器的出現,很大程度上也是因為摩爾定律的發展進入緩慢期:電晶體的尺寸縮減速度,已經無法滿足需求,所以就必須有某種專用架構(DSA)出現,以快速提升晶片效率,也才有了專門的AI晶片。

    另一方面,摩爾定律的延緩也成為AI晶片發展的桎梏。在摩爾定律和登納德縮放比例定律(Dennard Scaling)發展的前期,電晶體製程進步為晶片帶來了相當大的助益,那是「happy scaling down」的時代——CPU、GPU都是這個時代受益,不過Dennard Scaling早在45nm時期就失效了。

    AI晶片作為第三大類處理器,在這波發展中沒有趕上happy scaling down的好時機。與此同時,AI應用對運算力的需求越來越貪婪。今年WAIC晶片論壇圓桌討論環節,燧原科技創始人暨CEO趙立東說:「現在訓練的GPT-3模型有1750億參數,接近人腦神經元數量,我以為這是最大的模型了,要千張Nvidia的GPU卡才能做。談到AI運算力需求、模型大小的問題,說最大模型超過萬億參數,又是10倍。」

    英特爾(Intel)研究院副總裁、中國研究院院長宋繼強說:「前兩年用GPU訓練一個大規模的深度學習模型,其碳排放量相當於5台美式車整個生命週期產生的碳排量。」這也說明了AI運算力需求的貪婪,以及提供運算力的AI晶片不夠高效。

    不過作為產業的底層驅動力,半導體製造技術仍源源不斷地為AI發展提供推力。本文將討論WAIC晶片論壇上聽到,針對這個問題的一些前瞻性解決方案——有些已經實現,有些則可能有待時代驗證。

    XPU、摩爾定律和異質整合

    「電腦產業中的貝爾定律,是說能效每提高1,000倍,就會衍生出一種新的運算形態。」中科院院士劉明在論壇上說,「若每瓦功耗只能支撐1KOPS的運算,當時的這種運算形態是超算;到了智慧型手機時代,能效就提高到每瓦1TOPS;未來的智慧終端我們要達到每瓦1POPS。 這對IC提出了非常高的要求,如果依然沿著CMOS這條路去走,當然可以,但會比較艱辛。」

    針對性能和效率提升,除了尺寸微縮,半導體產業比較常見的思路是電晶體結構、晶片結構、材料等方面的最佳化,以及處理架構的革新。

    (1)AI晶片本身其實就是對處理器架構的革新,從運算架構的層面來看,針對不同的應用方向造不同架構的處理器是常規,更專用的處理器能促成效率和性能的成倍增長,而不需要依賴於電晶體尺寸的微縮。比如GPU、神經網路處理器(NPU,即AI處理器),乃至更專用的ASIC出現,都是這類思路。

    CPU、GPU、NPU、FPGA等不同類型的晶片各司其職,Intel這兩年一直在推行所謂的「XPU」策略就是用不同類型的處理器去做不同的事情,「整合起來各取所需,用組合拳會好過用一種武器去解決所有問題。」宋繼強說。Intel的晶片產品就涵蓋了幾個大類,Core CPU、Xe GPU,以及透過收購獲得的AI晶片Habana等。

    另外針對不同類型的晶片,可能還有更具體的最佳化方案。如當代CPU普遍加入AVX512指令,本質上是特別針對深度學習做加強。「專用」的不一定是處理器,也可以是處理器內的某些特定單元,甚至固定功能單元,就好像GPU中加入專用的光線追蹤單元一樣,這是當代處理器普遍都在做的一件事。

    (2)從電晶體、晶片結構層面來看,電晶體的尺寸現在仍然在縮減過程中,只不過縮減幅度相比過去變小了——而且為緩解電晶體性能的下降,需要有各種不同的技術來輔助尺寸變小。比如說在22nm節點之後,電晶體變為FinFET結構,在3nm之後,電晶體即將演變為Gate All Around FET結構。最終會演化為互補FET (CFET),其本質都是電晶體本身充分利用Z軸,來實現微縮性能的提升。

    劉明認為,「除了基礎元件的變革,IC現在的發展還是比較多元化,包括新材料的引進、元件結構革新,也包括微影技術。長期賴以微縮的基本手段,現在也在發生巨大的變化,特別是未來3D的異質整合。這些多元技術的協同發展,都為晶片整體性能提升帶來了很好的增益。」

