[爆卦]最佳路徑演算法是什麼?優點缺點精華區懶人包

雖然這篇最佳路徑演算法鄉民發文沒有被收入到精華區:在最佳路徑演算法這個話題中,我們另外找到其它相關的精選爆讚文章

在 最佳路徑演算法產品中有26篇Facebook貼文,粉絲數超過0的網紅,也在其Facebook貼文中提到, 中秋快樂!月圓人團圓,這個險峻的2021,也悄悄接近了尾聲。經歷了年中的大封鎖,我們又更珍惜能與家人、摯友緊密相處的時光。 隨著疫情逐漸趨緩,我們的生活也慢慢恢復正常,而我也回到了昔日東奔西跑的忙碌步調,粉專文章也悄悄的從每天固定一篇文,慢慢變回隨機發文的狀態。最大的成就感,莫過於完結了太魯那斯與...

  • 最佳路徑演算法 在 Facebook 的精選貼文

    2021-09-22 00:20:12
    有 2,912 人按讚

    中秋快樂!月圓人團圓,這個險峻的2021,也悄悄接近了尾聲。經歷了年中的大封鎖,我們又更珍惜能與家人、摯友緊密相處的時光。

    隨著疫情逐漸趨緩,我們的生活也慢慢恢復正常,而我也回到了昔日東奔西跑的忙碌步調,粉專文章也悄悄的從每天固定一篇文,慢慢變回隨機發文的狀態。最大的成就感,莫過於完結了太魯那斯與梅樂峰,兩趟截然不同的大行程;它們無疑都是影響我甚深的記憶,讓我一直到2021年,才得以完整的把那2019年還能踏足海外的日子好好寫完。

    在這個追求影片與動態作品的年代,繼續在文字的世界裡追求情感的傳遞、記憶的傳承、價值的伸張,還有靜態影像的美,就是我面時代洪流的答案。每個人都有自己擅長的事,每一個工作在世界上都有其位置;當自媒體被演算法逼著追求快速與流量時,我十分幸運的,有願意陪伴我的大家,喜歡我文字與影像的每一位朋友,能和我一起慢慢的在山林的知識宇宙裡,尋找隱藏其間的寶藏,在大樹的軀幹、時間的流沙之間,摸索那溫潤的自然與人文關懷。

    在那段緩慢、不敢出門的日子裡,我讀了不少書,對台灣的山林又有了更深刻的認識與省思。不過學海無涯,書總是一種越看、越覺得自己懂得不夠的狀態。只好保持好奇與查證的心,真誠的面對這世界,寫出一段段我所看見的故事,與讀者一起成長。

    ---

    雖然大家開始爬山了,但最近我都沒上高山,一直在郊山晃啊混的。因為我發現,這兩年台灣登山因疫情而爆炸性成長,所有沒有總量管制的地方都已經被破壞得和幾年前很不一樣了,尤其以戒茂斯最為明顯,連嘉明湖步道的乘載量都因而超載。擁擠的山頭、營地菜市場、妹池帳篷城… 這些美麗的高山百岳傳統路,已經不是我當初上山時所追求的樣貌,而成為了與都市公園無異的美麗背景,供往來遊客展現自己最美的一面。

    台灣很小,台灣的高山更小,美麗又簡單的地方就那幾個;風景優美氣候舒適,導致新手登山人都想往那些地方擠,最後就造就了公共財的悲劇。

    對我來說,我上山是為了追求與自然互動、滿足好奇心、探究生命與歷史的脈動和心靈的澄淨,而不是為了喧囂而至。於是,我自然而然將那些地方讓給了越來越多的遊客,漸漸只去「有總量管制的地方」,那裡保有始終如一的美麗與純樸。而不像無總量管制的地方,商業團無限量開團超載利用、自組隊抽不到國家公園也統統往那幾個地方擠,最終導致了擁擠不堪的營地、退化的植被、越來越大而泥濘的路徑、無人管理而四散的垃圾與大便。

    要靠自組隊LNT與商業團自律來維護沒有總量管制的地方?那這樣警察局也可以撤了,我們靠道德約束就可以沒有罪犯啦!我們當然不可能跟人性對幹,像這種悲劇中的公共財,唯有政府的管理才能使其永續,否則只有衰亡。

