[爆卦]灰階化原理是什麼?優點缺點精華區懶人包

雖然這篇灰階化原理鄉民發文沒有被收入到精華區:在灰階化原理這個話題中,我們另外找到其它相關的精選爆讚文章

在 灰階化原理產品中有16篇Facebook貼文,粉絲數超過3萬的網紅AREA 02,也在其Facebook貼文中提到, 還記得我嗎? Clot x Nike 不只是傳奇時光機更是帥氣製造機 😎 Clot 傳送門這邊請 👉 https://bit.ly/3fR2Wwy Clot x Nike Air Max 1 於 2006 年首次發布,標誌著以陳冠希為名的潮流文化 Clot 與 Nike 在球鞋領域合作的開始。將傳...

 同時也有1部Youtube影片,追蹤數超過149萬的網紅啾啾鞋,也在其Youtube影片中提到,這張圖片其實是用了人們視覺上的"色彩同化"現象,讓網格上的顏色可以融入灰階的背景中,產生彩色的錯覺。 支持啾啾鞋▶https://goo.gl/JzXgfv 啾啾鞋整理資料的秘訣 ▶ https://bit.ly/2vi0urX ▼啾啾鞋的人氣影片▼ 我是如何考到多益910分的? https://...

灰階化原理 在 KNCKFF 值得信任的球鞋交易平台 Instagram 的最佳貼文

2021-08-18 11:20:56

還記得我嗎? Clot x Nike 不只是傳奇時光機更是帥氣製造機 😎 Clot x Nike Air Max 1 於 2006 年首次發布,標誌著以陳冠希為名的潮流文化 Clot 與 Nike 在球鞋領域合作的開始。將傳統中醫的足底反射療法與穴位點按原理巧妙融入 Nike 的現代創新設計中,生...

  • 灰階化原理 在 AREA 02 Facebook 的精選貼文

    2021-08-10 16:05:59
    有 55 人按讚

    還記得我嗎? Clot x Nike
    不只是傳奇時光機更是帥氣製造機 😎
    Clot 傳送門這邊請 👉 https://bit.ly/3fR2Wwy

    Clot x Nike Air Max 1 於 2006 年首次發布,標誌著以陳冠希為名的潮流文化 Clot 與 Nike 在球鞋領域合作的開始。將傳統中醫的足底反射療法與穴位點按原理巧妙融入 Nike 的現代創新設計中,生動詮釋了 Clot 融合東西方文化的理念。 15 年後的今天,這款曾經風靡全球的經典鞋款煥新歸來,其革新結構搭配透明鞋面,令它神秘的內部構造一覽無餘!

    除此之外,經典的「死亡之吻」華麗回歸,也透過當年的面貌與傳奇述說新的篇章概念!Cha 配色以中國文化中「茶道」為主題打造,透過土色灰階呈現傳統!而最新 Solar Red 配色則是以 Kanye West 在 2006 年在香港舉辦的 “Touch The Sky” 巡迴演唱會中的客製鞋款為靈感,再次回歸當年僅製作四雙的獨家款式!完整回顧並穿梭當代風采。

    🚨 注意,掌握燒貨秘密武器!
    🔍 「AREA 02 」APP 隨時下單更快速
    👉 https://bit.ly/3eWXc3T

    🚀 警戒降級,帥度升級
    ✨ 免運折扣碼「AREA02AUG」
    💪🏻 8/8-22 消費滿萬即抽 PS5 入手機會!
    👉🏻 https://bit.ly/3lHnUBT

    #AREA02 #原KNCKFF那個平台
    #MYAREA #我的場子

  • 灰階化原理 在 台灣物聯網實驗室 IOT Labs Facebook 的精選貼文

    2021-07-14 13:32:21
    有 0 人按讚

    彩色電子紙來了!除了電子書閱讀器外,在物聯網的應用場景更廣泛

    HaopengHaopeng 發表於 2021年6月22日 09:00 2021-06-22

    彩色電子紙來了!除了電子書閱讀器外,在物聯網的應用場景更廣泛

    一般大眾對於電子紙的認識,大多來自電子書。這幾年許多電子書閱讀器投入台灣的市場,讓大家對於電子書閱讀器所使用的電子紙有了更多的了解。但電子紙能做的事情,不是只有電子書閲讀而已,而是試圖要取代紙張。

    現在全世界每分鐘大約消耗了2千萬張A4大小的紙張,換算下來大概是100公噸的重量;而每生產1公噸的紙張,需要20棵生長20-40年,直徑16公分,高8公尺的樹木。從這簡單的數字中,我們大概就可以看出人類因為紙張的需求對於森林的砍伐有多麼嚴重。

    20多年前個人電腦剛進入消費市場時,「無紙化辦公室」這個口號喊的震天嘠響。但20多年過去了、人類對於紙張的使用則是有增無減;手寫時代寫錯字大多用修正液修改,沒人想花時間再重抄一份;但到了電腦時代,哪怕只錯了一個字就可能電腦修改完後重新再列印一份,這導致紙張的使用不減反增。

    不過隨著電子紙技術的進步,現在有可能可以朝著「無紙化」再前進一步。現在的電子紙的發展有什麼值得我們關心的嗎?

