雖然這篇智捷能源評價鄉民發文沒有被收入到精華區:在智捷能源評價這個話題中,我們另外找到其它相關的精選爆讚文章
在 智捷能源評價產品中有9篇Facebook貼文,粉絲數超過3,992的網紅台灣物聯網實驗室 IOT Labs,也在其Facebook貼文中提到, 德勤發佈2020技術趨勢報告:五個新趨勢可引發顛覆性變革 北京新浪網 10-26 18:12 來源:產業智能官 「2020 年的趨勢將顛覆整個行業,並在未來十年重新定義業務,即使數字創新已成為各種規模企業的常規行為。」德勤管理諮詢新興技術研究總監兼政府及公共服務首席技術官 Scott Buchh...
智捷能源評價 在 台灣物聯網實驗室 IOT Labs Facebook 的最佳解答
德勤發佈2020技術趨勢報告:五個新趨勢可引發顛覆性變革
北京新浪網 10-26 18:12
來源:產業智能官
「2020 年的趨勢將顛覆整個行業,並在未來十年重新定義業務,即使數字創新已成為各種規模企業的常規行為。」德勤管理諮詢新興技術研究總監兼政府及公共服務首席技術官 Scott Buchholz 在一份報告中如是說。
近日,《德勤 2020 技術趨勢報告》(中文版)正式發佈(以下簡稱《報告》),報告指出了五個可能在短期內引發顛覆性變革的關鍵新興趨勢:「數字孿生:連結現實與數字世界」;「架構覺醒」;「技術道德與信任」;「人感體驗平台」;「財務與 IT 的未來」。
值得注意的是,這是德勤第十一年發佈技術趨勢年度報告。今年的技術趨勢報告繼續在開篇回顧了 11 年來的技術趨勢發展,展示了技術趨勢隨時間推移的演進全過程以及最新宏觀科技力量作為業務轉型基礎帶來的共生效益和不久的未來的新興科技力量。與此同時,《報告》還指出,未來三大顛覆性技術(即環境體驗、指數智能和量子技術)正蓄勢待發,我們將在本世紀20年代末開始感受到它們的影響。
一、九大宏觀科技力量
隨著以技術為驅動的創新的空前擴張,一場高風險的「打地鼠」的競爭遊戲由此展開,企業利用技術保持先進的能力將決定其生死存亡。
過去十年內,數字化體驗、分析技術和雲技術為各項技術賦能,展現了他們自身的價值,已然成為眾多企業有效地推進戰略和新商業模式的核心基礎。接下來十年中,數字現實、認知技術和區塊鏈將成為企業變革的顛覆性驅動力。它們的應用範圍將越來越廣,各行各業的案例成倍增加。技術業務、 風險和核心系統現代化是驅動企業變革和創新的基礎技術,它們需要保持穩定、強勁、可持續發展。
基於此框架下討論新興技術,可以簡化技術進步對企業所造成的顛覆性影響。同時,圍繞九大宏觀科技力量衍生更多細分領域和更加細化的技術創新點和趨勢點。
十年前我們首次探索數字化體驗、分析技術和雲技術之時,只能看到其中的可能性,並不能確切地估測 它們的影響。現如今,這些技術已經為大家所熟知,並在對業務、運營模式和市場造成了顛覆性影響之 后,發展勢頭依舊迅猛。
(1)數字化體驗
數字化體驗依然是企業變革的重要驅動因素。實際上,在德勤 2018 年全球 CIO 調查報告 中,64% 的參與者表示接下來的三年裡,數字化技術將對他們的業務造成影響。在去年的超越營銷:體驗重塑中,我們已經審視了這一趨勢,企業正逐漸摒棄傳統意義上以獲客為核心的營銷模式,轉而致力於創造更多以人為本的互動——包括與其員工和商業夥伴的互動。
(2)分析技術
分析技術包括能夠提供深刻洞察的基本技術和工具。數據管理、數據治理以及數據運營體系這些重要因素不僅僅是人工智慧項目的核心基礎。同時,鑒於企業內對數據儲存、數據隱私和數據使用的嚴格要求,這些重要因素也是必須面對和考慮的重大策略點。
60%的首席信息官(CIO)表示,在未來的三年內, 數據和分析技術將對他們業務帶來影響。但這個問題正變得更具挑戰性。「靜止的數據」 和「使用的數據」這兩個久經考驗的概念被「動態數據」所連接,藉助工具和平台動態數據進而支持數據流、數據攝取、數據分類、儲存和訪問。值得欣喜的是,雲技術、核心系統重塑、認知技術和其它技術正在為異常複雜的挑戰帶來全新的解決方案。
(3)雲技術
雲技術已經全面深入企業。90% 的企業在使用基於雲技術的服務,並且這一比例有增無減。實際上,就信息技術領域的投資預算來看,接下來三年內對雲技術的投資會翻倍。正如我們 2017 年所預計的那樣,雲技術已經不僅僅只是作為基礎應用,它帶來了 「一切即服務」 的藍海,使任何 IT 能力都可以變成基於雲的服務供企業使用。在眾多企業當中,少數超大規模企業主宰了公有雲和雲技術服務市場,在雲技術的賦能下,為其它宏觀力量的進一步創新提供基礎和平台,例如分析技術、雲技術、區塊鏈、數字現實,以及未來的量子技術。
雲技術還驅動我們思考並重塑一些陳舊的企業管理和業務職能。
當今的顛覆性驅動力(即數字現實、認知技術和區塊鏈)都是由體驗、分析技術和雲技術發展而來。未 來十年,這些新的趨勢雖然不再新鮮,但它們將和過往的重大趨勢一樣,在人們持續深刻的理解和應用 中,推動重要的變革。
(4)數字現實
數字現實技術,包括 AR/VR 、混合現實、語音交互、語音識別、普適計算、360°全方位攝像和沉浸式技術等,幫助用戶突破鍵盤和屏幕的禁錮,與用戶感知無縫銜接,用戶可更加自然地參與互動。數字現實的目的是打破傳統的空間界限,讓人與底層技術進行自然、本能、甚至下意識的互動。
(5)認知技術
機器學習、神經網路、機器人流程自動化、機器人程序、自然語言處理、以及更廣泛的人工智慧領域等認知技術可能推動所有產業變革。這些技術將人機互動個性化、場景化,通過 定製化語言或圖像信息,驅動業務流程,實現無人值守。
企業對認知技術的需求大幅增長一一互聯網數據中心(IDC)預測 2022 年 企業此項支出將達 776 億美元,與此同時,信任和技術道德問題也迫在眉睫。
(6)區塊鏈
德勤 2019 年全球區塊鏈調查報告中,超過半數的參與者表示區塊鏈技術至關重要,較前一 年增長了 10% 。83% 的人能夠明確構思區塊鏈技術的實際應用,較前一年增長了 9% 。調查結果顯示,2019 年,企業已經不再討論「區塊鏈是否可行?」,轉而關注「我們該如何利用區塊鏈?」
金融服務和金融科技公司持續領航區塊鏈技術的發展,但其它領域也開始推行區塊鏈技術, 尤其是政府、生命科學與醫療健康、科技、媒體、通訊等領域。
再提技術業務、風險和核心系統重塑似乎有些枯燥無味,但不可否認,它們是業務的核心所在。企業在這些已經發展很成熟的領域,依然繼續進行著可觀的投資。綜合來看,正是因為它們不僅為數字化轉型、創新與增長提供了可靠的、可規模化的基礎,也是在分析技術、認知技術、區塊鏈等顛覆性技術成功投資的必要條件。
