[爆卦]林軒田機器學習技法作業是什麼?優點缺點精華區懶人包

為什麼這篇林軒田機器學習技法作業鄉民發文收入到精華區:因為在林軒田機器學習技法作業這個討論話題中,有許多相關的文章在討論,這篇最有參考價值!作者patrickwu2 (麻麻~)看板NTUcourse標題[評價] 106-2 林軒田 機器學習...


※ 本文是否可提供臺大同學轉作其他非營利用途?(須保留原作者 ID)
(是/否/其他條件):是


哪一學年度修課:

106-2

ψ 授課教師 (若為多人合授請寫開課教師,以方便收錄)

林軒田

λ 開課系所與授課對象 (是否為必修或通識課 / 內容是否與某些背景相關)

資工系 / 資工所
有修過老師的機器學習基石為佳 (今年是有修過基石的都能上)

δ 課程大概內容

Topic 1 : How can machines learn by embedding numerous features ?
- Linear / Dual SVM
- Kernel SVM
- Soft-Margin SVM
- Kernel logistic Regression / SVR
Topic 2 : How can machines learn by combining predictive features ?
- Blending / Bagging
- Adaptive boosting
- Decision Tree
- Random Forest
- Gradient boosted Decision Tree
Topic 3 : How can machines learn by distilling hidden features ?
- Neural Network (Backprop)
- Tricks on Neural Network (momentum, adam, relu, dropout)
- Matrix Factorization

Ω 私心推薦指數(以五分計) ★★★★★

★ ★ ★ ★ ★

η 上課用書(影印講義或是指定教科書)

老師的課程講義 (在老師的個人網站有公佈)

μ 上課方式(投影片、團體討論、老師教學風格)

大多數課堂以播影片進行
少數幾堂由老師親自授課
(Neural Network那裡老師說有些東西過時了要自己講)

σ 評分方式(給分甜嗎?是紮實分?)

作業 * 3 + Fial Project * 1 (沒有考試)

覺得算是紮實分吧,有努力有收穫

ρ 考題型式、作業方式

- 作業
作業形式跟機器上學期的學習基石差不多
每次是約16題的基礎題+2題Bonus
計算題都是 計算 / 證明題
另外也會有程式題
作業難度好像越來越簡單(SVM真的大魔王啊QAQ)

- Final Progect
期末專題這學期是三人一組
就是實際上去Train某個dataset
基本上每個人每天有超級多次上傳機會
(跟Kaggle不同,是自己架的server)
報告會要求要用多種Machine Learning技巧去實現
學期最後要交一份報告這樣

ω 其它(是否注重出席率?如果為外系選修,需先有什麼基礎較好嗎?老師個性?
加簽習慣?嚴禁遲到等…)

建議先修完老師的「機器學習基石」再來修老師的技法
首先是比較容易加簽到
另外就是可以先習慣老師的作業跟上課的用詞

然後不點名,作業跟期末專題好好做就可以學到很多分數也會好看

Ψ 總結

寫這篇評價文主要是發現好像都沒有ML Tech的評價
所以就來講一下我個人的看法這樣XD

個人覺得這門課遠超過兩學分的重量
然後因為上課內容在youtube都有錄影
如果沒有去上課又沒有自己花時間跟影片的話
到寫作業的時候可能會非常非常的辛苦.......

另外大推老師在講Topic 2有關於Ensemble的地方
個人覺得是這門課最精華的地方
不管是最基本的Bagging / Blending
或者是經典的Decision Tree / RF
老師都能講的讓人清楚理解他的算法
另外Adaboost跟Gradient Boosted Decision Tree的部分
講的真的很好
把這兩個演算法講的超美 <3

再講一下 MLF / MLT 和電機系的機器學習的差別
因為有蠻多朋友問的所以就在這裡分享我自己的看法

軒田老師這兩門課會花比較多的時間在講理論跟數學的部分
在寫完作業後是確實可以了解整個演算法在做什麼
而電機系的機器學習每次作業則是Kaggle競賽
如果作業都有好好做的話確實是可以比較熟悉機器學習實作的部分
不過修完後其實不見得每個Topic的理論方面都很清楚
(因為大多都是使用套件然後Tune參數、Ensemble一堆model.......)
另外電機系那門課很快就進入Deep Learning了
比起軒田老師的課
古典的SVM / Ensemble等算法算是草草帶過吧
(但相對的軒田老師的課在Deep Learning就沒講那麼多)

個人覺得理論跟實作還是要相輔相成啦
各位在考慮要修哪門課的時候
可以多加思考自己想要的是什麼再做決定

最後總結一句
如果對Machine Learning有興趣又有餘裕的話
覺得這門課應該要修這麼一次
你會感受到機器學習除了Tune參數之外
還有很堅實的數學基礎
跟很多漂亮的古典Machine Learning方法

--
※ 發信站: 批踢踢實業坊(ptt.cc), 來自: 140.112.16.129
※ 文章網址: https://www.ptt.cc/bbs/NTUcourse/M.1533286639.A.F38.html
※ 編輯: patrickwu2 (140.112.16.129), 08/03/2018 16:58:39
※ 編輯: patrickwu2 (140.112.16.129), 08/03/2018 17:00:42
jexus: 推算命師!! 08/03 17:50
sc0904: 幫麻麻推~ 08/03 18:08
hortune: 快去修特論吧 系列課程最終站 (>////<) 08/03 21:33
Rubb9diaw: 推樓上hortune大大 08/04 00:08
liang1230: hortune你把數學原理放哪....真正大魔王 08/04 00:17
CharlieL: Thanks for sharing! 08/04 05:30
empennage98: 推田神!老師好早起 08/04 06:06
KSWang: 朝聖田神 好課 從基石打好基礎到技法真的很扎實 08/04 18:20
a127000555: 一樓輪班? 08/04 23:12
jexus: 樓上依然電? 08/05 00:28
patrickwu2: 樓上太多大神只好都跪<(_ _)> 08/05 13:02
dannyko: 麻麻電 08/13 16:40
darkestnight: 日文 08/16 21:16

你可能也想看看

搜尋相關網站