    要抽籤的路線都去過了、平常也沒太多機會排個10天20天到真正的野地,這時的我,選擇遠離那些紛擾之地,回到最靠近我們的地方,找回屬於大自然的感動與呼吸:郊山。

    郊山夏天的氣候根本不是人走的,熱得要命,蚊蟲又超多。但如果能日出就出發,中午前就收工,郊山能練體能之餘,也非常省時間,更有效提升應對溼滑地形的能力(尤其北部),是讓自己在生活間,也能充滿「山」的元素的最佳選擇。而不是只去那幾個已經被玩到環境退化的高山景點人擠人,又或者久久才來一次多天縱走儲值身體裡的自然能量。這是我開始登山多年後,才在近幾年體悟的心情。

    山是沒有界限的,真正深愛山的人,不會瞧不起任何一條步道,如同山接納形形色色的登山人那般。

    而我也不會講「讓山喘息」這種重度移情的話,因為就算那幾個熱門景點被玩爛,爛掉的地方也是我們人類會待的範圍而已;只要沒有再開闢新路線,依然能把對山林的損害控制在步道與營地的範圍之內。但是,一但被玩爛,那麼那些地方也就真的不再好玩了,變成自組團永遠搶輸商業團的營地爭奪戰,以及人聲鼎沸的綠色城市。

    不過,那無疑也是一種都市人親近自然的方式,只是失去了荒野的味道、少了靜謐與沈澱,多了人與人的競爭與比較。對我來說,就是又少了一個輕鬆的地方能去罷了。

    台灣的山林很廣大的,認識裝備、把手機GPS練好、到郊山把體能練好,不要一直想著去哪裡都要分享、打卡,那麼你就會發現,台灣處處是秘境、山山是好山,很容易找到人煙稀少的山徑享受自然。如同這次中秋連假深山又到處擠爆時,我留在台北跟朋友來趟陽明山大縱走動動筋骨,意外看見了這包籜矢竹夾道的大屯山徑,在台北連假唱空城之際,是那樣幽靜而深邃,只有頭頂搖擺的竹葉與風聲,讓人忘卻這僅是距台北幾步之遙的陽明山國家公園。

    剩下三個多月了,2021這場惡夢終於到了尾聲,謝謝每一位朋友在疫情期間每天看我寫故事,也很抱歉我又要恢復不定期發文的狀態,希望我們都能平安健康的迎接2022囉!

    有緣的話,我們山上見~

  • 最佳路徑演算法 在 Facebook 的最佳解答

    2021-09-13 22:02:34
    有 336 人按讚

    好書推薦《#人慈》部落格文末抽書兩本
    想像一下,如果有兩個星球,你認為自己住在哪一個?星球A:飛機墜機後,生存者禮讓最需要救援的人。星球B:事故發生後,生存者爭先恐後地往出口擠,不惜將他人踩在腳下。這個問題被用來問過許多學生,幾乎所有人都選了星球B。但事實是,我們住在星球A。這個世界真正面臨的威脅在於我們對人性太過悲觀。
    部落格文章 https://readingoutpost.com/humankind/
    Podcast 用聽的 https://readingoutpost.soci.vip/
    .
    #這本書在說什麼?
    .
    《人慈》這本書的作者是歐洲最著名的年輕思想家之一羅格.布雷格曼(Rutger Bregman),他是同時也是一位歷史學家、作家、記者。有鑑於報章媒體、政治宣傳、普羅大眾對於「人性」的偏誤解讀,他想透過這本書傳達一個核心訊息:「大部分的人在內心深處,其實是相當正派的」。

    作者在書中旁徵博引,以詳盡的事實和深入的查證,說明了人類無論是出於天性、身為孩童時、在無人島上、當戰爭爆發、當危機來襲,對於自己「好」的一面,有著強烈偏好。如果你至今仍然認為,人類就是天生自私、貪得無厭、陰險狡詐,那麼這本書絕對會讓你大為改觀。