    他並指出,「從電晶體級、到晶圓級,再到晶片堆疊、引線接合(lead bonding),精準度從毫米向奈米演進,互連密度大大提升。」從晶圓/裸晶的層面來看,則是眾所周知的朝more than moore’s law這樣的路線發展,比如把兩片裸晶疊起來。現在很熱門的chiplet技術就是比較典型的並不依賴於傳統電晶體尺寸微縮,來彈性擴展性能的方案。

    台積電和Intel這兩年都在大推將不同類型的裸晶,異質整合的技術。2.5D封裝方案典型如台積電的CoWoS,Intel的EMIB,而在3D堆疊上,Intel的Core LakeField晶片就是用3D Foveros方案,將不同的裸晶疊在一起,甚至可以實現兩片運算裸晶的堆疊、互連。

    之前的文章也提到過AMD剛發佈的3D V-Cache,將CPU的L3 cache裸晶疊在運算裸晶上方,將處理器的L3 cache大小增大至192MB,對儲存敏感延遲應用的性能提升。相比Intel,台積電這項技術的獨特之處在於裸晶間是以混合接合(hybrid bonding)的方式互連,而不是micro-bump,做到更小的打線間距,以及晶片之間數十倍通訊性能和效率提升。

    這些方案也不直接依賴傳統的電晶體微縮方案。這裡實際上還有一個方面,即新材料的導入專家們沒有在論壇上多說,本文也略過不談。

    1,000倍的性能提升

    劉明談到,當電晶體微縮的空間沒有那麼大的時候,產業界傾向於採用新的策略來評價技術——「PPACt」——即Powe r(功耗)、Performance (性能)、Cost/Area-Time (成本/面積-時間)。t指的具體是time-to-market,理論上應該也屬於成本的一部分。

    電晶體微縮方案失效以後,「多元化的技術變革,依然會讓IC性能得到進一步的提升。」劉明說,「根據預測,這些技術即使不再做尺寸微縮,也會讓IC的晶片性能做到500~1,000倍的提升,到2035年實現Zetta Flops的系統性能水準。且超算的發展還可以一如既往地前進;單裸晶儲存容量變得越來越大,IC依然會為產業發展提供基礎。」

    500~1,000倍的預測來自DARPA,感覺有些過於樂觀。因為其中的不少技術存在比較大的邊際遞減效應,而且有更實際的工程問題待解決,比如運算裸晶疊層的散熱問題——即便業界對於這類工程問題的探討也始終在持續。

    不過1,000倍的性能提升,的確說明摩爾定律的終結並不能代表第三次科技革命的終結,而且還有相當大的發展空間。尤其本文談的主要是AI晶片,而不是更具通用性的CPU。

    矽光、記憶體內運算和神經型態運算

    在非傳統發展路線上(以上內容都屬於半導體製造的常規思路),WAIC晶片論壇上宋繼強和劉明都提到了一些頗具代表性的技術方向(雖然這可能與他們自己的業務方向或研究方向有很大的關係)。這些技術可能尚未大規模推廣,或者仍在商業化的極早期。

    (1)近記憶體運算和記憶體內運算:處理器性能和效率如今面臨的瓶頸,很大程度並不在單純的運算階段,而在資料傳輸和儲存方面——這也是共識。所以提升資料的傳輸和存取效率,可能是提升整體系統性能時,一個非常靠譜的思路。

    這兩年市場上的處理器產品用「近記憶體運算」(near-memory computing)思路的,應該不在少數。所謂的近記憶體運算,就是讓儲存(如cache、memory)單元更靠近運算單元。CPU的多層cache結構(L1、L2、L3),以及電腦處理器cache、記憶體、硬碟這種多層儲存結構是常規。而「近記憶體運算」主要在於究竟有多「近」,cache記憶體有利於隱藏當代電腦架構中延遲和頻寬的局限性。

    這兩年在近記憶體運算方面比較有代表性的,一是AMD——比如前文提到3D V-cache增大處理器的cache容量,還有其GPU不僅在裸晶內導入了Infinity Cache這種類似L3 cache的結構,也更早應用了HBM2記憶體方案。這些實踐都表明,儲存方面的革新的確能帶來性能的提升。