(7) 技術業務
隨著技術應用與業務戰略的融合,技術業務也在不斷發展。隨著企業更多地通過重塑 IT 來實現運營效率提升和與業務部門合作者一起進行價值創造,很多 IT 團隊通過實施促進跨業務協作的開發體系(如敏捷和 DevOps ),逐漸將傳統的項目制交付調整為產品化運營。
強大的技術功能讓企業更敏捷地響應技術驅動的市場和業務的變化。一隻強大的數字化技術運營團隊能夠幫助企業迅速回應技術對市場的影響以及相關業務挑戰。
(8)風險
在以創新為驅動力的時代,企業面臨的風險遠遠超越了傳統的網路風險、監管風險、運營風險及財務威。2019 年的 CEO 和風險管理調查報告指出,企業最大的風險廣泛涉及新顛覆性技術、創新、生態系統合作夥伴、企業品牌及名譽、文化等。對此,很多公司清楚地意識到他們還未對此類風險做好準備,或沒有想法在管理此類風險方面進行投資。
除合規和安全的必要要求,企業還面臨新興技術對產品、服務和商業目標的潛在影響,這些使得企業正在把更為廣泛的信任作為企業戰略。
(9)核心系統現代化
核心系統現代化體現了數字化轉型、用戶期望及數據密集型演算法給核心系統的前台、中台和後台帶來的持續性壓力。無論是在財務數字化、實時供應鏈,還是在客戶關係管理系統,核心系統都承載了關鍵業務流程。
在如今這個即時、持續和定製交互的時代,企業需要降低整體的技術負債。實現核心系統 現代化的成熟舉措,比如重塑現有的遺留系統,更新 ERP 系統及重寫其他系統,這些目前來講尤為重要。
二、未來三大顛覆性技術
隨著三大顛覆性技術(即數字現實、認知技術和區塊鏈)崛起,並準備在未來十年為業務做出重大貢獻 的同時,未來三大技術發展和創新的新星(環境體驗、指數型智能和量子技術)正蓄勢待發。我們將在 本世紀 20 年代末開始感受到它們的影響。
a:環境體驗
環境體驗展望了這樣一個構想:在未來,技術只是環境的一部分。計算設備的功率不斷增加,體積不斷縮小。這些越來越小的設備將我們的輸入從非自然的(指向、點擊和滑動) 演變為自然的(說話、手勢和思考),它們與我們的交互從被動的(回答問題)變成主動的(提出意料之外的建議)。
隨著設備變得無縫和無處不在,它們和我們越來越密不可分。想像未來的世界,一些微小的,已連接的,內容感知的設備被嵌入辦公室、家中或者其他地方,成為背景活動的一部分。例如,你如果在腦海中想「我要在一個小時之內出發去機場」,就能觸發一系列背景活動,包括安排航班值機,準備可供生物特徵識別的虛擬登機牌,將無人駕駛汽車目的地設置為正確的航站樓,將家中的智能系統狀態調為「離開」,以及暫停出差期間的快遞服務等等。
b:指數智能
指數智能建立在當今認知技術能力上。如今,機器智能能夠發現數據中蘊藏的規律,但是無法判斷這些規律是否有內在的意義。同時,它目前還缺乏識別和響應人類互動和情感的細微差別的能力。而且,機器智能的認知能力還非常有限,比如機器能夠打敗國際象棋大師,卻不能理解房間發生了火災需要逃跑。
未來有無限可能。隨著對語義和符號識別的理解,機器逐漸能從假想的相關中梳理出真實的因果關係。藉助來自人感訥驗平台的技術組合,我們的虛擬助手將越來越能夠識別並適應我們的情緒。隨著研究人員開發出更廣義的智能,指數智能將超越統計和計算的層面。我們敢說,最終,這將導致更有能力的人工智慧誕生。
c:量子技術
量子技術利用亞原子微粒的反直覺特性處理信息,進行新型計算,實現「不可非法侵入式」 交流,技術微型化等等。量子計算中,這些量子比特(或量子位)的特殊屬性有可能發生 指數型變化。通過操縱單個粒子,量子計算機將能夠解決某些高度複雜的問題,這些問題 對於目前的超級計算機來說,太大,太雜亂,包括從數據科學到材料科學。
隨著研究者們不斷突破技術限制,量子計算機將逐漸取代傳統的計算機。數據科學家將能 夠處理前所未有宏大的數據量,並從中獲取相關性信息。材料科學家利用量子比特模擬原 子,這是無法在傳統計算機上實現的。同時,在通訊、物流、安全、密碼學、能量等不同領域,我們都能預見無限可能。
為了幫助大家更好的理解各類前沿技術動態,基於宏觀科技力量及其可被預期的時間範圍,報告歸納整理了一張完整的統一化視圖。
三、五大關鍵新興趨勢
一)技術道德與信任
技術變革常態化的同時,贏得全方位的信任變得更具挑戰——但也充滿機遇。
隨著數字技術的出現,企業要用戶以新的更深層次的方式信任他們,過去是獲取用戶個人信息,現在則是通過數字痕迹追蹤用戶的線上行為。同時,技術引起的問題也經常成為新聞頭條,例如安全漏洞、不當或非法監視、個人信息濫用、虛假信息傳播、演算法歧視、缺乏透明度等等。這些事件導致利益相關方之間不信任(包括客戶、僱員、合作 夥伴、投資者和管理者),嚴重損害企業聲譽。的確,消費者對商家的信任正在逐漸下降,人們對公共機構的態度也越來越謹慎,員工則要求企業明確闡述其核心價值觀。
德勤 2020 年全球市場趨勢報告中提到,當今時代,品牌信任對企業來講尤為重要,關係到企業的方方面面。無論是客戶、監管機構,還是媒體,都期望品牌商在其開展業務的各個領域都是開放、誠信和始終如一,從產品生產、促銷活動、到員工文化和合作夥伴關係維護等。
被技術顛覆的企業,它的每一個方面都意味著可以贏得或失去任何一個客戶、員工、合作夥伴、投資者和/或監管機構信任的機會。如果領導者能夠充分貫徹企業價值觀和技術道德觀,努力履行「做好事」的承諾,企業就能夠與利益相關者建立長期牢固的信任關係。在這種情況下,信任就變成了一個全方位的 承諾,並且確保信任是企業的技術,流程,人員都在共同努力維護的基礎。
技術道德這一術語指的是不局限於或側重於任何 一項技術的綜合價值觀,這個價值觀是指導企業對技術使用的整體方法及通過部署這些技術驅動業務戰略和運營企業應考慮主動評估如何以符合公司宗旨和核心價值觀的方式使用技術。
在數字時代,信任是個複雜的議題,企業面臨著無數的生存威脅。雖然顛覆性技術通常會給企業帶來指數型增長,但僅憑技術卻無法建立長期信任。因此,領先企業們正在通過全方位的維持利益相關者所期望的高度信任。領先企業們正在嘗 試通過各種方式,來維持利益相關者所期望的高度信任。
人工智慧、機器學習、區塊鏈、數字現實和其它 新興技術正以前所未有的速度和深度融入我們的 曰常生活。企業該如何通過客戶、合作夥伴和員工使用這些技術來構建信任呢?