    電子紙特性:反射式和雙穩態

    電子紙的技術有很多種,像是電泳式、液晶型、微機電型.......等。但目前技術最成熟,商品化最成功的,就是元太科技電泳式電子墨水技術,目前超過九成的市場佔有率。

    電子墨水是一種液態的材質,在這些液態材料中懸浮著成千上萬的微膠囊,每個微膠囊的大小差不多等於頭髮的直徑。然後將這些「墨水」透過開發的技術「印刷」到相關的介質表面,再貼覆上薄膜電晶體(TFT)電路,經由驅動IC控制,形成像素圖形。

    一般大眾覺得電子紙有二大好處,分別是「護眼」和「省電」,而這就有依賴電子紙的「反射式」和「雙穩態」這兩個特性。

    反射式讓電子紙和一般紙張一樣,需要有外在光源才能透過反射看見畫面,所以可以在戶外和陽光閲讀,成像後畫面不閃爍的特性也和紙張一樣,因此長時間閲讀眼睛比較不疲勞。而雙穩態則只有在元件被驅動時才會耗電,成像後顯示的靜態畫面並不使用電力,直到下一次更換顯示畫面時。簡單的說就是「持續顯示不耗電」。

    雙穩態省電

    我們所熟知的黑白電子墨水的面板中,會幾百萬個微小的膠囊,每個膠囊裡都有帶負電的白色電子墨水粒子和帶正電的黑色電子墨水粒子,利用正負相吸的原理,當電場接通時,對應的黑色粒子或白色粒子,就會被吸附到面板的頂端,我們就可以在面板上看到黑色或白色。

    利用這種方法,就可以在面板上排列顯示出我們所需要的文字或圖形。而一旦電子墨水排列固定後、就不需要使用電力,一直到下一次需要更換排列時墨水粒子,因此電子紙螢幕比起LCD的螢幕省電許多。一般說來,電子書閱讀器,在特定條件甚至使用長達14天,這是一般利用手機閱讀辦不到的續航力。

    反射式護眼

    電子紙並不主動發光,所以你想看淸楚電子螢幕上所呈現的畫面,需要外在的光源,如同一般的書籍一樣。因此說電子紙護眼,其實是相對於LCD螢幕而言,因為LCD螢幕有個背光模組持續的發光,當你看電腦或手機螢幕時,光源是直射你的眼睛,因此有些人長時間看電腦或手機螢幕會覺得眼睛容易疲勞,加上光譜中最短波長最高能量的藍光問題,讓需要長時間閱讀人會選擇使用電子紙的產品。

    現在的電子書閱讀器都有閱讀燈的設計,這在早期的產品上是沒有的。早期的電子書閱讀器就如同真正的書本一樣,沒有外在光源就沒法看,但這顯然會讓電子書閱讀器的使用場景很受限,因此後來的電子書閱讀器才加上了閱讀燈的設計。

    但電子書閱讀器的閱讀燈並不是像LCD一樣加上背光模組,而是在螢幕的上方加上燈光照射,如同打開桌燈一樣,是反射式的。所以相較之下,對長時間閱讀的人來說,眼睛會比較舒服一點。

    彩色電子紙:Kaleido及E Ink Spectra

    彩色電子紙的發展已經有許多年的歷史,但一般大眾也大多是因為彩色電子書閱讀器才開始注意到彩色電子紙。長期以來電子書閱讀器只能顯示黑白的畫面,對於雜誌或是食譜之類的書籍來說顯然是不夠的,因此不斷的有讀者希望能夠推出彩色的電子書閱讀器。

    而這二年,也開始有使用彩色電子紙的閱讀器出現在市場上,但因為顯像原理的關係,解析度從黑白的300 PPI下降到100 PPI,因此看起來就沒有黑色電子紙那麼細膩。一般會需要彩色電子紙的閱讀環境大多是雜誌這種有許多照片的版式書籍,因此需要更大尺寸的螢幕。但大螢幕加上低解析度,在閱讀上就會是場災難,因此市面上目前的彩色電子閱讀器目前大多以小尺寸居多,除了成本的考量外, 螢幕的解析度也是重要的考量。

    但彩色電子紙技術出現擴大了電子紙的應用空間,讓電子紙不再侷限於閲讀的環境,而可以更進一步的和物聯網結合。目前元太的彩色電子紙主要有Kaleido、E Ink Gallery和E Ink Spectra這幾個系列。

    Kaleido

    Kaleido微膠囊電泳技術呈現彩色的方式是在黑白粒子的上方,再加上一層RGB的彩色濾光片(CFA)技術,透過光線的反射來呈現不同的顏色,再利用RGB這3原色來混合出其他的顏色,最高可以呈現4096的色彩,灰階的部分則是16階的灰階顯示。新的Kaleido Plus彩色濾光片則比前一代的Kaleido產品更輕更薄。

    但因為必須透過光線的反射才能呈現出色彩,所以在使用彩色電子紙的產品時,前光都必須開足,反射出來的顏色才會愈淸楚。因此在閱讀彩色電子書時,閱讀器的閱讀燈基本上都必須打開,很多使用者甚至都會把閲讀燈開到最亮。

    E Ink Spectra

    Spectra的色彩呈現方式則和Kaleido不太一樣,Kaleido是在黑白粒子上再加上彩色濾光片,但Spectra微杯電泳技術則不使用彩色濾光片,是在原有的黑白粒子外再加上不同顏色的粒子來呈現色彩。

    E Ink Spectra 3000在原有的黑色和白色粒子之外,再加上紅色的粒子,是一款三色電子紙;而Spectra 3100則會在黑、白、紅外,再加上黃色的粒子,是一款四色電子紙。

    Spectra透過電壓的控制讓不同顏色的粒子出現在面板的上方,排列出需要的圖案。但因為不像Kaleido需要透過彩色濾光片的反射,反應出來的是粒子的純色,顏色的飽合度會更好,同時4個顏色的粒子混合後、可以呈現多種顏色,所以適合用在廣告或大型海報。尤其紅色和黃色顏色非常鮮明,也很適合應用在零售業的環境。