    另外一個例子則是Graphcore的IPU處理器:IPU的特點之一是在裸晶內堆了相當多的cache資源,cache容量遠大於一般的GPU和AI晶片——也就避免了頻繁的訪問外部儲存資源的操作,極大提升頻寬、降低延遲和功耗。

    近記憶體運算的本質仍然是馮紐曼架構(Von Neumann architecture)的延續。「在做處理的過程中,多層級的儲存結構,資料的搬運不僅僅在處理和儲存之間,還在不同的儲存層級之間。這樣頻繁的資料搬運帶來了頻寬延遲、功耗的問題。也就有了我們經常說的運算體系內的儲存牆的問題。」劉明說。

    構建非馮(non-von Neumann)架構,把傳統的、以運算為中心的馮氏架構,變換一種新的運算範式。把部分運算力下推到儲存。這便是記憶體內運算(in-memory computing)的概念。

    記憶體內運算的就現在看來還是比較新,也有稱其為「存算一體」。通常理解為在記憶體中嵌入演算法,儲存單元本身就有運算能力,理論上消除資料存取的延遲和功耗。記憶體內運算這個概念似乎這在資料爆炸時代格外醒目,畢竟可極大減少海量資料的移動操作。

    其實記憶體內運算的概念都還沒有非常明確的定義。現階段它可能的內涵至少涉及到在儲記憶體內部,部分執行資料處理工作;主要應用於神經網路(因為非常契合神經網路的工作方式),以及這類晶片具體的工作方法上,可能更傾向於神經型態運算(neuromorphic computing)。

    對於AI晶片而言,記憶體內運算的確是很好的思路。一般的GPU和AI晶片執行AI負載時,有比較頻繁的資料存取操作,這對性能和功耗都有影響。不過記憶體內運算的具體實施方案,在市場上也是五花八門,早期比較具有代表性的Mythic導入了一種矩陣乘的儲存架構,用40nm嵌入式NOR,在儲記憶體內部執行運算,不過替換掉了數位週邊電路,改用類比的方式。在陣列內部進行模擬運算。這家公司之前得到過美國國防部的資金支援。

    劉明列舉了近記憶體運算和記憶體內運算兩種方案的例子。其中,近記憶體運算的這個方案應該和AMD的3D V-cache比較類似,把儲存裸晶和運算裸晶疊起來。

    劉明指出,「這是我們最近的一個工作,採用hybrid bonding的技術,與矽通孔(TSV)做比較,hybrid bonding功耗是0.8pJ/bit,而TSV是4pJ/bit。延遲方面,hybrid bonding只有0.5ns,而TSV方案是3ns。」台積電在3D堆疊方面的領先優勢其實也體現在hybrid bonding混合鍵合上,前文也提到了它具備更高的互連密度和效率。

    另外這套方案還將DRAM刷新頻率提高了一倍,從64ms提高至128ms,以降低功耗。「應對刷新率變慢出現拖尾bit,我們引入RRAM TCAM索引這些tail bits」劉明說。

    記憶體內運算方面,「傳統運算是用布林邏輯,一個4位元的乘法需要用到幾百個電晶體,這個過程中需要進行資料來回的移動。記憶體內運算是利用單一元件的歐姆定律來完成一次乘法,然後利用基爾霍夫定律完成列的累加。」劉明表示,「這對於今天深度學習的矩陣乘非常有利。它是原位的運算和儲存,沒有資料搬運。」這是記憶體內運算的常規思路。

    「無論是基於SRAM,還是基於新型記憶體,相比近記憶體運算都有明顯優勢,」劉明認為。下圖是記憶體內運算和近記憶體運算,精準度、能效等方面的對比,記憶體內運算架構對於低精準度運算有價值。

    下圖則總結了業內主要的一些記憶體內運算研究,在精確度和能效方面的對應關係。劉明表示,「需要高精確度、高運算力的情況下,近記憶體運算目前還是有優勢。不過記憶體內運算是更新的技術,這幾年的進步也非常快。」

    去年阿里達摩院發佈2020年十大科技趨勢中,有一個就是存算一體突破AI算力瓶頸。不過記憶體內運算面臨的商用挑戰也一點都不小。記憶體內運算的通常思路都是類比電路的運算方式,這對記憶體、運算單元設計都需要做工程上的考量。與此同時這樣的晶片究竟由誰來造也是個問題:是記憶體廠商,還是數文書處理器廠商?(三星推過記憶體內運算晶片,三星、Intel垂直整合型企業似乎很適合做記憶體內運算…)