    這本書讓我感到大為驚喜的,是作者既大膽、又謹慎的考證態度,他勇於對歷史上知名的眾多案例(例如《蒼蠅王》、《史丹佛監獄實驗》、《米倫格爾電擊器實驗》)提出反面看法,而且其證據令人信服。在媒體慣用人性「惡」的一面吸引眼球的世界裡,這是一本思想激進的書,只不過是偏向人性「善」的那面光譜。這種書很罕見,卻彌足珍貴。
    .
    #人性本惡?三個精彩翻案
    .
    人類有考據的數萬年歷史以來,充滿了大大小小的衝突和鬥爭,我們也從故事裡看到領導人無論為了私利、國家的經濟、民族的情節而發動戰爭。難道,人類不就是天性好鬥嗎?只要有誘因存在,人們就會甘願殺得你死我活嗎?從歷史的考據裡面,我們會發現人性跟我們想得很不一樣:絕大部分的人不願意傷害另一個人。讓我們先從書中三個精彩的翻案來找到線索。
    .
    1.#蒼蠅王小說的翻案
    .
    《蒼蠅王》是一本膾炙人口的小說,在我國中的時候,老師也放過翻拍的影片當作社會科學的教材。內容大意是在說,因為飛機墜機,六個英國男孩漂流到一座無人島上,在沒有大人的情況得自立求生。過程發生了許多權力爭執、失去理智、弱肉強食的情節,最後只剩下兩個孩童倖存的故事。這個虛構故事在感嘆「人心的黑暗」,也被列為標準的社會教材讀物。

    作者把持著一個懷疑的態度,他深入瞭解了虛構的《蒼蠅王》小說作者威廉.高汀(William Golding)的生平。作者發現高汀是一名有憂鬱傾向的酗酒者,他還會打小孩,他也曾說過:「我瞭解納粹,因為本質上來說我也是那一類」,這才讓作者明白,原來寫出《蒼蠅王》的作家是一個多麼不快樂的人。

    因此,作者根據事實為主,追尋了一條實際發生過的類似案例,六名少年在太平洋落難,漂流到阿塔島(`Ata)的真實故事。這則故事跟小說大相逕庭,六名少年在荒島上發揮團結的本領,協調出遇到衝突的處理方式,還彼此在受傷時互相照顧。受困15個月後,六人獲救時仍氣色飽滿,而且士氣高漲地不可置信。真實版的《蒼蠅王》,其實是一個友情和忠誠的故事。

    發現阿塔島生存的船長彼得.華納(Peter Warner):「人生教了我許多事,其中包括了一個經驗,就是你永遠要尋找人的善良光明面。」
    .
    2.#史丹佛監獄實驗的翻案
    .
    我讀過許多談到心理學的書籍,都喜歡引用一個知名的案例,那就是《史丹佛監獄實驗》。實驗主持人飛利浦.金巴多(Philip Zimbardo)教授把24名參加的學生隨機分成兩組,12人當囚犯,12人當獄卒,觀察人類當囚犯的反應,以及擔任獄卒的人施加權力的表現。整個實驗因為囚犯精神狀態快速崩潰、獄卒施加的處罰越來越過火,結果實驗到第六天就被迫中止。

    這個實驗的結論彷彿要告訴我們:「當你給予人們權力,他們就會開始為惡,發展出一些不人道的規則」。作者深入考察之後發現,這簡直是一場天大的騙局。實驗並不是任憑12名獄卒自己決定如何處以,而是金巴多本人直接給獄卒灌輸思想:「你們要創造一種挫折感,製造恐懼,要剝奪他們的個體性…」,最後獄卒定的17條規則裡,有11條根本是實驗團隊給予的意見。這簡直是引導式的邪惡。

    你或許也會好奇,那如果是實驗團隊「完全不介入」的狀況會怎樣?兩個英國心理學家2002年在電視節目上複製了一次同樣的實驗,但這次沒有告訴獄卒該怎麼管理、該怎麼懲罰。結果呢?節目無聊到不行。第二天,獄卒把食物分給囚犯。第五天,一名囚犯提議設立民主制度。第六天,獄卒跟囚犯一起抽菸。最後一集,大部分人一起坐在沙發上消磨時間。這麼無聊的故事,難怪我們都沒聽過。
    .
    3.#電擊器實驗的翻案
    .
    還有一個更出名的《米倫格爾電擊器實驗》,目的是為了測試受測者,在面對權威者下達違背良心的命令時,人性所能發揮的拒絕力量到底有多少。受測者身為「老師」,當隔壁房間的「學生」答錯題目時,就要按下電擊器,懲罰坐在電椅上面的學生。「學生」是由實驗人員假冒的,受電擊所發出的哭喊也是演出來的,但受測的「老師」並不知道,他們會「以為」這些電擊都是真的。