解讀企業價值觀。
如今,技術根植於業務,機器學習也驅動著業務決策和行為,因此,必須先了解企業的技術解決方案,才能進一步解讀和評價企業價值觀。數字化系統可以被設計用來減少偏差,讓企業能夠遵循自己的原則運 營。
保障措施可以防止用戶以不健康或不負責任的方式使用技術,從而幫助提高利益相關者的利益。例如,一家公司對可能成癮的遊戲強制限定遊戲時間和遊戲花費一個內容提供商提醒用戶關注信息來源的準確性;雲計算提供商在 戶超出其預算之前自動發出警報。
建立強大的數據基礎。
如果不能系統性地、統一地追蹤數據內容及來源,並確定可訪問數據的人員,就沒有辦法營造良好的信任環境。強大的數據基礎讓利益相關者擁有共同的願景, 為數據負責,採用安全的技術手段實現有效的數據管理。管理者需要讓利益相關者了解他們提供的數據將如何運用,此外,除非為了法律或監管的目的,在利益相關者要求時須刪除相關數據。
強化防護措施。
德勤 2019 年未來網路調查報告顯示,管理者為網路問題花費的時間越來越多,網路防禦體系意味著您要 保護您的客戶、員工和商業合作夥伴,讓他們遠離與他們——或者說你們——的價值觀不同的群體。從最開始就需要建立並實施網路安全風險策略略,並將其貫穿於商業運營和政策制定的全過程,這絕不僅僅是信息技術部門的問題。企業領導者應當與信息技術部門一起制定全面的數字安全風險策略,考慮安全、隱私、 誠信和保密等各方面,增強利益相關者的信任,提高企業競爭力和優勢。因此,需要評估企業的風險容忍度,明確弱點所在,並判斷企業最具價值的數據和系統,制定風險緩解策略和恢復計劃。
二)財務與 IT 的未來
IT 和財務領導者共同努力為創新融資尋找靈活的途徑。
德勤的研究發現,56% 的首席信息官(CIO)期望應用 Agile, DevOps 或類似的靈活 IT 交付模式,來提高 IT 的響應能力並激發更廣泛的創新的雄心。
但目前有些難以克服的障礙阻礙這些努力:資金的來源和分配。IT 的運營和開發流程正變得越來越靈活,更加側重產品,而財務部門仍舊按照過去數十年的方式來制定預算、融資和財報。結果顯而易見:IT 需求與財務流程之間的矛盾。若這個問題得不到解決,那麼它可能會破壞首席信息官(CIO)的創新計劃,乃至整個企業的戰略目標。
IT 對資金的需求與財務的漫長流程之間的矛盾並非形成於一夜之間。而是在過去十年中曰漸累積。雲技術和平台技術一步步地顛覆了傳統運營模式,迫使財務部門不得不重新評估財務管理方法。
《報告》指出這種變革體現在三方面:
從資本支出轉向運營支出
從在現場轉型到基於雲的系統,涉及大量的支出從資本支出轉移到運營支出。事實上,團隊一直都有一些資本支出和運營支出。新的準則是「誰開發誰管理」。從會計的角度而言,短期運營支出增長會影響季度財報。
衡量難以捉摸的投資回報率。
技術創新舉措通常是難以達到內部收益率預期的嘗試,可能產生正回報也可能不會。在財務及短期收益上, 創新投資通常不具備傳統 IT 項目的信心水平, 因此這類投資往往也很難通過標準管理流程獲得有力支持。在某些情況下,這會導致財務部門難以建立精確的流程,來跟蹤長期投資回報率。例如,對於無限期重複使用的平台這類的固定預算投資,跟蹤其投資回報率更是難上加難。
計算交付價值。
根據德勤《 2018 年全球首席信息官(CIO)調查報 告》,65% 的受訪者表示他們在評估 IT 投資時, 通常採用具體案例具體分析的方法,而不是遵循常規財報流程。顯然,在評估 IT 帶來的價值這件事上,首席信息官 (CIO )與首席財務官 (CFO)不在同一立場。
作為財務與未來的T趨勢的一部分,我們預計有更多首席信息官(CIO)、首席財務官(CFO)以及他們各自的團隊,將會積極探索解決這些及其他在融資、會計與財報上所面臨的挑戰的方法。
三)數字孿生技術
利用下一代數字攣生技術助力企業設計、優化和轉型。
當下,企業正以多種方式使用數字彎生技術。在汽車和飛機製造領域,數字彎生技術逐漸成為優化整個製造價值鏈和創新產品的重要工具;在能源領域,油田服務運營商通過獲取和分析大量井內數據,建立數字模型,實時指導鑽井作業在醫療保健領域,心血管研究人員正在為臨床診斷、教育、培訓,創造高模擬的人類心臟的數字彎生體;作為智慧城市管理的典型案例, 新加坡使用詳細的虛擬城市模型,用於城市規劃、維護和災害預警項目。
數字彎生可以模擬物理對象或流程的各個方面。它們可以展現新 產品的工程圖和尺寸,也可以展現從設計到消費者整個供應鏈中 所有子部件和相應環節——即」已建成「數字彎生,也可採用 「即維護」模式——生產車間設備的實物展現。模擬模型可以捕獲 設備如何操作,工程師如何維護,甚至該設備生產的產品如何與客戶關聯。數字彎生可以有多種形式,但它們無一例外都在捕獲和利用現實世界的數據。
數字孿生髮展勢頭迅猛,得益於快速發展的模擬和建模能力、更好的互操作性和物聯網感測器, 以及更多可用的工具和計算的基礎架構等。因此, 各領域內的大小型企業都可以更多地接觸到數字孿生技術。IDC 預測,到 2022 年,40% 的物聯網平台供應商將集成模擬平台、系統和功能來創建數字孿生,70% 的製造商將使用該技術進行流程模擬和場景評估。
與此同時,通過訪問大量數據,使得創建比以往更為詳細、更為動態化的模擬成為可能。對於數字孿生的長期用戶而言,這就好比從模糊的黑白快照過渡到彩色高清數碼照片一樣,從數字源中獲取的信息越多,最後呈現的照片就越生動逼真。
長期來看,若想要實現數字孿生技術的全部潛力, 可能需要集成整個生態圈內的系統和數據。創建 一個完整的客戶生命周期或供應鏈(囊括了一線供應商和其自身的供應商)的數字化模擬,可以提供富有洞察力的宏觀運營觀點,但仍然需要將外部實體整合到內部數字化生態系統內。直至今曰,大多數企業仍對點對點連接之外的外部集成感到不滿意。克服這種猶豫可能是一個長期挑戰, 但最終,所有的付出都將是值得的。未來,期望企業會利用區塊鏈打破信息孤島,繼而驗證信息並將其輸入數字孿生體中。這可以釋放先前無法訪問的大量數據,從而使模擬更加細節化、動態化、更具潛在價值。
四)人感體驗平台
通過Al、神經科學、人本設計重塑人機聯接。