    (2)神經型態運算:神經型態運算和記憶體內運算一樣,也是新興技術的熱門話題,這項技術有時也叫作compute in memory,可以認為它是記憶體內運算的某種發展方向。神經型態和一般神經網路AI晶片的差異是,這種結構更偏「類人腦」。

    進行神經型態研究的企業現在也逐漸變得多起來,劉明也提到了AI晶片「最終的理想是在結構層次模仿腦,元件層次逼近腦,功能層次超越人腦」的「類腦運算」。Intel是比較早關注神經型態運算研究的企業之一。

    傳說中的Intel Loihi就是比較典型存算一體的架構,「這片裸晶裡面包含128個小核心,每個核心用於模擬1,024個神經元的運算結構。」宋繼強說,「這樣一塊晶片大概可以類比13萬個神經元。我們做到的是把768個晶片再連起來,構成接近1億神經元的系統,讓學術界的夥伴去試用。」

    「它和深度學習加速器相比,沒有任何浮點運算——就像人腦裡面沒有乘加器。所以其學習和訓練方法是採用一種名為spike neutral network的路線,功耗很低,也可以訓練出做視覺辨識、語言辨識和其他種類的模型。」宋繼強認為,不採用同步時脈,「刺激的時候就是一個非同步電動勢,只有工作部分耗電,功耗是現在深度學習加速晶片的千分之一。」

    「而且未來我們可以對不同區域做劃分,比如這兒是視覺區、那兒是語言區、那兒是觸覺區,同時進行多模態訓練,互相之間產生關聯。這是現在的深度學習模型無法比擬的。」宋繼強說。這種神經型態運算晶片,似乎也是Intel在XPU方向上探索不同架構運算的方向之一。

    (2)微型化矽光:這個技術方向可能在層級上更偏高了一些,不再晶片架構層級,不過仍然值得一提。去年Intel在Labs Day上特別談到了自己在矽光(Silicon Photonics)的一些技術進展。其實矽光技術在連接資料中心的交換機方面,已有應用了,發出資料時,連接埠處會有個收發器把電訊號轉為光訊號,透過光纖來傳輸資料,另一端光訊號再轉為電訊號。不過傳統的光收發器成本都比較高,內部元件數量大,尺寸也就比較大。

    Intel在整合化的矽光(IIIV族monolithic的光學整合化方案)方面應該是商業化走在比較前列的,就是把光和電子相關的組成部分高度整合到晶片上,用IC製造技術。未來的光通訊不只是資料中心機架到機架之間,也可以下沉到板級——就跟現在傳統的電I/O一樣。電互連的主要問題是功耗太大,也就是所謂的I/O功耗牆,這是這類微型化矽光元件存在的重要價值。

    這其中存在的技術挑戰還是比較多,如做資料的光訊號調變的調變器調變器,據說Intel的技術使其實現了1,000倍的縮小;還有在接收端需要有個探測器(detector)轉換光訊號,用所謂的全矽微環(micro-ring)結構,實現矽對光的檢測能力;波分複用技術實現頻寬倍增,以及把矽光和CMOS晶片做整合等。

    Intel認為,把矽光模組與運算資源整合,就能打破必須帶更多I/O接腳做更大尺寸處理器的這種趨勢。矽光能夠實現的是更低的功耗、更大的頻寬、更小的接腳數量和尺寸。在跨處理器、跨伺服器節點之間的資料互動上,這類技術還是頗具前景,Intel此前說目標是實現每根光纖1Tbps的速率,並且能效在1pJ/bit,最遠距離1km,這在非本地傳輸上是很理想的數字。

    還有軟體…

    除了AI晶片本身,從整個生態的角度,包括AI感知到運算的整個鏈條上的其他組成部分,都有促成性能和效率提升的餘地。比如這兩年Nvidia從軟體層面,針對AI運算的中間層、庫做了大量最佳化。相同的底層硬體,透過軟體最佳化就能實現幾倍的性能提升。