    電子紙新應用:零售智慧化

    電子紙除了我們所熟知的電子書閱讀器,隨著IoT的興起,電子紙有了更大的應用空間。網路電商興起後,如何推動零售智慧化,讓線上、線下有更多的整合一直都是店家思考的方向。電子商務標錯價錢的事件層出不窮,當實體賣場遇到特價時,更換價格標籤則要花去大量的人力和時間。

    去年因為疫情的關係必須減少人和人的接觸,員工也儘量輪班上工,因此人力更為吃緊。在這種情況下,之前已經裝設了電子標籤的店家,開始享受它所帶來的好處,可以把寶貴的人力使用在服務客人等其他更有意義的地方。

    貨架的電子標籤

    台灣便利商店的密度之高,應該是全球之冠,以今年二月的統計數字來看,台灣有12,093間的便利商店。台灣便利商店的店員之能幹大家有目共睹,要結帳、補貨、應付各種繳貴,但其實更換貨架上的標籤,是很瑣碎的工作,也花去許多時間。

    以一個有六萬個品項的大賣場為例,平均有20%的品項每二周就會輪流的降價促銷,這意味著工作人員經常性的要為12,000個品項更換售價標籤,然後等到促銷結束,又要更換回來。每次更換標籤就需要花去6個小時的時間。

    除著去年的疫情升溫,許多零售業儘量減少工作人員到店,以減少感染的機會。在這樣的情況下,許多零售業開始使用電子標籤來減少無謂的人力耗損,希望能把寶貴的人力拿去對客戶做更好的服務,而不是更換標籤。

    每個電子標籤都會有一個獨立的識別碼,控管系統可以一次對每一張電子標籤的內容個別修改和調整。不僅大幅度的縮短更換標籤的時間、也減少人為作業可能產生的錯誤。

    運送箱的物流標籤

    電商這幾年的成長一直都很迅速,去年開始的疫情讓許多的使用者更選擇電商的服務。但大量的紙箱也造成紙張的浪費。歐盟規定從2030年,所有的紙箱都要能夠再重覆利用,許多的廠商也在材料改良和商業模式在做調整。但目前唯一還沒有辦法解決的,就是貼在運送箱上的物流貼紙。除了不利於重覆使用外,物流人員清理箱子上的殘膠也要花費大量的力氣。

    目前大部分的物流貼紙仍然都是紙質的貼紙,沒法重覆使用。但使用電子紙的物流標籤可以解決物流標籤重覆使用的問題,而且電子標籤結果其他的感應器後,可以即時得知物品的位置;甚至收貨後,只要按個按鈕就會自動通知相關人士去取回箱子

    E Ink能否替代LCD螢幕?

    雖然E Ink主要的目標是取代傳統紙張,但對於一般的使用者來說,難免會拿來和常見的LCD螢幕做比較。既然電子紙有護眼的特性,對於上班時需要長時間盯著螢幕看的工作者來說,如果把電腦用的螢幕換成電子紙的產品,不是更好嗎?

    但是E Ink因為技術原理的關係,螢幕更新速率沒有那麼快,所以大家最常接觸的電腦螢幕和手機螢幕大多是使用LCD的產品。但是其實仍然有少部分的廠商開發了使用電子紙螢幕的手機和電腦螢幕,但其實都比較像是概念性的產品,較少被大眾所接受。

    最早推出E Ink手機的是2010年的俄羅斯手機YotaPhone,它是一款雙螢幕手機,手機的一面使用LCD螢幕,另一面則採用E Ink。這款手機的銷量並不出色,2016年開始轉入中國發展,並在2017年推出YotaPhone 3,但是仍然沒有什麼起色,Yota在2019年宣布導閉。

    不過E Ink手機的概念開始有幾家中國廠商推出,像掌閱推出過4G的電子墨水手機,而海信更是在去年推出使用彩色電子紙的5G手機,也有廠商推出電腦使用的電子墨水螢幕。雖然電子紙的反應速率仍然比不上LCD螢幕,但現在有廠商推出25.3吋的電子紙顯示螢幕,透過粒子調控技術,讓反應速度大幅加快甚至可以播放動畫,雖然仍然不及LCD來的快,但已經相當適合文書與程式開發者使用,對於有乾眼症的患者來說更是一大福音。

    雖然說現在的電子紙也有閲讀燈的光線設計,不同於LCD的背光的直接照射,電子閲讀使用的是「前光」也就是光線是從上方照射電子墨水層,再依靠反射來呈現。因此即使是內建了閲讀燈的裝置,它仍然保有了護眼的特性。

    但整體來說,在播放影片或是需要快速反應時,E Ink還是比不上LCD,但反射式的特性,讓使用者在長時間使用時,眼睛會舒服一些。



    電子紙未來應用更廣
    電子紙並不是個新科技,它發展的時間幾乎和電腦一樣長,有30年的歷史了。在這段時間中,一般民眾習慣於電腦螢幕和手機螢幕,電子紙常被拿來和LCD做比較,反而突顯不出電子紙的特點。

    Amazon 於2007年底推出第一款的Kindle之後,電子書閲讀器輕薄容易攜帶、可以儲存大量的書籍和省電可以長時間閲讀的特性讓電子紙開始被大眾認知。2017讀墨推出台灣第一款本土自製的電子書閲讀器mooInk後,也在2021年推出彩色的電子書閲讀,在這4年之間,台灣民對電子紙的認識也愈來愈多。