人感體驗平台趨勢顛覆了傳統的設計方法,它首先確定我們想要實現的人性化和情感體驗,而後決定使用何種情感和 AI 技術組合能夠達成這一效果。企業將面臨的一大挑戰是,如何針對不同的客戶群體、員工群體和其它利益相關者,確定能引起他們共鳴和引發他們情緒的具體響應或行為,並進一步開發情感技術,使其能夠識別和複製某一段體驗中的特質。
在不久的未來,我們將會看到人們對人性化的技術需求曰益增長。在數字化革命進程中,我們目前進入到一個階段,就是每個人之間未必有 接,但每個人一定都與技術有聯結。我們正在消除流程和交互,直接與機器互動。因此,我們渴望我們正在迅速失去的東西:有意義的聯結。為此,我們期望技術能夠用更 加人性化,更人道化的方式跟我們互動。設計能夠滿足這一期望的技術需要對人的行為有更深刻的洞察,並不斷創新,以提高我們預測和響應人們需求的能力。不久的將來,人感體驗很有可能會帶來長久的、可持續的競爭優勢。
五)架構覺醒
演進架構師角色,從而轉變系統架構並支持業務 發展的速度。
越來越多的技術領導層和高管們逐漸意識到,如今,技術架構領域的科學在戰略上比以往任何時候都更加重要。事實上,為了在技術創新顛覆的市場中保持競爭力,已成立的企業需要不斷演 他們的架構一一這一過程可以從改變技術架構師在企業內扮演的角色開始。
這種轉變的目的非常明確:把經驗最豐富的架構師安排到最需要他們的地方——即加入到設計複雜技術的軟體開發團隊中。一旦這些架構師被重新部署和賦能,他們便可幫助簡化技術棧, 提升技術敏捷性,從而為新興企業獲得市場優勢。另外,他們還可以直接負責實現業務成果,解決架構難題。
此外,擁抱架構覺醒這一趨勢的企業將開始重新定義架構師角色,使其更具協作性、創新性,並能對利益相關者的需求做出回應。具有全局觀的架構師可能會發現,自己正在多部 門混合的項目團隊中,與專注於應用程序的架構師 以及來自 1T 和業務部門的同事共同作戰。未來,他們的使命將不僅是利用傳統的架構組件,還要利用顛覆性力量(如區塊鏈、AI、及機器學習)大胆創新。
資料來源:https://m.news.sina.com.tw/article/20201026/36690918.html
智捷能源評價 在 台灣物聯網實驗室 IOT Labs Facebook 的精選貼文
汽車軟體深度報告:汽車軟體產業鏈及未來趨勢分析
北京新浪網 10-01 20:00
來源:未來智庫
關鍵結論
電動智能趨勢下,汽車逐步由機械驅動向軟體驅動過渡。近年 SDV(軟體定義汽車)概念逐步被行業認知,根源在於「汽車如何體現差異化」問題的變遷,隨著電 動化帶來的汽車電子構架革新,汽車硬體體系將逐漸趨於一致,軟體成為定義 汽車的關鍵,行業更具想像空間。即造車壁壘已經由從前的上萬個零部件拼合 能力演變成將上億行代碼組合運行的能力。本文通過對汽車軟體行業的系統性 梳理,幫助讀者把握行業成長中的投資機會。
我們提出零部件賽道三維篩選框架,基於起點(單車價值量)-持續時間(產品生 命周期)-斜率(產品升級速度)三維體系評價細分零部件的市場空間,軟體平均單車價值量由傳統車的 200 美元,提升至 2025 年新能源汽車的 0.23 萬美元,進 一步至 2025 年新能源汽車的 1.8 萬美元。未來十年軟體市場復合增速為 9%,2030 年 500 億美元空間,57%的增量來自於 ADAS 及 AD 軟體。
軟體如何定義汽車價值?百年汽車工業面臨由機械機器向電子產品過渡的新變 局。汽車「駕駛感」及車機 APP 化的功能實現發生在我們看不到的隱秘角落— —上百的電子控制單元循環執行軟體代碼功能塊,通過高性能的中央計算單元, 與硬體體繫結合以解析駕駛員需求,邏輯運算後向機械部件發送相應響應指令。
汽車軟體成為未來汽車構架重要組成部分。而整車電子電氣構架提供的硬體、 操作系統實現的管理功能、基礎軟體平台構架實現的抽象化為 SDV 不可或缺的 三大關鍵部分,軟硬體的分離(研發分離、功能發佈分離)成為實現 SDV 基礎。
發展史與整車廠戰略。汽車軟體隨產業技術升級持續迭代:1970 年代的簡單發 動機控制演算法→1980 年代中央計算單元創新→1990 年代信息娛樂系統創新→ 2000 年代安全系統→2010 年代開始向全新汽車電子構架及軟體系統演變。不 同於以前依靠多個 ECU 由部件供應商主導的無獨立軟體產品概念時代,主機廠 愈發需具備軟體的管理能力及核心軟體設計能力。整車廠中特斯拉引領車載軟 件行業最高技術,大眾重金重塑軟體架構,整車廠關乎開發周期、賦予附加值、 構架實現、軟體變現模式以及操作系統切入等問題上仍未進行標準化定義,卻 為影響行業發展的關鍵所在。
產業鏈機遇。新科技、軟體公司湧入帶動供應鏈管理的扁平化、邊界模糊化, 帶動供應鏈生態體系變革。供應模式上,預計 Tier1 與整車廠之間將採取兩種合作方式,其一,整車廠主導軟體,Tier1 負責硬體生產;其二,整車廠定義軟 件框架規範標準,Tier1 供應符合標準的相關軟體。盈利模式上,偏向製造業邏 輯的大部分汽車硬體由於堆橋數量將受到限制,終將會進入產業穩態階段,往 介面及功能上的標準化發展,維持較穩定的利潤率水平;軟體由於迭代周期快 且行業特性帶來的標準化程度低,賦予汽車新盈利模式。現階段特斯拉三大付 費模式打開車企軟體變現想像空間,開發基礎平台收許可費、供應功能模塊按 Royalty 收費及定製化的二次開發均為未來軟體供應商主流打法。
推演的 5 大未來趨勢。汽車終將成為搭載「差異化元素」的通用化平台。一方 面,ECU 功能模塊里循環迭代的代碼驅動汽車執行動作反饋;另一方面,車載 娛樂信息系統 APP 化吸引第三方開發者入場。海量數據將在車內流轉,關於賦 能域控制器、定位車機系統的各項軟體性能升級,包括功能中心化、乙太網應 用、整車 OTA 升級、信息交互上雲及深層次的信息安全防禦等,或將帶來汽車 軟體一系列發展機遇。
SDV 新階段:軟體如何定義汽車價值
百年汽車工業面臨由機械機器向電子產品過渡的新變局。跨入駕駛室,安靜的 啟動、柔中帶剛的加速、平穩過渡的剎車等為代表的汽車「駕駛感」逐步由機 械驅動向軟體驅動過渡,這一套功能的實現發生在我們看不到的隱秘角落—— 上百的電子控制單元循環執行軟體代碼功能塊,通過高性能的中央計算單元, 與硬體體繫結合以解析駕駛員需求,邏輯運算後向機械部件發送相應響應指令。近年來,SDV(Software Define Vehicles,即軟體定義汽車)概念逐步被整車 廠認知,根源在於「汽車如何體現差異化」問題的變遷,隨著電動化帶來的汽 車電子構架革新,汽車硬體體系將逐漸趨於一致,整車廠很難在硬體上打造差 異化,此時軟體成為定義汽車的關鍵,即造車壁壘已經由從前的上萬個零部件 拼合能力演變成將上億行代碼組合運行的能力。