    宋繼強說,「我們發現軟體最佳化與否,在同一個硬體上可以達到百倍的性能差距。」這其中的餘量還是比較大。

    在AI開發生態上,雖然Nvidia是最具發言權的;但從戰略角度來看,像Intel這種研發CPU、GPU、FPGA、ASIC,甚至還有神經型態運算處理器的企業而言,不同處理器統一開發生態可能更具前瞻性。Intel有個稱oneAPI的軟體平台,用一套API實現不同硬體性能埠的對接。這類策略對廠商的軟體框架構建能力是非常大的考驗——也極大程度關乎底層晶片的執行效率。

    在摩爾定律放緩、電晶體尺寸微縮變慢甚至不縮小的前提下,處理器架構革新、異質整合與2.5D/3D封裝技術依然可以達成1,000倍的性能提升;而一些新的技術方向,包括近記憶體運算、記憶體內運算和微型矽光,能夠在資料訪存、傳輸方面產生新的價值;神經型態運算這種類腦運算方式,是實現AI運算的目標;軟體層面的最佳化,也能夠帶動AI性能的成倍增長。所以即便摩爾定律嚴重放緩,AI晶片的性能、效率提升在上面提到的這麼多方案加持下,終將在未來很長一段時間內持續飛越。這第三(四)次科技革命恐怕還很難停歇。

    資料來源:https://www.eettaiwan.com/20210726nt61-ai-computing/?fbclid=IwAR3BaorLm9rL2s1ff6cNkL6Z7dK8Q96XulQPzuMQ_Yky9H_EmLsBpjBOsWg

  • 無法辨識的網路無網路存取 在 台灣物聯網實驗室 IOT Labs Facebook 的最讚貼文

    2021-03-12 15:12:39
    有 1 人按讚

    【中鋼AI現場1:1千5百度高熱密閉生產環境如何監控?】高爐AI應用大剖析

    中鋼靠間接量測高爐生產數據,一步步打開黑盒子,運用AI即時監控爐況,提早預測異常生產狀況即時應變

    文/翁芊儒 | 2021-03-04發表
    攝影/洪政偉

    高爐之於鋼廠,是不可或缺的一環。飄洋渡海的鋼鐵原料從港口上岸後,會先由煉焦工廠製成焦炭、燒結工廠製成燒結礦與鐵礦,加入其他次要原料後,就會來到鋼鐵融煉的第一站,高爐。

    高爐的作用,就是透過一連串高溫熔融反應,將鋼鐵原料煉成鐵水。雖然說起來容易,實際上,高爐卻是一個複雜的煉鐵反應器。中鋼煉鐵廠高爐二課課長許雍達解釋,每一座高爐,都集合了非常多系統於一身,包括了爐體本身冷卻系統、熱風爐、原料輸送、出鐵、爐氣處理、頂壓回收發電、噴媒等環節,每個系統互相搭配,才能維持高爐穩定運作。

    這個系統中,真正煉製鐵之處,就是外觀形似巨大養樂多瓶的高爐爐身。其運作原理,是從上方加入煉鐵原料,以一層焦炭、一層燒結礦與鐵礦的方式,盡量將原料均勻散布其中,再透過周邊的熱風爐,將空氣加熱,從高爐下部的鼓風嘴鼓進高爐,來加熱、還原,將鐵礦石融煉成鐵水與爐渣。

    熔煉過程中,中鋼也透過鼓風嘴噴吹粉煤,來取代部分焦炭作為還原劑,可降低煉焦爐的負荷,並有利於爐熱調節;而爐內產生的高爐氣,也能在淨化後用來發電,並作為熱風爐及廠內的燃料,來達成節能、減少碳排放的效益。最後的鐵水與爐渣,則會分開取出,各自進行下一步的加工或販售。

    許雍達指出,這套高爐生產的做法,早從十多年前就持續運作至今,但在過去,高爐內部高溫、密閉且不易觀測,難以得知爐況是否符合預期,「比如原料一層一層加入之後,到底分佈均不均勻?又要如何在爐溫下降之前,提早預測來因應?」