    除了護眼、省電、輕薄之外,可折疊彎曲的特性,讓電子紙可以印刷在不同的表面上。隨著5G和物聯網的到來,大家未來看到電子紙的機會,將會比現在大得多。

    可折疊可捲曲
    電子紙的優點,除了我們之前說的護眼、省電和輕薄外,還有一個優點就是可以折疊、彎曲。

    這是因為電子墨水的膠囊是液態,所以比LCD螢幕更容易做成可折疊的產品,不受物體表面形狀的限制。

    以目前可以看到的應用來說,像是手錶的錶面可以顯示相關資訊,也可以打洞。或是國外也有人把電子紙縫製在帆船選手的運動服的前臂上,讓選手在激烈的動作中,仍然可以看到大會所發送的各種資訊。

    https://youtu.be/aC5gb9yM8I4

    ▲可摺疊的彩色電子紙。

    https://youtu.be/RijO7oY8k3M

    ▲可捲曲的電子紙。

    https://youtu.be/KCZnNSOzMkU

    ▲這些公車站牌是可以著不同公車進站的時間,動態更新資料。

    表單電子化

    在我們的生活經驗中,有許多的場合都需要填寫大量的相關資料,許多行業的表格填寫都是以紙本為主,像是保險的保單、就診時的表格或是銀行開戶時填寫的各式表單。新北市一個衛生所一年會填寫8,400張的表格,永豐銀行一年125個分行印出來的紙張加起來有2個101大樓那麼高。

    這些表格除了填寫之外,按照法規,有許多還需要保存七年之久。存儲這些文件的空間和條件都有一定的溫濕度要求,更別說真要查詢調閱多年前的資料時,搜尋調閱也是一個大問題。

    電子紙近年來最大的改變,就是加入了「手寫」的功能,因為加入了筆,讓電子紙在取代紙張上又向前跨進了一大步。而「儲存」和「搜尋」剛好都是數位化的強項,因此新北市衛生所和永豐銀行都開始讓民眾和客戶都已經開始使用電子筆記來做這些記錄。除了節省紙張外,也大大的降低了儲存的難度和提高搜尋的便利性。

    附圖:▲ 這張圖片可以很好的說明雙色電子墨水的原理 (圖片來源:元太科技)
    ▲ 因為反射式的特性,所以在大太陽下畫面仍然清晰可讀。
    ▲ 電子書閲讀器是一般民眾最熟知的電子紙應用
    ▲ 目前彩色電子書閲讀器使用的,大多是Kaleido的技術。
    ▲ Kaleido是在黑白粒子的上方,再加上一層新的RGB的彩色濾光片(CFA)技術,透過光線的反射來呈現不同的顏色。(圖片來源:元太科技)
    ▲ 目前彩色電子書閲讀器使用的,大多是Kaleido的技術。
    ▲ 彩色電子紙也可以應用在可重覆使用的員工識別證上。
    ▲ E Ink Spectra微杯電泳技術不使用彩色濾光片,是在原有的黑白粒子外再加上不同顏色的粒子來呈現色彩。(圖片來源:元太科技)
    ▲ 使用彩色電子紙製作的桌牌。
    ▲ E Ink Spectra 3000在原有的黑色和白色粒子之外,再加上紅色的粒子,是一款三色電子紙。(圖片來源:元太科技)
    ▲ 使用彩色電子紙製作的桌牌。
    ▲ 可重覆使用、更換的展示桌牌。
    ▲ 色彩鮮明,飽和度高的微杯技術很適合應用在桌牌或是廣告展示。
    ▲ 電子標籤可以省去更換大量貨架標籤的時間,把寶貴的人力用在服務客人。
    ▲ 電子標籤方便管理又可重覆使用的特性,在這波疫情中受到很大的歡迎。
    ▲ 2010年推出的俄羅斯手機YotaPhone,是一款雙螢幕手機。正面是LCD螢幕,背面是電子墨水螢幕。
    ▲ 透過這張圖,我們可以清楚的看到即使內建了閲讀燈的裝置,電子紙的光線仍然是來自於反射,因此還是保有護眼的優點。(圖片來源:元太科技)
    ▲ 2010年推出的俄羅斯手機YotaPhone,是一款雙螢幕手機。正面是LCD螢幕,背面是電子墨水螢幕。
    ▲ 使用彩色電子紙的手機
    ▲ 有些廠商開發的技術,可以讓顯示的螢幕更新速度幾乎可以媲美液晶螢幕。
    ▲ 手錶的錶面使用電子紙,可以在螢幕上打洞安裝指針;在太陽光下也可以很清楚的看見錶面上的訊息。
    ▲ 彩色電子紙也可以拿製作可重覆使用的員工門禁卡或訪客通行證。
    ▲ 電子墨水畫廊使用 ACeP全反射式的彩色電子紙,透過帶色的粒子,實現了包含八種原色的全色域顯示效果。可以使用在公共看板或是零售業促銷看板。
    ▲ 部分銀行和醫院已經開始使用電子表單來取代傳統的紙張。

    資料來源:https://www.techbang.com/posts/87328-colored-electronic-paper-is-coming-in-the-age-of-the-internet?fbclid=IwAR2uJghIo-xDa7fZ3uGJ6OvgBt1ARznUiFcuBMON24C0-WcNViM9v9a9oqg