汽車軟體為未來汽車構架重要組成部分
汽車軟體與硬體體系發生分化。近幾十年隨汽車構架升級、性能與用戶操作感 需求逐年提升,汽車軟硬體數量爆發,並愈發複雜化。在硬體方面,電控單元 數量迅速增長,於 2010 年面臨增速放緩的拐點(主要受整車成本與控制器數 量平衡的影響),2025 年隨行業集中式電子電氣架構趨勢持續推進,電控單元 邁向集成化從而控制器數量將較為平穩。在軟體方面,各大主機廠軟體功能體 系越做越大,其中「功能函數」作為軟體體系中的最小單元,其單車數量持續 增大,控制器內部的功能函數複雜度提升,疊加智能座艙新增的應用型軟體需 求,軟體重要性愈發凸顯。2010 年(增速放緩的硬體數量 VS. 急劇攀升的軟 件數量)與 2025 年(硬體產業成型 VS.軟體加速迭代塑造汽車差異性)為汽車 軟硬體發展中兩個重要的分水嶺。
汽車複雜的運作需軟硬體結合進行。無論是駕駛艙對汽車電子功能的調用,抑 或汽車與駕駛員和環境互動,均可抽化為軟硬體密切配合的模型,即駕駛員的 需求與汽車功能反應之間存在著複雜的控制鏈條:駕駛員通過機械硬體或部分 虛擬按鈕輸入期望(例如通過車載按鈕、踏板等輸入型機械硬體給出期望)→ 駕駛員動作轉換為電子信號傳入電控單元→執行器控制控制對象達到駕駛員的 需求→感測器向電控系統持續反饋控制達成的具體情況,軟體邏輯持續運算向 執行器發出指令,最終達成駕駛員的期望要求。以剎車輔助駕駛為例,在駕駛 員剎車信號不足或過慢的情況下,內置的一套軟體邏輯將被激活,讓制動系統 自動做出減速相應。在電控單元中快速進行的一次次軟體迭代循環,為汽車正 常運作的基石。
SDV 研發工具鏈仍以 V 流程為主。汽車研發系統過程能拆解為軟體、硬體、執 行器及感測器 4 大部分。與傳統車相同,V 模型為車企主流的開發流程,從產 品設計、子系統設計、控制器驗證及系統驗證等階段均有相對應的工具鏈進行 支撐,涵蓋從系統到軟體以及集成后的一系列測試等內容。SDV 模式下對工具 鏈的應用具部分變化:一方面,硬體愈發通用化,研發會集中在作為功能集群 的 ECU 開發上;另一方面,車的各種功能實現盡量靠軟體實現。
Step 1:產品設計階段。此階段核心為分析和拆解需求。由消費者的需求、車 型安全及性能的剛性需求以及法律法規需求定義出軟體的基礎構架,以及定義 出各大功能模塊。
Step 2:子系統設計階段。步驟為由系統構架需求定義軟硬體構架設計。關乎 軟體系統部分在這一步雛形初顯,能將技術問題具體化,例如定義軟體能實現 的功能、軟體功能模塊的分離、如何跟對應的控制器配合等。
Step 3:控制器驗證階段。完成硬軟體及控制器集成,代碼成型并迭代測試。
Step 4:系統驗證階段。測試軟硬體在整車上的裝載使用情況。
SDV不可或缺的三大關鍵部分——電子電氣架構、操作系統、軟體平台
整車電子電氣構架為硬體基礎。汽車電子電氣架構(Electronic and Electrical Architecture,文中簡稱 EEA)最初由德爾福公司提出,以博世經典的五域分類 拆分整車為動力域(安全)、底盤域(車輛運動)、座艙域/智能信息域(娛樂信 息)、自動駕駛域(輔助駕駛)和車身域(車身電子)等 5 個子系統。後續演變 成車企所定義的一套整合方式,可形象看作人體結構中的骨架部分,後續需要 「器官」、「血液」和「神經」進行填充。具體到汽車上來說,EEA 把汽車中的 各類感測器、ECU(電子控制單元)、線束拓撲和電子電氣分配系統完美地整合 在一起,完成運算、動力和能量的分配,實現整車的各項智能化功能。博世曾 經將汽車電子電氣架構劃分為三個大階段:傳統分散式電子電氣架構-域控制器 電子電氣架構-集中式電子電氣架構:
(1)傳統分散式的電子電氣架構:主要用在 L0-L2 級別車型,此時車輛主要由 硬體定義,採用分散式的控制單元,專用感測器、專用 ECU 及演算法,資源協同 性不高,有一定程度的浪費。產業鏈分工上,車型架構由整車廠定義,實現核 心功能的 ECU 及其軟體開發由 Tier 1 完成。
(2)域控制器電子電氣架構:從 L3 級別開始,通過域控制器的整合,分散的 車輛硬體之間可以實現信息互聯互通和資源共享,軟體可升級,硬體和感測器 可以更換和進行功能擴展。屬於過渡形態,ECU 仍承擔大部分功能實現,整車 廠將參與部分域控制器的開發。
(3)集中式電子電氣架構:以特斯拉 Model 3 領銜開發的集中式電子電氣架構 基本達到了車輛終極理想——也就是車載電腦級別的中央控制架構。此時集成 化趨勢將消減大部分 ECU,主機廠將逐漸主導原本屬於 Tier 1 參與的軟體部分 (預計以直接開發模式或定義規範標準后讓供應商參與),其目標是設計簡單的 軟體插件和實現物理層變化的本地化。
操作系統實現管理功能。車載操作系統(Car-OS)承擔著管理車載電腦硬體與 軟體資源的程序的角色。20 世紀 90 年代伊始,汽車上基於微控制晶元的嵌入 式電子產品的應運興起,需加入相關的軟體架構以實現分層化,即汽車電子產 品均需要搭載嵌入式操作系統。從產品品類上,汽車電子產品可歸納為兩類, 一是以儀錶,娛樂音響、導航系統為代表的車載娛樂信息系統;二是主管車輛 運動和安全防護的電控裝置。兩者對比而言,電控系統更強調安全性和穩定性, 因此應用於電控單元 ECU 的嵌入式操作系統標準更為嚴格。未來操作系統發展 面臨兩大趨勢,一是以 OSEK、AUTOSAR 為典型代表的操作系統標準聯盟將 定義統一的技術規範;二是智能網聯趨勢下數據融合度提升,由於各個部件的 安全標準等級不一從而整車上存在多種操作系統的運用,通常引入虛擬機管理 (可提供同時運行多個獨立操作系統的環境),如在智能座艙 ECU 中同時運行 Android(車載電子操作系統)和 QNX(電控操作系統)。