    這些問題,隨著IoT與AI技術日漸成熟,中鋼開始蒐集更多生產數據,逐步翻轉過去熟悉的高爐運行操作。

    落地27項高爐智慧應用,更即時掌握高爐生產動態

    中鋼約從3年前開始,致力於研發高爐AI,不只開發高爐爐況監控的相關應用,也開發周邊設備的AI應用,比如原料輸送帶的預測維修、熱風爐生產效率與耗能監控、現場人員的安全監控等,截至今年初,已經完成27項高爐智慧應用的開發,依據應用的特性與適用場域,分散部署在4座高爐中。

    由於高爐本身就像是一個黑盒子,為了掌握高爐的生產狀況,中鋼在高爐上裝設了多種感測器,就是要靠各種生產數據,一步步將盒子打開。

    比如說,從高爐上方布料時,雖然是均勻旋轉布料,但實際布料情況還是會依據爐內氣流變化而改變,為了監控布料狀況並適時調整,中鋼在布料槽裝設了料面溫度儀與輪廓儀,來掌握布料形狀與高溫氣體的分布情形。在爐壁上,中鋼也裝測了溫度感測器,透過爐壁溫度變化頻率,來預測爐壁冷卻元件是否受侵蝕、內部是否結塊。

    不只如此,為了預測爐熱變化,中鋼量測出鐵口的鐵水溫度變化,參考操作條件、鐵渣的化性分析,開發AI預測未來爐熱;也運用爐溫爐壓分布的異常數值,找出發生管道流異常的可能性。透過更即時發現異常並自動預警,就是要讓產線人員盡早發現問題,才能提前調整生產參數來因應。

    而且,針對所有開發的生產數據監控與AI應用,中鋼開發了綜合爐況評分機制,能從原料分佈、氣流狀況、目前風量、鐵水產量、爐內溫度等生產狀況,為高爐當下的運行表現評分,讓產線人員可以更直覺、快速地的了解當前高爐爐況,「中鋼自己設定的目標,是要隨時大於89分以上,」許雍達說。

    克服AI落地挑戰,中鋼導入一站式生產數據監控平臺

    中鋼過去開發AI應用時,是由技術人員設法取得生產數據,開發出AI模型,再由IT單位開發成應用程式,個別部署到現場中控室的單機電腦中。

    許雍達指出,這個做法面臨了三大挑戰。首先,當時從生產環境蒐集到的資料,位於封閉式的生產系統中,為避免透過外部線路存取資料時,可能帶來的資安風險,「研究人員不能輕易的取得生產數據資料,分析費時費力。」

    再加上,每一支開發完成的應用程式,都必須部署到中控室的單機電腦中,透過視窗介面來呈現,在應用程式分散在多臺電腦的情況下,增加了電腦、網路的維護工作。不只如此,隨著蒐集到的資料量更大,AI分析也需要更大量的硬體運算需求,原有的主機資源逐漸不敷使用。

    這三大挑戰,讓中鋼在2019年底,率先在二號高爐場域,規劃建置AIoT智慧分析平臺,更找來研究部門、子公司中冠資訊共同研發,利用二號高爐在去年大修的期間,同步導入該場域。

    這套AIoT平臺最主要的目的,是要將分散部署在不同電腦的AI應用,整合到同一個Web平臺中,讓員工只要以瀏覽器開啟入口網站,登入帳密,就能一站式管理高爐所有的生產資訊。

    建置過程中,中鋼不只以Web介面重新設計AI應用儀表板,也將過去難以取得的生產數據整合到一個資料平臺,供技術人員更方便的分析取用資料,更建置了專屬AI應用的硬體資源,取代分散部署到電腦主機的方法。

    許雍達指出,AIoT平臺上線後,中控人員不只能即時查看重要的生產資訊,當高爐發生任何異常狀況,平臺也會自動觸發告警,並顯示操作指引,讓員工可以依照指示排除異常,將異常狀況可能帶來的傷害降到最低。

    比如說,當AI偵測到四號高爐的爐身發生結塊,就能利用過去一段時間的溫度變化,去推測結塊情形的演變,系統也會提供操作指引,來建議員工應使用哪一種應對模式,才不會導致結塊問題更嚴重。

    處置完成後,員工也可以直接在介面中回報,將此次事故處理過程提交出去,作為歷史維運紀錄,而且,過去類似事故的處理方法與結果,也會同步附件於操作指引的介面中,提供緊急處理時參閱。