  • 灰階化原理 在 台灣物聯網實驗室 IOT Labs Facebook 的精選貼文

    2021-05-29 18:18:27
    有 0 人按讚

    機器學習識別特徵阻絕代測 上鏈回送監理資料庫防竄改

    人臉辨識加酒精鎖阻酒駕 串區塊鏈上傳比對告警

    2021-05-24社團法人台灣E化資安分析管理協會元智大學多媒體安全與影像處理實驗室

    本文將介紹酒精防偽人臉影像辨識系統,結合了人臉辨識、酒精鎖以及區塊鏈應用,以解決酒駕問題,並透過監控系統避免代測狀況發生。且利用區塊鏈不可修改的特性,將車輛與人臉資料串上區塊鏈,以確保駕駛人的不可否認性。

    長長期以來「酒駕」都是一個很嚴肅且必須被重視的議題,儘管在2019年立法院修法酒駕及拒絕酒測的罰則,但是抱持僥倖心態的人還是數不勝數,導致因酒駕釀成車禍的悲劇還是一再重演,讓不少的家庭因此破滅。

    據統計,從2015年到2018年的酒駕取締件數都逾10萬件,而因為酒駕車禍的死亡人數逾百人。在2019年酒駕新制上路以後,2020年警方酒駕取締件數有明顯下降至約6萬件,雖然成功達到嚇阻效果,但是死亡人數仍與去年前年持平,可見離完全遏止酒駕還有很長的路需要努力。

    立法院於2018年三讀通過了「道路交通管理處罰條例部分條文修正案」,酒駕者必須重新考照,並且只能駕駛具有酒精鎖(Alcohol Interlock)的車輛,所謂酒精鎖,屬於車輛點火自動鎖定裝置,在汽車發動前必須進行酒測,通過才能將汽車發動,而且在每45分鐘至60分鐘後酒精鎖系統就會要求駕駛人在一定時間內進行重新酒測,以便防範在行車過程中有飲酒的情況發生,若駕駛人未遵守其要求,車子就會強制熄火並鎖死,必須回酒精鎖服務中心才能將鎖解開。

    由於法案的方式無法完全遏止酒駕,因此許多創新科技或是企業致力於研究相關科技來解決酒駕的問題。

    其中本田(Honda)汽車與日立(Hitachi)公司研發出手持型酒精含量檢測裝置,讓駕駛人必須在駕駛之前都先進行酒測,若酒精濃度超標就會將汽車載具上鎖,藉此避免酒駕意外或事故發生,且該技術結合了智慧鑰匙功能,若偵測到酒測值超標,車輛中的顯示面板將會發出警告訊號告知駕駛人,避免酒駕上路之問題。

    另一方面則是解決酒精殘值之問題,因為有許多駕駛人都會認為,休息一下後,身體也無感到不適,即駕車出門,等到駕駛人被警方臨檢時才知道酒測未通過,因此收到罰單,甚至是吊銷駕照處罰等。

    根據醫學研究指出,酒精是在人體體內由肝臟代謝,實際代謝時間必須看體質以及飲酒量而定。台灣酒駕防制社會關懷協會建議,喝酒後至少要10至20小時後再駕車比較安全。多數人無具備酒精代謝時間的觀念,導致駕駛人貿然上路,待意外發生或罰單臨頭時,已經為時已晚。

    背景知識說明

    本文介紹的方法為酒精鎖結合攝影鏡頭進行人臉辨識,並將人臉特徵資料與車輛資料串上區塊鏈,並利用區塊鏈不可篡改的特性,來避免駕駛人在解鎖酒精鎖時發生他人代測的問題。

    由於人臉辨識技術具備防偽性、身分驗證的特性,因此將酒精鎖的技術結合人臉辨識,便可確認為駕駛本人。

    何謂人臉辨識

    人臉辨識技術屬於生物辨識的一種,基於人工智慧、機器學習、深度學習等技術,將大量人臉的資料輸入至電腦中做為模型訓練的素材,讓電腦透過演算法學習人類的面部特徵,藉以歸納其關聯性最後輸出人臉的特徵模型。

    目前人臉辨識技術已經遍佈在日常生活之中,其應用面廣泛,最為常見的應用即為智慧型手機的解鎖、行動支付如LINE Pay、Apple Pay等,其他應用還包括行動網路銀行、網路郵局、社區大樓門禁管理系統、企業監控系統、機場出入關、智能ATM、中國天眼系統等。一般來說,人臉辨識皆具備以下幾個特性:

    ‧ 普遍性:屬於任何人皆擁有的特徵。

    ‧ 唯一性:除本人以外,其他人不具相同的特徵。

    ‧ 永續性:特徵不易隨著短時間有大幅的改變。

    ‧ 方便性:人臉辨識容易實施,設備容易取得,如相機鏡頭。

    ‧ 非接觸性:不須直接接觸儀器,也可以進行辨識,這部分考量到衛生問題以及辨識速度。

    人臉辨識透過人臉特徵的分析比對進行身分的驗證,別於其他生物辨識如虹膜辨識、指紋辨識,無須近距離接觸,也可以精準地辨識身分,且具有同時辨識多人的能力。因應新冠肺炎疫情肆虐全球,人臉辨識技術也被用來管理人來人往的人流。人臉辨識的儀器可以搭配紅外線攝影機來測量人體體溫,在門禁進出管制系統中,利於提高管理效率,有效掌握到進出人員的身分,以及幫助衛生福利部在做疫調時更容易掌握到確診病患行經的足跡。

    人臉辨識的步驟

    人臉辨識的過程與步驟,包括人臉偵測、人臉校正、人臉特徵值的摘取,進行機器學習與深度學習、輸出人臉模型,從影像中先尋找目標人臉,偵測到目標後會將人臉進行預處理、灰階化、校正,並摘取特徵值,接著人臉資料交給電腦進行機器學習與深度學習運算,最後輸出已訓練好的模型。相關辨識的步驟,如圖1所示。

