[爆卦]母體變異數檢定是什麼?優點缺點精華區懶人包

雖然這篇母體變異數檢定鄉民發文沒有被收入到精華區:在母體變異數檢定這個話題中,我們另外找到其它相關的精選爆讚文章

在 母體變異數檢定產品中有1篇Facebook貼文,粉絲數超過3,055的網紅玩遊戲不難,做營運好難,也在其Facebook貼文中提到, 【💡💡營運小教室-第32堂】🕹 A/B測試 重點分享 🕹 . 🔎文章同步部落格:https://bit.ly/3rPadlk (圖文同步、畫好重點,閱讀更方便) . 最近這兩週我在研究A/B測試, 何謂A/B測試我就直接引用文章內的話: 「針對某一需要改進的功能、頁面或是產品,提供兩種或以上的方案,...

  • 母體變異數檢定 在 玩遊戲不難,做營運好難 Facebook 的精選貼文

    2021-08-04 09:00:44
    有 53 人按讚

    【💡💡營運小教室-第32堂】🕹 A/B測試 重點分享 🕹
    .
    🔎文章同步部落格:https://bit.ly/3rPadlk
    (圖文同步、畫好重點,閱讀更方便)
    .
    最近這兩週我在研究A/B測試,
    何謂A/B測試我就直接引用文章內的話:
    「針對某一需要改進的功能、頁面或是產品,提供兩種或以上的方案,合理分配流量,將不同方案发布給不同用戶。在運行一段時間後,結合各項指標和科學的統計方法,對比實驗數據做出決策,將最優方案更新給全量用戶。」
    .
    因此,A/B測試在現今網路行業中被用的相當頻繁,
    Google更是把A/B測試視為圭臬,
    大到一個功能,
    小到一個按鈕的顏色都要做A/B測試,
    也因為Google進行了大量的A/B測試,
    把用戶旅程(user journey)中每個節點的轉換率一步步提高,
    使得每次產品功能或是頁面的改動更符合多數用戶需求,
    自然效能與績效就能極大化,
    其他像是臉書、亞馬遜等電商公司,
    都是將A/B測試納入必要的工作項目內。
    .
    專門在做這工作的人,
    現在也有個很新穎的職務名稱叫成長駭客(Growth Hacker),
    大家到104人力銀行搜尋就知道其工作內容,
    這邊不贅述。
    (注意,A/B測試只是成長駭客內的其中一個工作項目,並非成長駭客就只做A/B測試,差很多)
    .
    遊戲業坦白說在營運上不太會進行A/B測試,
    因為用戶幾乎都從雙平台上下載遊戲,
    如果要做A/B測試就只能在雙平台上著手,
    新產品或許還能這樣做,
    但對既有產品來說就不切實際點,
    因此A/B測試通常會出現在廣告的買量測試中。
    .
    以下分享我自己在A/B測試上的心得分享:
    .
    1⃣A/B測試不代表一次只能測試兩個,你想測試2個以上也行,主要是得確認每個群體樣本數要夠多,如果樣本數太少,達不到性效度的話,做出來的結果就沒有參考價值。
    .
    2⃣如何確認有足夠的樣本數呢?身為營運人員,自家的營運數據自己最清楚,可以透過這個網站輸入母體大小,就會自動算出要多少樣本數才能達到統計顯著性。
    👉https://zh.surveymonkey.com/mp/sample-size-calculator/
    .
    3⃣假設是投放廣告,如果不曉得母體會有多少,那可以用以下免費工具來反推,例如你想要達到的轉換率是1%提升到5%,這個頁面就可以幫你計算出兩個群體各自要曝光幾次才足夠,就能判斷預算會花多少。
    👉https://clincalc.com/stats/samplesize.aspx
    .
    4⃣會需要計算上述的原因主要有兩個,一個是預算問題,另一個是在不確定風險下,建議做足夠樣本數就好。
    👉舉例來說,如果今天某款遊戲每月付費玩家有10,000人,如果想改動一個功能,可能一開始會想到的做法是隨機5,000人分配到不同群組(也就是A/B測試為50% / 50%)。
    .
    但這樣就會有一個風險,萬一這個改動是失敗的,等於就會直接影響到5,000人,那在A/B測試期間,可能就開始蒙受不小的營收損失,或是等不到信效度出現就提早結束測試,因此如果能事前估出足夠的樣本數,就能降低上述風險。
    .
    以10,000人這例子,丟到頁面內,只要370人的樣本就能達到統計顯著性了,不用分到50% / 50%這麼多,只要5%就足夠了,這樣即使A/B測試不理想,也只會影響到那5%付費用戶。
    .
    5⃣要確保兩個群體是完全獨立,而非交集,如果有交集,就會影響分析結果。
    👉這點比較吃技術的工,技術要能夠確保實驗對象進入A/B測試時會被隨機分派到不同群體內,如果因為裝置過多、版本不同等因素而導致有部分用戶既是A群體、也在B群體的話,那就會導致數據判讀出現錯誤。
    .
    6⃣不要在一個A/B測試還沒做完情況下,又緊接著做另一個A/B測試,除非能確定這兩個A/B測試是完全不相干,不然不但在分析時不容易分清楚每個群體,也很容易影響整個數據的分析。
    .
    7⃣做出來的結果到底有沒有達到統計顯著性,可以把數據輸入到這個網頁內,非常方便。
    👉https://abtestguide.com/calc/
    .
    8⃣A/B 測試前,可以先執行A/A測試,先確認目前的隨機分配中有沒有其他的變異數,確保這兩個群體的整個營運數據夠乾淨。
    👉由於測試的是群體內有沒有其他變因,而非方案本身,因此在流量分配上就能夠以50% / 50%進行。
    .
    以上就是我對於A/B 測試目前的經驗與心得分享,
    如果要再探討下去絕對有更多的理論基礎與分析模組,
    我自己也還在學習摸索中,
    日後如果有甚麼心得或是勘誤,
    我會持續更新在這篇文章中,
    如果你有其他心得或是已經發現錯誤的地方,
    也歡迎分享給我。
    .
    🔎參考資料:A/B 測試要測多久?從統計顯著與檢定力看廣告測試結果
    https://bit.ly/3CcQAIL
    .
    🔎延伸閱讀:谷歌是怎么用A/B測試的
    https://bit.ly/3lr6KYZ

你可能也想看看

搜尋相關網站