基礎軟體平台構架是實現抽象化的關鍵所在。從定義上,軟體架構為軟體系統 定義了一個高級抽象(軟體表達行為、屬性、相互作用、集成方式及約束均在 此架構上體現)。而 SDV 核心內涵是能夠通過軟體作用,動態地改變構架網路 節點之間的聯結或分離狀態,從而定義汽車不同的功能組成。基礎軟體平台需 具備三方面要求:一是可靠性,能保證汽車功能實現的實時和安全;二是通用 性,適用於不同車型和不同的操作系統上;三是網構架節點易於更換聯結方式。AUTOSAR 是全球各大整車廠、供應商聯合擬定開放式標準化的軟體架構,其 使得不同結構的電子控制單元的介面特徵標準化,從而軟體具更優的可擴展性 及可移植性,降低重複性工作,縮短開發周期。
汽車軟硬體分離為 SDV 基礎
軟硬體的分離涵蓋研發分離、功能發佈分離兩方面。軟硬體分離為實現 SDV 基 礎,電動化趨勢簡化造車流程,未來汽車硬體的研發、製造更偏向於流水線過 程,而軟體發展逐步具互聯網的快速迭代趨勢傾向。汽車軟硬體分離概念由此 而生,其包含兩方面內容,一方面,由於開發周期(汽車硬體 5-7 年的開發周 期 vs. 軟體 2-3 年的開發周期)及技術領域(偏向製造業 vs.偏向互聯網)的 差別,汽車軟硬體在開發上、供應上逐漸分開。另一方面,軟體的功能發佈可 以與車型完成分離,新軟體不僅適用於新車,仍可快速發佈到已量產車型上, 增強車型硬體的使用長尾期。
軟硬體分離在功能升級及工藝裝配上具優勢。基於軟硬體分離的新構架體系在 車型功能升級及製造模式上發生變化。功能升級上,新的擴充功能由軟體定義 通過雲端直接升級,無需再在硬體層面進行驗證;工藝製造上,與軟體分離后 的電子電氣構架不同於現階段「八爪魚」式的複雜構造,更易於自動化裝配。
當前車企實現更新的方式——硬體冗餘,後續依靠更新升級。
(1)硬體預置:傳統汽車定價由硬體及性能決定。而 SDV 模式下,相同硬體 的車型通過不同的軟體配置決定車與車之間不同的功能與體驗。車企在車型設 計之初需提前定義軟硬體,SOP 時將具備擴展功能的冗餘硬體預裝,後續將通 過付費型軟體升級或者功能開放回收成本。以特斯拉的 AutoPilot 為例,冗餘的 預設硬體將通過後期持續的軟體升級調動功能,為新創收模式。
(2)性能預置:性能預置分為兩個方面,控制器算力預留,為更多的軟體功能 和演算法預留空間。隨智能駕駛趨勢,車載算力大幅提升,由於無法預估後續所 需算力的極限,通常在實際情況中會預留算力空間。性能預留,通常在各性能 硬體上做事先預留,以應付如加速性能提升,續航里程提升,圖像的清晰度提 升,音響效果提升等升級事項。例如 2018 年 6 月,美國權威雜誌《消費者報 告》發現, Model3 剎車距離比皮卡福特 F-150 要長。ElonMusk 接受了《消 費者報告》的批評並承諾通過 OTA 儘快解決此問題。此後在不到一周時間, 特斯拉通過一次 OTA 升級解決了該個問題,《消費者報告》重新測試后發現, 升級后的 Model3 剎車距離縮短了 5.8 米。
追溯發展史:汽車軟體的前世
汽車軟體隨產業技術升級持續迭代:1970 年代的簡單發動機控制演算法(軟體嵌 入應用模式)→1980 年代中央計算單元創新(顯示車輛基本信息)→1990 年 代信息娛樂系統創新(GPS、自適應巡航控制出現)→2000 年代安全系統(出 現高級駕駛員輔助駕駛概念)→2010 年代開始向全新汽車電子構架及軟體系統 演變(電子化和軟體化,出現無人駕駛概念)。
1980 年代之前,汽車僅搭載車燈、啟動機、火花塞等簡易電子設備,並未運用 任何軟體部分。整車電子設備通信及電能供給依靠銅導線傳輸。部分豪華車裝 置僅由收音機為核心部件的車載娛樂系統。
1970 年代,發動機系統具備演算法功能。出現點火系統、電子燃油噴射等裝置, 軟體直接嵌入應用使用,軟體之間無關聯具獨立性。
1980 年代隨 IT 技術起步,電子電氣化革命在傳統機械部件上進行創新。油耗 及行駛距離等信息可在車內做電子化顯示,搭載軟體的電控單元開始出現,如 防抱死系統 ABS、車輛穩定系統 ESP、電子變速箱等電子系統誕生,新功能由 嵌入式軟體的演算法控制,CAN 及 LIN 匯流排解決不同控制器之間的通信問題。
1990 年代,信息娛樂系統持續創新,軟體成為汽車重要部分。汽車軟體構架愈 發分散,出現 GPS 及自適應巡航控制等較高階的電子組件及軟體。同時,不同 控制器間持續延長的通信匯流排成為車企後續進行成本管控的重要一環。
2000 年代,安全系統推出,軟體開始主導汽車創新。「高級輔助駕駛概念」在 此階段興起,例如駕駛員未及時反應的障礙物可以系統運算下汽車自發停車規 避。此時的軟體系統更為高階,行業引入 AUTOSAR 標準軟體構架。車型方面, 電子化特徵明顯,賓士 S 級轎車車型電控單元超 80 個,通信匯流排近 2000 條。
2010 年開始,汽車電動化帶來電子電氣構架、汽車軟體新變局。智能駕駛、車 聯網概念引入,造車新勢力、互聯網企業等多玩家參與進造車環節,以特斯拉 為代表的整車廠重新定義軟體系統,新創 OTA 新升級模式。
產業鏈機遇:SDV重塑市場格局
新科技、軟體公司的湧入帶動了供應鏈管理的扁平化、邊界模糊化,推動產業 競爭要素髮生本質變化,帶動供應鏈生態體系變革。在傳統封閉式供應鏈的汽 車製造商在整條供應鏈中只負責一個環節,主要擔任汽車研發製造的角色。而 在新生態體系中,汽車軟硬體分離重塑產業格局,主機廠、供應商以及互聯網 企業均參與進汽車新生態體系,從汽車全生命周期覆蓋整個產業鏈條。
供應模式轉變,主機廠、供應商及互聯網企業入局
SDV 軟體開發模式下,不同於以前依靠多個 ECU 由部件供應商主導的無獨立 軟體產品概念時代,主機廠愈發需具備軟體的管理能力及核心軟體設計能力, 並引入供應商及互聯網企業參與此環節。在軟體領域,預計未來 Tier1 與整車 廠之間將採取兩種合作方式:
其一,整車廠主導整車軟體部分,Tier1 負責硬體生產。在傳統車企巨頭入場燃 油車領域 100 多年的歷史里,造車流水線仍以機械製造為主,Tier1 以分擔主機 廠重資產角色存在,通常與整車廠車型生產周期形成相應配套。而在智能化時 代,軟體主要以輕資產模式運轉,出於掌握核心技術考量通常為主機廠所主導。其二,整車廠定義軟體框架規範標準,Tier1 供應符合此標準的相關軟體。瞬息 萬變的技術導致車企研發容錯率下降。尤其對新入場的造車勢力而言,若在前 1~2 款車連續失敗,大概率將面臨淘汰。因此對部分在技術儲備、研發及資金 實力較弱的主機廠而言,可在其定義軟體標準後由 Tier1 進行對應的開發配套。