    每一次學生答錯,懲罰的電壓伏特數就要提高,實驗主持人史丹利.米倫格爾(Stanley Milgram)教授會要求老師繼續施罰。120伏特時學生會開始喊痛,150伏特時尖叫並喊著退出實驗,200伏特時大叫大叫血管裡的血都凍住了!超過320伏特時開始撞牆並失去聲音。結果,有65%的受測者一路聽從指揮,開到了450伏特,幾乎是把學生電死的程度。實驗的結論幾乎告訴我們,只要有權威要求,連普通人都願意電死一個路人甲?

    作者考核過後的翻案顯示了另一種事實。幾乎所有受測者都曾抗命,想要停手,但實驗方會加強壓力逼迫就範,從錄音檔聽起來更像是霸凌和脅迫。事後調查,只有一半的受測者認為隔壁的學生是真的在受苦,其他人覺得只是實驗效果。許多受試者也表示,因為他們真心「信任」米倫格爾教授的實驗對人類一定有幫助,所以即使當下不忍心,也願意咬著牙繼續做下去。

    綜合以上三個翻案結果,大部分的人在內心深處,其實是相當正派的,但引用作者所說的:「如果你催促地夠用力,給予足夠刺激、又拐又騙,許多人確實是有能力做惡。但是邪惡通常不是在表面之下,它是需要費盡功夫才能扯出來的。」邪惡得要披上善良的外衣才行。
    .
    #人怎麼會互相傷害?
    .
    所以,人真的是天性好鬥、殺得你死我活的物種嗎?綜觀歷史大小戰爭,這個說法似乎成立,但是當我們把尺度放到人與人面對面的相處,就是另一種樣貌。舉戰爭為例,兩軍人馬大動干戈的時候,所有人一定都是拔刀互砍、舉槍互射吧?在那種生死存亡的關頭,不是敵死,就是我亡了,不是嗎?

    真實的戰爭傷亡統計很有意思,例如二戰英國陣亡的軍人死因中,10%是子彈和反坦克地雷;15%是詭雷、爆破和其他;75%是手榴彈、迫擊砲和空投炸彈。大部分的士兵都是隔個一定「距離」被殲滅的。真正喊著敵人是「害蟲」,一旦碰面就格殺毋論的,通常是離戰場最「遙遠」的政客和領導人。

    根據研究,二戰的生存老兵超過一半從未殺過人,只有20%的軍人曾經擊發過武器。美國南北戰爭最激烈的蓋茨堡戰役中,回收的27,000把火槍,還裝有彈藥的比例達到90%。12,000把裝有兩顆彈藥,其中6000把超過三顆。但火槍設計成那樣,就是一次只能射出一顆子彈,那幹嘛裝那麼多顆子彈?因為大部分的士兵都『沒有』在試圖殺敵。人,打從心底不喜歡傷害另一個人。
    .
    #如何改善?三種範例
    .
    在這本書的下半部,作者有一則引述徹底震撼了我的思想。這句引言來自英國哲學家暨諾貝爾文學獎得主伯蘭特.羅素(Bertrand Russell),他給未來世代這個建議:「當你學習任何東西或者思考任何哲學問題時,只該問自己事實有哪些,那些事實證明什麼是真實。永遠別被自己希望相信的事、或者自以為如果別人信了就對社會有益的事所分心,只要專心一意去看事實是什麼。」

    這個非常理性的觀念,一開始相當很吸引我,但作者及時把我拉了回來。他提到除了探究事實之外,你本身「相信」什麼,才是以改善世界的動力來源。

    第一種相信的力量,叫做「畢馬龍效應」。科學家做過一種實驗,把兩群同樣普通的老鼠,分別標示聰明和愚笨。請不知情的學生照顧老鼠,然後進行迷宮遊戲,看哪一組比較快逃出迷宮。結果聰明的那組獲勝,事後發現學生「相信」這些老鼠比較聰明,給予比較好也溫柔的待遇。同樣的實驗在一群小學生上進行,不知情的老師對聰明組的學生更關注、更鼓勵,事後結算成績,聰明組的孩子其智力表現提高了最多。