    除了上線網頁版的AIoT監控平臺,中鋼也接續打造了行動裝置版本,只要安裝到手機上,具登入權限的中控人員,就能隨時隨地掌握生產即時動態,了解異常狀態資訊。

    今年初,二號高爐完成大修,這套AIoT平臺已經導入二號高爐場域中。中鋼也正在規劃,要將AIoT平臺導入其他座高爐中。許雍達表示,更長久的計畫,則是要開發煉焦、燒結兩大原料加工廠的智能模組,並且整合到AIoT平臺來監控運用,「這樣一來,我們在高爐的現場就能看到原料加工廠的生產數據,如果有異況,高爐也能同步調整、配合。」

    高爐AI應用大剖析

    「高爐出了問題,就得降風停產,如果能見微知著,在發生狀況前預先防範,就能降低損失產量的風險。」中鋼技術部門代理副總經理鄭際昭,一句話點出高爐AI的重要性。

    用AI煉鐵,導入27項高爐場域智慧應用,被中鋼視為第一個進化里程。27項應用中,中鋼不只開發高爐爐況分析監控,也開發周邊設備的AI應用,比如原料輸送帶的預測維修、熱風爐生產效率與耗能監控、現場人員的安全監控等。

    其中,高爐本身的爐況監測,更是AI開發的重點任務,因為高爐就像是一個黑盒子,為了掌控高爐的生產狀況,中鋼得在高爐上裝設多種感測器,以AI監控生產數據,才能提前發現問題,並及早因應。

    因此,在眾多應用中,中鋼特別介紹7項與高爐爐況分析相關的智慧應用,揭密1,500度高熱密閉的生產環境,如何靠AI監控。

    1 爐內布料情形監控

    技術關鍵 靠掃描感測儀器與熱像儀,偵測原料、粉塵、高溫氣體分佈狀況,並將資料視覺化

    效用 監控氣流是否穩定、布料形狀是否符合預期

    將原料從爐頂添加到高爐時,過去無法得知實際布料狀況,但現在,中鋼在爐頂布建掃描感測儀器,就能即時偵測原料在高爐內的分佈,同時透過爐內的熱像儀,掃描粉塵、高溫氣體的分佈,就能比對得知目前氣流是否穩定,布料形狀是否符合預期。中鋼也將量測到的數據,以視覺化的方式來呈現。

    2 管道流預警AI

    技術關鍵 透過AI判斷爐內壓力與溫度分布是否超過異常值,來預測管道流異常

    效用 提早預測管道流異常發生可能性,調整生產參數來因應

    一般來說,高爐運作的理想情況,是從下面鼓風,爐氣均勻往上傳遞,將原料還原熔融。但是,若爐氣無法穩定通過爐料,而是累積在某個區塊,就可能因為壓力蓄積過大往上竄出,造成爐頂洩壓閥排放,或造成設備損傷。「氣集中在一個地方,壓力大到一個程度就會往上衝,就好像人打嗝,不能等到衝上來,要想辦法及時拯救。」鄭際昭形容。

    為了提早發現管道流的情形,中鋼在高爐爐殼上設置壓力量測與溫度量測點,分別將溫度與壓力的分佈視覺化呈現,若結合兩者數值,發現壓力差超過異常值,或是局部溫度過高,AI判斷為管道流異常可能發生,「系統會發出預警,引導操作人員先降低風壓、風量,」中鋼煉鐵廠高爐二課課長許雍達表示,越早預測出管道流異常,就能越早調整生產參數,來避免管道流發生。

    3 爐壁厚度監測AI

    技術關鍵 透過爐壁探鑽深度與周圍壁面溫度變化的關聯性,訓練AI靠爐壁溫度變化,判斷爐壁厚薄

    效用 預測爐壁冷卻元件受損情形,安排檢修時程

    高爐爐壁冷卻元件(冷卻壁)若被蝕破,就可能造成嚴重的生產危機。然而,單從高爐外觀,無法得知爐壁冷卻元件被侵蝕的程度,中鋼以往只能定期量測來推斷爐壁狀況,定期檢修,來降低意外風險。

    要監測爐壁厚薄,中鋼在爐壁裝設測溫感測器,找出溫度與爐壁厚薄的關聯性。鄭際昭解釋,一般來說,爐壁變薄後,測得的爐壁溫度會升高,雖然鐵水在壁面結塊或脫落,也會造成可能造成溫度改變,但相較於正常爐壁狀況,溫度變化頻率會較為劇烈。