盈利模式轉換,將逐漸由硬體逐漸向軟體傾斜
硬體發展具天花板效應,軟體持續賦予車型新附加值。以經過 15 年發展的手機 產業鏈為例,硬體體系隨處理器性能持續提升、攝像頭像素及攝像頭個數持續 增加、屏幕材質與大小升級,其產業增速趨緩,硬體盈利模式逐漸固化。而隨 蘋果 iPhone 產品橫空出世定義軟體附加值新模式,小米做低手機硬體利潤並將 其定位於功能載體,至此軟體與服務成為手機產業鏈盈利模式的重要來源。對 標至汽車,偏向造業模式的傳統車具較固定的盈利模式,從而車企具較穩定的 利潤率,而目前在汽車電子電氣化架構趨勢下,軟體有多樣性應用的空間,無 論硬體抑或軟體體系均包含升級或新生環節,盈利模式尚未定型。而長遠來看, 偏向製造業邏輯的大部分汽車硬體由於堆橋數量將受到限制,終將會進入產業 穩態階段,往介面及功能上的標準化發展,維持較穩定的利潤率水平;軟體由 於迭代周期快且行業特性帶來的標準化程度低,賦予汽車新盈利模式。
特斯拉已構築初階車企軟體盈利模式。矽谷出身的特斯拉已證實一條軟體大規 模變現的可行性路徑,分為 FSD 付費、軟體應用商城及訂閱服務三種模式:
(1)FSD 付費模式:特斯拉車型在售出后標配 Autopilot 輔助駕駛功能,而實 現自動泊車、智能召喚的 FSD 全自動駕駛功能需付費使用。FSD 單價並未固 定,過去一年內特斯拉 FSD 售價經過三次提價(國外 8000 美元,國內 6.4 萬 元),成為特斯拉利潤的重要來源。以 2019 年 36.7 萬輛的交付量計算(30 萬 輛 Model3,6.7 萬輛 ModelS/X),假定 35%的 FSD 裝載率,6500 美元的 ASP, 則軟體收入近 8.3 億美元(其毛利率大概率高於 80%)。
(2)軟體應用商城:類似手機應用商城,可即時購買性能升級軟體包(包括輔 助駕駛功能、FSD 及各類性能升級包),通過 OTA 進行升級。
(3)訂閱服務:2019Q4 推出定價 9.9 美元/月的車聯網高級連接服務,包括流 媒體、卡拉 OK、影院模式等功能。2020Q2,特斯拉宣布計劃在年底推出定價 100 美元/月的 FSD 套件訂閱服務,為 FSD 的使用提供另一選擇。
對於第三方汽車軟體供應商,盈利模式仍不明晰,參考手機產業模式及目前行 業發展情況,預計其未來有望採用以下 3 種主流盈利模式:
(1)受主機廠委託,開發基礎平台並收取許可費用。
(2)供應功能模塊按汽車出貨量 Royalty收費(按銷售量和單價一定比例分成)。
(3)基於車企平台為其做定製化的二次開發,並收取費用。
市場空間:未來十年軟體市場復合增速為 9%,2030 年 500 億美元空間
軟體市場進入快速擴張期。包括系統軟體和應用軟體在內的軟體系統將在智能 化趨勢中,由低基數實現快速擴張,據麥肯錫預計,軟體在 D 級車整車價值中 所佔的比例有望在 2030 年達到 30%,將成為未來汽車行業最重要的領域。
市場規模方面:電動智能化趨勢下硬體發展周期領先於軟體,增量市場彈性小 於軟體。據麥肯錫,2020-2030 年汽車軟體和 E / E 架構市場預計復合年增長 7%, 從目前的 2380 億美元增長至 2030 年的 4690 億美元。拆分來看,2020-2030 年軟體市場規模(操作系統、中間件及功能軟體)復合增速為 9%(由 2020 年 的 200 億美元,增長至 2025 年的 370 億美元,進一步增長至 2030 年的 500 億美元)。2020-2030 年動力系統市場規模復合增速為 15%,主要受動力源更 迭拉動。在硬體方面,ECU/DCU、感測器以及其他電子元件的復合增速分別為 5%、8%及 3%。軟體的應用帶動汽車集成及驗證環節革新,2020-2030 年集成 及驗證市場規模復合增速為 10%。
單車價值量方面:汽車軟硬體實現分離后兩者的發展模式將出現分化。其中硬 件體系的價值量隨模塊化、集成化發展,在規模化降本過程中其單車價值量增 長將較為平緩或略下降態勢;而軟體體系迭代速度快,在其對附加值模式的持 續探索下,價值量將持續上行。據麥肯錫預計,汽車中軟體單車價值量增速最 大,純電動車型將由 2025 年的 0.23 萬美元增長 7倍至 2030 年的 1.82 萬美元。同期 ECU/DCU、感測器、動力系統(除電池)及其他電子器件增速分別為 37%、 27%、-7%、5%。此外,在豪華車及主打智能化車型上,軟體的價值量佔比及絕對值將處較高水平。
汽車結構方面:全球汽車軟體與硬體內容結構正發生著重大變化,軟體驅動逐 漸成為主導。據麥肯錫預測,2016年軟體驅動佔比從 2010年的 7%增長到 10%, 預計 2030 年軟體驅動的佔比將達到 30%,屆時硬體驅動佔比僅為 41%。
軟體內容方面:應用型軟體為汽車軟體發展主力,ADAS 及 AD 軟體為主要增 量。據麥肯錫預測,2020-2030 年一體化軟體、驗證型軟體及功能性軟體市場 規模復合增速分別為 9%、10%、10%,其中功能性型軟體佔據汽車軟體半壁江 山(結構上佔比 6 成)。2020-2030 年按軟體功能劃分的市場規模中,最大增量 為 ADAS 及 AD 軟體,佔市場規模增量的 57%;信息娛樂、安全及聯網相關軟 件次之,占 20%;操作系統和中間件、車身和動力系統相關軟體、動力總成和 底盤相關軟體分別佔據 10%、10%、2%。
整車廠戰略思路:軟體為必爭之地
在汽車構架三步走過程中——傳統分散式電子電氣架構-域控制器電子電氣架 構-集中式電子電氣架構,主機廠將逐漸主導原本由 Tier 1 包攬的定製軟體部分, 軟硬體進行拆分發包的趨勢近年來愈發明顯。車企和互聯網軟體企業紛紛入局, 特斯拉引領車載軟體行業最高技術,大眾計劃緊跟,組建 5 千名軟體工程師開 發旗下所有車型統一的操作系統「vw.OS」,汽車屬性已然將逐漸由代步工具轉換 為移動的第三空間(例如未來的娛樂、辦公場所)。現階段整車廠與 Tier 1 的合 作模式仍在探索中,關乎開發周期、賦予附加值、構架實現、軟體變現模式以 及操作系統切入等問題上仍未進行標準化定義,卻為影響行業發展的關鍵所在。