    第二種相信的力量,叫做「魔像效應」。曾經有科學家在美國做過一個不道德的實驗,他把二十個孤兒分成兩組,跟其中一組說他們是善於表達的人,跟另外一組說他們注定要變成口吃者。這個實驗結果害得許多口吃組的受測孩童,一輩子患有語言障礙。這種效應常導致貧窮學生更加落後、無家可歸者失去希望、已經被孤立的青年人更加極端。

    一如正面的期待能夠引發好的結果,負面的期待也能夠讓惡夢成真。接下來介紹書中三個真實世界的例子,來看看如何運用「相信」的力量,來改善我們的工作、教育和民主運作。
    .
    1.#論工作的內在動機
    .
    研究發現,外在誘因例如紅利會減低員工的內在動機和道德標準。給予外在誘因會獲得相等的回報:按照工時給付,就會增加更多的工時(無論是否裝忙)。按照發表數目給予稿費,就會得到更多的發表文章(無論品質優劣)。按照手術量來給付,手術就會更多(無論是否必要)。

    荷蘭的最大的鄰里照護平台「博祖克」(Buurtzorg)採取逆向而行的策略,這個組織沒有業績目標或分紅,沒有管理階層,沒有客服中心。運作的自主權下放給每一個十二人的團隊,團隊自己定行程表,自行雇用同事。省去的營運費用和會議時間都回歸到團隊本身。

    執行長喬斯.德.柏洛克(Jos de Blok)是從最基層出身的人,他相信員工內心會選擇做「正確」的事。他說傳統的管理階層「喜歡憑空想像一些計畫給那群工蜂做」,還說「拿掉管理階層,工作還是照常進行」,他認為讓團隊自我導向、動手執行腦中想法,是最實際的做法。博祖克沒有人資部,被評為最佳雇主;沒有行銷部,卻獲得最佳行銷獎。

    (延伸資源:在台灣有「台灣居護」引進了這套照護模式)
    .
    2.#論教育的玩耍本質
    .
    自古以來,愈是聰明的動物愈會玩耍,玩耍更深植於人類天性當中。創造力和學習力來自於自由地玩耍,孩子會自然地渴望探索這個世界。當社會工業化之後,學校的體制越來越制式化,學生的課表被排滿,家長連下課的時間也不放過。最近針對十個國家的民調顯示,監獄囚犯待在戶外的時間比孩子還要多。研究也發現一個趨勢,孩子愈來愈覺得「自己的生命被他人所決定」。這是一個快要忘記怎麼「玩耍」的世代。

    荷蘭的「阿哥拉」(Agora,希臘語「市集」的意思)是一個沒有年級、班級、教室的學校,也沒有功課和成績,一組學生團隊就只有配一位「輔導員」,但自主權在學生身上,他們自己決定要學什麼。整個學校就像一個主題樂園,學生透過玩耍和探索,找到自己當下有興趣的題目攻讀,學校提供對應的資源給他們學習。相較於傳統教育把孩童當植物灌溉,這所學校將孩童當「人」看待。

    在這裡,與眾不同是常態,一千個學生就有一千種學習路徑。這裡幾乎找不到霸凌的蹤影,因為不以年齡和能力區隔孩童,沒有誰的進度會落後,沒有誰的表現太過突出,每個人都在綻放當下最好的自己。作者引述道:「玩耍的相反不是工作,玩耍的相反是抑鬱。」問題不是孩子能不能掌控自由,而是大人有沒有勇氣給他們自由?我們是否問過自己,教育的意義究竟是什麼?