    人臉偵測

    基於Haar臉部檢測器的基本思想,對於一個一般的正臉而言,眼睛周圍的亮度較前額與臉頰暗、嘴巴比臉頰暗等其他明顯特徵。基於這樣的模式進行數千、數萬次的訓練,所訓練出的人臉模型,其訓練時間可能為幾個小時甚至幾天到幾周不等。利用已經訓練好的Haar人臉特徵模型,可以有效地在影像中偵測到人臉。

    Python中的Dilb函式庫提供了訓練好的人臉模型,可以偵測出人臉的68個特徵點,包括臉的輪廓、眉毛、眼睛、鼻子、嘴巴。基於這些特徵點的資料就能夠進行人臉偵測,如圖2~4所示。圖中左上角的部分是偵測到的分數,若分數越高,代表該張影像就越可能是人臉,右側括弧中的編號代表子偵測器的編號,代表人臉的方向,其中0為正面、1為左側、2為右側。

    人臉的預處理

    偵測到人臉後,要針對圖片進行預處理。通常訓練的影像與攝影鏡頭拍出來的照片會有很大的不同,尤其會受到燈光、角度、表情等影響,為了改善這類問題,必須對圖片進行預處理以減少這類的問題,其中訓練的資料集也很重要:

    ‧ 幾何變換與裁剪:將影像中的人臉對齊與校正,將影像中不重要的部分進行裁切,並旋轉人臉,並使眼睛保持水平。

    ‧ 針對人臉的兩側用直方圖均衡化:可以增強影像中的對比度,可以改善過曝的影像或是曝光不足的問題,更有效地顯示與取得人臉目標的特徵點。

    ‧ 影像平滑化:影像在傳遞的過程中若受到通道、劣質取樣系統或是受到其他干擾導致影像變得粗糙,藉由使用圖形平滑處理,可以減少影像中的鋸齒效應和雜訊。

    人臉特徵摘取

    關於人臉特徵摘取,相關的技術說明如下:

    ‧ 歐式距離:人臉辨識是一個監督式學習,利用建立好的人臉模型,將測試資料和訓練資料進行匹配,最直觀的方式就是利用歐式距離來計算所有測試資料與訓練資料之間的距離,選擇差距最小者的影像作為辨識結果。由於人臉資料過於複雜,且需要大量的訓練集資料與測試集資料,會導致計算量過大,使辨識的速度過於緩慢,因此需要透過主成分分析法(Principal Components Analysis,PCA)來解決此問題。

    ‧ 主成分分析法:主成分分析法為統計學中的方法,目的是將大量且複雜的人臉資料進行降維,只保留影像中的主成分,即為影像中的關鍵像素,以在維持精確度的前提下加快辨識的速度。先將原本的二維影像資料每列資料減掉平均值,並計算協方差矩陣且取得特徵值與特徵向量,接著將訓練集與測試集的資料進行降維,讓新的像素矩陣中只保留主成分,最後則將降維後的測試資料與訓練資料做匹配,選擇距離最近者為辨識的結果。由於影像資料經過了降維的步驟,因此人臉辨識的速度將會大幅度地提升。

    ‧ 卷積神經網路:卷積神經網路(Convolutional Neural Network,CNN)是一種神經網路的架構,在影像辨識、人臉辨識至自駕車領域中都被廣泛運用,是深度學習(Deep Learning)中重要的一部分。主要的目的是透過濾波器對影像進行卷積、池化運算,藉此來提取圖片的特徵,並進行分類、辨識、訓練模型等作業。在人臉辨識的應用中,首先會輸入人臉的影像,再透過CNN從影像提取像素特徵並轉換成特定形式輸出,並用輸出的資料集進行訓練、辨識等等。

    何謂酒精鎖

    酒精鎖(圖5)是一種裝置在車輛載體中的配備,讓駕駛人必須在汽車發動前進行酒測,通過後才能將車輛發動。且每隔45分鐘至60分鐘會發出要求,讓駕駛人在時間內再次進行檢測。

    根據歐盟經驗,提高罰款金額以及吊銷駕照只有在短期實施有效,只有勸阻的效果,若在執法上不夠嚴謹,被吊照者會轉變成無照駕駛,因此防止酒駕最有效的方法就是強制讓駕駛人無法上路,這就是「酒精鎖」的設計精神。

    在本國2020年3月1日起酒駕新制通過後,針對酒駕犯有了更明確且更嚴厲的規定,在酒駕被吊銷駕照者重考後,一年內車輛要裝酒精鎖,未通過酒測者無法啟動,且必須上15小時的教育訓練才能重考,若酒駕累犯三次,要接受酒癮評估治療滿一年、十二次才能重考。

    許多民眾對於「酒精鎖」議論紛紛,懷疑是否會發生找其他人代吹酒精鎖的疑慮,為防範此問題,酒精鎖在啟動後的五分鐘內重新進行吹氣,且汽車在行駛期間的每45至60分鐘內,便會隨機要求駕駛重新進行酒測,如果沒有通過測量或是沒有測量,整合在汽車智慧顯示面板的酒精鎖便會發出警告,並勸告駕駛停止駕車。

    對於酒精鎖的實施,目前無法完全普及到每一台車子,而且對於沒有飲酒習慣的民眾而言,根本是多此一舉,反而增加不少麻煩給駕駛。若還有每45~60分鐘的隨機檢測,會導致多輛汽車必須臨時停靠路邊進行檢測,可能加劇汽車違規停車的發生頻率。