    因此,中鋼以探鑽點位附近的歷史溫度變化,結合實際探鑽的厚度訓練AI模型,再套用到高爐其他測溫點位上,來推測爐壁不同位置的侵蝕狀況。

    4 爐壁結塊預測AI

    技術關鍵 透過爐壁溫度變化頻率預測結塊情形

    效用 監測到爐壁溫度變化異常,提早因應避免結塊情形惡化

    高爐溫度一旦降低,就可能造成鐵水冷卻結塊、附著在爐壁上,若爐壁的結塊大量滑落,導致爐氣異常溢出,就可能發生操作上的危險,「許多高爐曾經因為高爐內部結塊過大,掉落時打到鼓風嘴,導致鼓風元件受損漏氣。」許雍達說。

    為了維持爐況穩定與操作安全,中鋼開發了爐壁結塊預測AI,當發現溫度變化波動越來越小,就能推測爐壁內部結塊,並提前調整高爐的生產條件,避免結塊情形更嚴重。

    許雍達表示,這套AI應用目前部署在三、四號高爐,因為這兩座高爐的爐內冷卻元件形式與一、二號高爐不同,更容易發生產生爐壁結塊問題,較有應用AI的急迫性。

    5 爐熱溫度預測AI

    技術關鍵 量測出鐵口的鐵水溫度變化,參考操作條件、鐵渣的化性分析,學習預測未來爐熱

    效用 預測未來2~4小時內的爐熱變化,提前調整生產參數來因應

    對於正在生產鐵水的高爐來說,必須維持一定的爐熱,高爐才能穩地熔煉鐵水,若溫度異常大幅下降,就可能造成爐冷危機,需花費許多時間調整加熱,一旦惡化至鐵水凝固無法排出,復原工作會很困難。

    「發生一次就是上億的損失,所以我們要盡可能避免走到這一步。」鄭際昭點出爐熱預測的重要性。

    中鋼在建立爐熱溫度預測AI時,就是透過量測出鐵口的鐵水溫度變化,參考操作條件、鐵渣的化性分析,學習預知未來2~4小時的爐熱趨勢,藉此訓練出爐熱預測的AI,若預測到未來爐熱可能下降,就能即時調整生產參數,微調風溫、噴煤量,來維持爐熱的穩定。

    6 鼓風嘴噴煤預警AI

    技術關鍵 透過大量鼓風嘴噴煤影像訓練AI判斷異常

    效用 自動化找出噴煤槍過短、噴煤口堵塞等異常影像,減少人力監控負擔

    中鋼透過在鼓風嘴噴吹粉煤,來減少原料焦炭的使用,同時,也能透過粉煤噴吹量來調節爐熱。不過,粉煤噴吹的狀況,過去需要人工監控,透過攝影機將風口影像傳輸到中控室,來監測是否發生噴嘴阻塞、或是噴煤槍設備耗損的情形,而且,需監控的影像還不只一個,光是二號高爐就有30個風口影像需要監控。

    為了減少人力的負擔,中鋼正在運用歷史監測影像,訓練影像辨識AI,來自動監診噴煤槍設備,找出噴煤槍過短、噴煤口堵塞等異狀。

    7 高爐原料粒徑分析AI

    技術關鍵 透過原料粒徑影像資料,訓練AI進行粒徑分析

    效用 即時辨識原料粒徑大小與分布,調整入料情形來降低燃料率

    將原料送入高爐時,若原料的粒徑大小符合預期、分布較平均,有助於爐況穩定、降低燃料率。中鋼甚至推算,高爐燃燒料率每減少1%,每年可以減少上億的燃料經費,因此,中鋼用AI來即時辨識原料的粒徑大小,即時計算進入到高爐原料粒徑分布,以及是否混雜到其他原料等情況,再根據分析結果來調整原料分布,有助於穩定爐況、降低燃料率。

    附圖:光是二號高爐,中鋼就投資約5,700萬元來建置智慧應用,投資的金額雖大,但帶來的效益更可觀,預估每年可以降低成本3,270萬元,減少排放溫室氣體2,217噸。(攝影/洪政偉)

    資料來源:https://www.ithome.com.tw/news/142938

你可能也想看看

搜尋相關網站