    (延伸閱讀:Agora: Meet the school with no classes, no classrooms and no curriculum,英文文章)
    .
    3.#論民主政體的模樣
    .
    作者提到,世界上愈來愈多的民主政體正遭受七種瘟疫侵襲:政黨持續腐化、公民不再信任彼此、少數人遭排除、選民失去興趣、貪贓枉法的政客、有錢人逃稅、人們發現當代民主充滿貧富不均(怎麼跟我住的地方這麼像!?)。但世界上有地方嘗試了解法,簡單到令人難以置信,卻很少上新聞(你應該猜得到為什麼)。

    委內瑞拉的托雷斯市(Torres)的民選首長胡立歐.查維茲(Julio Chávez)選擇一種嶄新的信念,他相信:「每個人心中都有一位積極認真的公民」。他的競選政見只有一個,下放權力給所有托雷斯市民,而且他遵守了承諾。所有的政府集會邀請全體居民參加,不只是討論,還要決議城市所有預算的使用。

    結果人們空前踴躍參與政治,在最需要的地方蓋起了住宅和學校,有效地鋪整馬路清掃街區。因為預算透明,大幅削減了貪污和權威的弊病。市民們還一起要求提高稅收,並且說道:「過去我們不瞭解市政稅要用來支付那麼多東西。」這個被稱為「參與式民主」的方式,深受民眾喜愛,卻鮮少在新聞上被提及。

    (在台灣我還沒聽過類似的試營運模式,有人聽過嗎?)
    .
    後記:#相信善的一面
    .
    《人慈》是我今年讀過最意猶未盡的一本書,作者的大膽思想,配上嚴謹的查證,讓人讀來格外痛快。從這本書中,我也慢慢體認到,問題不是二元化的「人性本惡或本善」選擇題。反而,透過這些精采的正反論述,猶如偵探小說抽絲剝繭般的分析,我理解到的是人性真正的「複雜」。

    如同現在人工智慧和大數據這麼發達,如果只讓電腦演算法來判決,那麼歷久不衰的《蒼蠅王》人心黑暗論肯定佔據上風;《史丹佛監獄實驗》和《米倫格爾電擊器實驗》無以計數的論文和書籍引用,肯定讓演算法覺得這才是人性的真理。無數對人性帶有扭曲和偏誤的描寫佔據了媒體的版面。然而,事實呢?

    這本書中段的畢馬龍和魔像效應教我們的就是,人們「相信」的事情往往會發展成「事實」,更是一個令人驚醒的提點。無論是書中獄卒和囚犯的故事、老師和學生的故事、老闆和員工的故事、父母和子女的故事,一再說明了:「當你把一個人當人看,他就會表現得像一個人。」反之。讀完這本書後,你可以踏實地選擇自己相信的那一面。

    瞭解事實,讓我們得以明辨是非。擁有信念,才能以行動改變世界。原來,關於人性,我讀過的許多論點幾乎都是錯的。永遠別被自己希望相信的事所分心。只管去看,事實是什麼。然後在事實背後,找出值得相信的事情,讓它成為新的事實。這絕對是一本必讀之書。
    .
    Kobo電子書7折代碼:WAKIKIND
    Kobo 購書連結:https://bit.ly/3z7sRHr
    使用期限:9/12~9/18
    .
    感謝 時報出版|商業人文線 提供抽獎贈書

  • 最佳路徑演算法 在 Facebook 的最佳解答

    2021-09-01 10:52:02
    有 224 人按讚

    創新工場和BCG諮詢合作的「+AI改造者」系列:創新工場投資的Insilico Medicine,看AI新藥研發平臺如何賦能傳統藥企,一起進行“AI+生命科學”的顛覆式創新!

    改造者系列:AI醫藥的下一站是長壽 -- 本文来自BCG微信公眾號,經授權轉載。

    近期,創新工場聯合BCG波士頓咨詢旗下亨德森智庫,推出「AI融合產業:『改造者』如何促進AI普惠」系列研究。人工智能在中國大陸有著明確的落地應用場景,大量的AI企業活躍於這些垂直場景中,我們定義這些企業為「改造者」。「改造者」通過傳授其AI技術和垂直行業理解,極大地打破了傳統企業應用AI的瓶頸。

    作為擅於趨勢前瞻的TechVC,創新工場長期看好AI領域,深入佈局,至今已經投出了7只AI獨角獸。在系列研究中,我們采訪了數家創新系AI企業,通過這些「改造者」的視角,探究傳統企業擁抱AI的範式與路徑。