    認識區塊鏈

    區塊鏈技術是一種不依賴於第三方,透過分散式節點(Peer to Peer,P2P)來進行網路數據的存儲、交易與驗證的技術方法。本質上就是一個去中心化的資料庫,任何人在任何時間都可以依照相同的技術標準將訊息打包成區塊並串上區塊鏈,而這些被串上區塊鏈的區塊無法再被更改。區塊鏈技術主要依靠了密碼學與HASH來保護訊息安全,也是賦予區塊鏈技術具有高安全性、不可篡改性以及去中心化的關鍵。區塊鏈相關概念,如圖6所示。

    區塊鏈的原理與特性

    可以將區塊鏈想像成是一個大型公開帳本,網路上的每個節點都擁有完整的帳本備份,當產生一筆交易時,會將這筆交易廣播到各個節點,而每個節點會將未驗證的交易HASH值收集至區塊內。接著,每個節點進行工作量證明,選取計算最快的節點進行這些交易的驗證,完成後會把區塊廣播給到其他節點,其他節點會再度確認區塊中包含的交易是否有效,驗證過後才會接受區塊並串上區塊鏈,此時就無法再將資料進行篡改。

    關於區塊鏈的特性,可分成以下四部分做說明:

    1. 去中心化:區塊鏈其中一個最重要的核心宗旨,就是「去中心化」,區塊鏈採用分散式的點對點傳輸,該概念架構中,節點與節點之中沒有所謂的中心,所有的操作都部署在分散式的節點中,而無須部署在中心化機構的伺服器,一筆交易或資料的傳輸不再需要第三方的介入,因此又可以說每個節點就是所謂的「中心」。這樣的結構也加強了區塊鏈的穩定性,不會因為其中的部分節點故障而癱瘓整個區塊鏈的結構。

    2. 不可篡改性:透過密碼學與雜湊函數的運用來將資料打包成區塊並上鏈,所有區塊都有屬於它的時間戳記,並依照時間順序排序,而所有節點的帳本資料中又記錄了完整的歷史內容,讓區塊鏈無法進行更改或是更改成本很高,因此使區塊鏈具備「不可篡改性」,並且同時確保了資料的完整性、安全性以及真實性。

    3. 可追溯性:區塊鏈是一種鏈式的資料結構,鏈上的訊息區塊依照時間的順序環環相扣,這便使得區塊鏈具有可追溯的特性。可追本溯源的特性適用在廣泛的領域中,如供應鏈、版權保護、醫療、學歷認證等。區塊鏈就如同記帳帳本一般,每筆交易記錄著時間和訊息內容,若要進行資料的更改,則會視為一筆新的交易,且舊的紀錄仍會存在無法更動,因此仍可依照過去的交易事件進行追溯。

    4. 匿名性:在去中心化的結構下,節點與節點之間不分主從關係,且每個節點中都擁有一本完整的帳本,因此區塊鏈系統是公開透明的。此時,個人資料與訊息內容的隱私就非常重要,區塊鏈技術運用了HASH運算、非對稱式加密與數位簽章等其他密碼學技術,讓節點資料在完全開放的情況下,也能保護隱私以及用戶的匿名性。

    區塊鏈與酒精鎖

    由於區塊鏈的技術具備去中心化、記錄時間以及不可篡改的特性,且更加強酒精鎖的檢測需要身分驗證的保證性。當進行酒精鎖檢測解鎖時,系統記錄駕駛人吹氣時間以及車輛的相關資訊,還有人臉特徵資料打包成區塊並串上區塊鏈。因此,在同一時間當監控系統偵測到當前駕駛人與吹氣人不同時,此時區塊鏈中所記錄的資料便能成為一個強而有力的依據,同時也能讓其他的違規或違法事件可以更容易進行追溯。

    酒駕防偽人臉辨識系統介紹

    為了解決酒精鎖發生駕駛人代測的問題,酒精鎖產品應導入具有身分驗證性的人臉辨識技術。酒駕防偽人臉辨識系統即為駕駛人在進行酒精鎖解鎖時,要同時進行人臉辨識,來確保駕駛人與吹氣人為同一人。

    在駕駛座前方的位置會安裝攝影鏡頭,作為駕駛的監控裝置。進行酒測吹氣的人臉資料將會輸入到該系統中的資料庫儲存,並將人臉資料以及酒測的時間戳記打包成區塊串上區塊鏈,當汽車已經駛動時,攝影鏡頭將會將當前駕駛人畫面傳回系統進行人臉比對驗證。如果驗證成功,會將通過的紀錄與時間戳一同上傳至區塊鏈,若是系統偵測到駕駛人與吹氣人為不同對象,系統將發出警示要求駕駛停車並重新進行檢測,並同時將此次異常的情況進行記錄上傳到區塊鏈中。

    如果駕駛持續不遵循系統指示仍持續行駛,該系統會將區塊鏈的紀錄傳送回給開罰的相關單位,並同時發出警報以告知附近用路人該車輛處於異常情況,應先行迴避。且該車輛於熄火後,酒精鎖會將車輛上鎖,必須聯絡酒精鎖廠商或酒精鎖服務中心才能解鎖。相關的系統概念流程圖,如圖7所示。

    區塊鏈打包上鏈模擬

    在進行酒測解鎖完畢以及進行人臉資料儲存後,會透過CNN將影像轉換輸出成128維的特徵向量作為人臉資料的測量值,接著將128個人臉特徵向量資料取出,並隨著車輛資訊一起打包到同一個區塊,然後串上區塊鏈。取出的人臉特徵資料,如圖8所示。