    創新工場投資的英矽智能(Insilico Medicine)是一家由人工智能驅動的全球領先生物技術公司,通過發明和迭代人工智能藥物研發平臺,變革創新藥物和療法的發現方式。

    英矽智能的AI藥物研發平臺已經證明了自己的能力:在今年2月和8月,半年的時間內,先後公佈了兩種臨床前候選藥物,分別用於治療特發性肺纖維化和腎臟纖維化。

    在采訪中,英矽智能創始人兼首席執行官Alex Zhavoronkov博士表示,AI醫藥企業的下一個重要問題將是如何更好地理解生物學和跨物種生物學,長壽業或者抗衰老技術將會是未來的方向。以下:

    ■系列導讀

    本系列由BCG亨德森智庫與創新工場董事長兼首席執行官李開復博士帶領的創新工場團隊共同推出,圍繞「AI融合產業:『改造者』1如何促進AI普惠」的課題,我們致力於探究傳統企業在應用AI過程中的關鍵要素與合作夥伴,以及傳統企業擁抱AI的範式與路徑。

    AI製藥領域於2014年左右興起,在2018—2020年間全面爆發。AI能夠快速識別大量樣本中的客觀規律,加速尋找和測試潛在靶點的過程。「有了AI,我們50個人可以做到的事情,比得上一個典型的製藥公司5000人所做的事情」,英矽智能創始人Alex Zhavoronkov在「未來呼嘯而來」一書中如是分享。2

    1 「改造者」 通過傳授其AI技術和垂直行業理解,極大地打破了傳統企業應用AI的瓶頸,充當產業中傳統企業應用AI的橋樑。「改造者」包括AI企業與成功轉型AI的傳統企業。
    2「未來呼嘯而來」,彼得·戴曼迪斯(Peter H.Diamandis)和史蒂芬·科特勒(Steven Kotler)著。

    ■本期受訪嘉賓:Alex Zhavoronkov

    英矽智能(Insilico Medicine)是一家由人工智能驅動的全球領先生物技術公司,通過發明和迭代人工智能藥物研發平臺,變革創新藥物和療法的發現方式,加速研發進程,為癌症、纖維化、抗感染、免疫和抗衰老等未被滿足的臨床治療需求提供創新的藥物和療法方案。

    Alex Zhavoronkov是英矽智能的創始人兼首席執行官。他擁有皇后大學學士學位,約翰·霍普金斯大學生物技術碩士學位,以及莫斯科國立大學物理和數學博士學位。

    ■對談實錄

    Q1 英矽智能原來在美國創立,後來為什麼選擇遷至中國?

    Alex:中國構建了一套完善的體系和土壤,吸引創業企業、大型企業紛紛入駐。中國大陸多樣化的投資者,包括傳統藥企、科技巨頭、PE/VC等各類投資者,能將最優質的AI人才、CRO、藥企融合在一起。投資者能為初創企業提供資質牌照、幫助招聘、企業管理和宣傳等等。英矽還與許多學校開展了合作研究,擁有豐富的內部研發管線。中國完整的生態夥伴體系使得像我們這樣的企業能夠迅速擴大研發規模,甚至與大藥廠競爭。

    Q2 英矽智能和輝瑞、安斯泰來、楊森製藥等諸多藥企都有合作,在和大型藥企合作的過程中有什麼心得或者經驗?

    Alex:創新型的AI生物技術公司按照創立時間可以分為三大類:2014年之前成立、2014年—2015年左右成立、最近5年成立。2014年之前成立的企業通常不運用深度學習(deep learning),或者不具備向藥企提供解決方案所需的行業知識。2014—2015年間成立的企業則創立的正是時候,生成式對抗網絡(Generative Adversarial Network)出現,AI製藥開始興起。同時,許多藥企缺乏AI的專業知識和AI團隊,如果想要獲取AI方面的知識和技能,就必須與初創企業合作。作為交換,那時候的藥企也通常願意向初創企業提供資料和各類資源。英矽智能很幸運,創立時間(2014)正處於大藥企對外部合作最為開放和寬鬆的時期。而最近幾年成立的企業就沒那麼幸運了,很多藥企已經開始自建AI團隊、自研AI應用,只有具備非常特定細分領域AI技術的初創企業才有可能成功撬動藥企,與之建立合作。

    然而據我的觀察,儘管許多大藥企都建有自己的AI部門和數據科學家團隊,但他們並沒有足夠強的AI能力——他們往往缺乏具備足夠AI知識的團隊。以生物醫藥方面的論文發表為例,在2014—2019年間,英矽智能發佈了上百篇AI相關的論文,然而發表AI論文數量最多的藥企阿斯利康則只有65篇,位列其次的諾華有54篇。

    藥企往往也不知道從何處開始應用AI,而這正是AI初創公司能夠創造價值的地方。但是,在AI初創公司開始接觸藥企和銷售方案之前,首先要充分理解大型藥企錯綜複雜的組織架構和部門分工,針對不同部門銷售定制化的模塊,而非從一開始就銷售整體性、綜合性的解決方案。這是因為藥企內部通常很難有一個部門能夠處理所有的模塊,部門之間的協同往往沒有那麼強。因此,AI初創公司在提供解決方案的時候也要靈活地劃分模塊,對症下藥,英矽智能通常一次只銷售一個模塊。

    儘管銷售是模塊化的,AI初創公司需要具備端到端、全鏈路的解決方案。英矽根據不同的研發週期,設計了三大AI平臺——新藥靶點發現平臺、分子生成和設計平臺、臨床試驗預測平臺。據我們瞭解,中國還沒有任何一家同行,同時擁有生成生物學和生成化學兩大AI平臺,能把靶點發現和小分子化合物生成有機結合在一起的公司很少。此外,英矽智能的AI系統可以用軟件形式呈現,藥企可以自行操作,用自己的數據運算測試。這些都為我們創造了差異化的優勢。

    最後,對於藥企而言,如果想要應用綜合的AI解決方案,需要有整體性的戰略為引領。咨詢公司可以充當整合各部門組織、統籌整體戰略的角色,AI企業可以選擇與之合作。

    Q3 在您看來,未來AI醫藥領域的發展趨勢是什麼?

    Alex:在未來,最重要的不是AI技術,而是如何將AI和行業特定的實驗數據或模型結合。現在市場上已經充滿了各種各樣的技術企業,他們在不斷精進演算法模型和數據。未來的競技不會是關乎演算法或者算力,而是新的商業模式或者應用AI的新方式。

    AI初創公司需要積累足夠的行業專識,理解藥企的需求,學習藥企的經驗,並向藥企證明自己提供的模塊能夠在真實的商業環境下應用,並且模塊之間能夠很好地兼容,能融入業務流程,且符合監管要求。比如機器學習加速了藥物識別,但還有很多步驟和流程並不能被加速或跨越:實驗論文不能被跨越,你依然需要向藥物監管部門提供大量實驗數據和模型來證明研究的有效性;實驗中的生物過程不能被加速,你依然需要等待生物體自然的新陳代謝和細胞活動,你也不可能直接從大鼠實驗跨越到人類實驗。而這些都涉及到更細分的新技術問題。

    所以,對於AI醫藥企業而言,下一個重要的問題將是如何能夠更好地理解生物學?如何理解跨物種生物學?正因如此,我判斷長壽業或者抗衰老技術將會是未來的方向,即如何運用AI來監督和追蹤生命體在漫長時間裡無數細微的實時變化,來創建數字孿生(digital twin),進行跨物種比較、跨疾病模型比較。我相信AI是説明我們更好地認識生命體的最佳工具。

    ■要點回顧

    1、中國的資本環境天然地聚集了垂直產業領域的優質企業,幫助AI初創公司,即「改造者」,迅速汲取經驗、擴大規模,加速行業創新與賦能。

    2、在與垂直行業企業合作時,「改造者」既要有端到端的解決方案,也要有靈活、敏捷的銷售和服務模式。端到端、全鏈路的方案有助於「改造者」更靈活地根據傳統企業的需求組合方案,能夠擴大服務範圍和客群,提升「改造者」的競爭優勢。

    3、未來最重要的不是AI技術,而是如何將AI與行業特定的實驗數據或模型結合。限制因素並不是演算法或者算力,而是新的商業模式或者應用AI的方式來實現行業定制化。

你可能也想看看

搜尋相關網站