    要打包成區塊和上鏈的內容,包括了人臉特徵資料、車牌號碼、酒測解鎖時間點等相關輔助資料,接著透過雜湊函數將相關的資料打包成區塊。以車牌號碼ABC-1234為例,圖9顯示將車輛資料和人臉資料進行區塊鏈的打包,並進行HASH運算。

    將人臉資料和車輛相關資料作為一次的交易內容,並打包區塊,經過HASH後的結果如圖10所示,其中prev_hash屬性代表鏈結串列指向前一筆資料,由於這是實作模擬情境,並無上一筆資料,其中messages屬性代表內容數,一筆代表車牌資料,另一筆則為人臉資料。time屬性則代表區塊上鏈的時間點,代表車輛解鎖的時間點。

    情境演練說明

    話說小禛是一間企業的上班族,平時以開車為上下班的交通工具,他的汽車配置了酒駕防偽影像辨識系統,以下模擬小禛下班後準備開車的情境。

    已經下班的小禛今天打算從公司開車回家,當小禛上車準備發動車子時,他必須先拿起安裝在車上的酒測器進行吹氣,並將臉對準攝影鏡頭讓系統取得小禛的人臉影像。小禛在汽車發動前的人臉影像,如圖11所示。

    待攝影鏡頭偵測到小禛的人臉後,接著系統便會擷取臉上五官的68個特徵點,如圖12所示。然後,相關數據再透過CNN轉換輸出成128維的特徵向量作為人臉資料的測量值,如圖13所示。

    酒精鎖通過解鎖後,車輛隨之發動,解鎖成功的時間點將會記錄成時間戳記,隨著影像與相關資料串上區塊鏈。在行駛途中,設置在駕駛座前方的鏡頭將擷取目前駕駛的人臉,以取得駕駛人的128維人臉特徵向量測量值,並且與汽車發動前所存入的人臉資料進行比對,藉以判斷目前的駕駛人與剛才的吹氣人臉是否為同一位駕駛。當驗證通過後,也會再將通過的紀錄與時間戳上傳至區塊鏈中,如此一來,區塊鏈的訊息內容便完整記載了這一次駕車的紀錄,檢測通過的示意圖如圖14所示。

    系統通過辨識後,便確認了駕駛人的身分與吹氣人一致。且透過時戳的紀錄和區塊鏈的輔助,也確保了駕駛的不可否認性。若有其他違規事件發生時,區塊鏈的紀錄便成為一個強而有力的依據來進行追溯。

    如此一來,便可以預防小禛喝酒卻找其他人代吹酒測器的情況發生。在駕駛的途中,如果有需要更換駕駛人,必須待車輛靜止時,從車載系統發出更換駕駛要求,再重新進行酒測以及重複上述流程,才可以更換駕駛人。如果沒有按照該流程更換駕駛,系統將視為異常情況。

    結語

    酒駕一直是全球性的問題,將有高機率導致重大交通事故,造成人員傷亡、家庭破碎,進而醞釀後續更多的社會問題,皆是酒駕所引發的不良效益。為了解決酒駕的問題,各個國家都有不同的酒駕標準或是法律規範,但是大部分國家的規範和制度都只有嚇阻作用卻無法完全遏止。在不同的國家防止酒駕的方式不盡相同,有的國家如新加坡,透過監禁及鞭刑來遏止酒駕犯,又或者是薩爾瓦多,當發現酒駕直接判定死刑,這樣的制度雖嚇阻力極強,但是若讓其他國家也跟進,會造成違憲或是違反人權等問題。因此,各國都在酒駕的問題方面紛紛投入研究,想要達到零酒駕的社會。

    為達成此理想,本文介紹了基於區塊鏈的酒駕防偽辨識系統,利用酒精鎖搭配人臉辨識技術以及區塊鏈技術,使有飲酒的駕駛人無法發動汽車。且該系統搭載在行車電腦中,結合攝影鏡頭的監控對駕駛進行酒測防制管理,將人臉資料、酒精鎖、解鎖時間點與相關資訊打包成區塊並上鏈。基於區塊鏈技術內容的不易篡改,可加強駕駛人的不可否認性,當汽車發生異常情況時,便能利用有效且可靠的依據進行追溯。人工智慧和物聯網時代已經來臨,透過酒駕防偽辨識系統來改善酒駕問題,在未來能夠普及並結合法規,智慧汽車以及智慧科技的應用將會帶給人們更安全、更便利的社會。

    附圖:圖1 人臉辨識的步驟。
    圖2 人臉特徵點偵測(正臉)。
    圖3 人臉特徵點偵測(左側臉)。
    圖4 人臉特徵點偵測(右側臉)。
    圖5 酒精鎖。 (圖片來源:https://commons.wikimedia.org/wiki/File:Guardian_Interlock_AMS2000_1.jpg with Author: Rsheram)
    圖6 區塊鏈分散式節點的概念圖。
    圖7 系統概念流程圖。
    圖8 取出人臉128維特徵向量。
    圖9 儲存車輛相關資料及人臉資料到區塊。
    圖10 HASH後及打包成區塊的結果。
    圖11 汽車發動前小禛的人臉影像。
    圖12 小禛的人臉影像特徵點。
    圖13 小禛的人臉特徵向量資料。
    圖14 系統通過酒測檢測者與駕駛人為同一人。

    資料來源:https://www.netadmin.com.tw/netadmin/zh-tw/technology/CC690F49163E4AAF9FD0E88A157C7B9D

你可能也想看看

搜尋相關網站