特斯拉在軟體層面最大亮點是OTA 升級模式
特斯拉創整車 OTA 升級先河。其升級主要在兩個方面:一方面,將軟體升級發 送到車輛內的車載通訊單元,更新車載信息娛樂系統內的地圖和應用程序以及 其他車機類軟體。例如升級車機的運算速度、屏幕操作流暢度,運行高畫質游 戲以及增強可視化效果等,屬於駕駛艙內「看得見」的升級。另一方面,以直 接將軟體增補程序傳送至有關的電子控制單元(ECU),為 Autopilot 持續引入 及優化新功能。例如提升時速、修復駕駛漏洞等。軟硬體分離開發、硬體性能 冗餘的設計思路是實現 OTA 的必要條件,隨法規放開、演算法逐漸完善,特斯拉 以 OTA 升級軟體模式逐步解鎖新運用功能。此外,特斯拉顛覆車載軟體盈利模 式,以 6.4 萬元的 FSD 選裝軟體包定價、2000 美元的「 Acceleration Boost」 動力性能加速升級包獨創軟體付費的商業模式。
集中式電子電氣架構提供 OTA 基礎。特斯拉的整車 OTA 升級需要其超前的汽 車電子電氣架構做配套配合,傳統車企分散式電子電氣架構中 ECU 數量龐大, 單個 ECU RAM 內存容量有限,同時供應商的底層代碼和嵌入軟體差別較大, 難以完成整車功能的統一更新。而特斯拉採用集中式的電子電氣架構,分為 CCM(中央計算模塊,整合ADAS 及 IVI 域功能)、BCM LH(左車身控制模塊)、 BCM RH(右車身控制模塊)三個部分,2015 款的 Model S 大約有 15 個 ECU, 此後發佈的 Model 3 則直接通過 Hardware3.0 和三個車身控制器執行來控制行 駛、轉向和停止等功能,集中的架構和高算力的控制模塊支撐了特斯拉整車 OTA 升級。目前特斯拉已經可以通過 OTA 的方式實現改善車輛的底盤、信息娛樂、 電池續航、ADAS 乃至自動駕駛等多項功能,讓車的功能迭代更加靈活和便捷, 最終變成一台可以不斷進化的智能終端。
OTA 升級過程需數據網路配合,其安全性尤為重要。特斯拉 OTA 升級即指將程序從主機廠伺服器更新到指定 ECU,主要步驟為:車輛與伺服器通過蜂窩網 絡進行安全連接,將待更新的固件傳輸至車輛遠程信息處理系統及 OTA Manager,OTA Manager 將固件分發至需更新的 ECU 並管理更新過程,更新 完畢後向伺服器發送確認信息。整個 OTA 升級過程面臨安全考驗,騰訊科恩實 驗室曾實現對特斯拉的無物理接觸遠程攻擊,並將漏洞情況報告給特斯拉以做 修復。OTA 模式的信息安全(信息包加密及隔離)及功能安全(車輛狀態信息 傳輸)需得到足夠保障。
特斯拉 OTA 依然屬於行業標杆,傳統車企追趕特斯拉在研發 OTA 過程中仍面 臨困境。具先發優勢的特斯拉在 OTA 對動力和底盤系統有效升級層面、用戶體 驗、系統成熟和穩定性方面均處於行業領先地位,引領傳統車企和造車新勢力 跟隨布局,但仍面臨較多困難,體現在三個方面:其一,需投入較大的人力、 物力、財力,考驗主機廠研發實力;其二,OTA 打破固有的經銷商提供增值服 務的模式,利潤蛋糕重新切分具一定阻力;其三,OTA 安全性和穩定性上要求 較高,主機廠需理解部分互聯網領域技術。
大眾重塑軟體架構,推行 vw.OS 規劃
曾囿於軟體問題車型延遲交付。在特斯拉軟體技術快速迭代壓力下,大眾加緊 開發基礎架構,或因為開發過於倉促等因素,曾多次發生軟體問題,如新一代 純電動汽車 ID.3 因為軟體開發延遲造成交付時間推遲,新款高爾夫也曾因為倉 促上馬新技術(全數字座艙)於車輛中發現軟體問題而臨時停售。
大眾已著手構建軟體架構體系。為抗衡特斯拉及科技巨頭等新勢力的布局,大 眾愈發重視汽車軟體開發業務。2020 年 1 月 1 日起,大眾集團所有軟體開發工 作被集中至獨立新部門——Car.Software(2019 年 6 月份成立)。Car.Software 分為「互聯汽車和設備平台」「智能車身和駕駛艙」「自動駕駛」「車輛運動和能源」以 及「數字業務和出行服務」五個業務單元,其所有功能都將用於開發 vw.OS 車機 系統。一系列車型軟體問題出現后,寶馬製造工程高級副總裁 Dirk Hilgenberg 加入成為 Car.Software 負責人。此外大眾也對智能駕駛研發體系進行重組,如 拆分 L4 智能駕駛研發部分、合併各部門自動輔助駕駛研發。
大眾軟體計劃的內在驅動力來源於兩個方面:
其一:汽車軟體代碼愈發複雜。大眾曾做過統計,汽車軟體的行代碼遠大於其 他應用終端(汽車軟體 1 億行代碼 VS. Facebook 8 千萬行代碼 VS. PC 電腦 4 千行代碼 VS. 飛機 2.5 千萬行代碼 VS. 谷歌瀏覽器 1 千萬行代碼),是智能 手機的 10 倍。2020 年整車代碼量有望超 2 億行,達 L5 級智能駕駛代碼量有 望超 10 億行。
其二:汽車成為複雜的聯網設備,軟體將扮演重要角色。在大眾傳統車型上僅 需約 70 個 ECU,功能相對較為分散。而在未來的集成化計算單元體系下,軟 件的重要性將愈發凸顯,與 ECU 配合定義汽車功能,涵蓋操作系統、基礎軟體 以及其他應用軟體的車載軟體大眾均會自主開發。
大眾對研發投入、人員安排及軟體化目標做出規劃:
投入方面,大眾集團將在未來三到五年內投入 90 億美元(約合人民幣 630 億 元)資金進行軟體開發。員工方面,不同於製造環節的裁員情況,數字化部門 員工由 5000 名再次擴編至 1 萬人。軟體化目標方面,內部研發軟體佔比由不 足 10%提升到 60%以上,同時提出「8 合 1 目標」(將現有的 8 個電子平台整 合為一個平台)。2025 年前,所有新車型將使用 vw.OS 操作系統和定製的雲服 務(大眾與微軟合作),軟體在汽車創新中佔據 90%份額。
汽車軟體的未來推演
若考慮對汽車開發的終極假想,汽車最終會成為搭載「差異化元素」的通用化 平台。以目前視角,差異化元素涵蓋智能座艙(人與車互動的生態系統,包括 包括全液晶儀錶、車聯網、車載信息娛樂系統 IVI、ADAS、HUD、AR、AI、全 息、氛圍燈、智能座椅等方面)及智能駕駛(L1~L5 級智能駕駛等級)領域。而差異化元素主要由車型全新的電子電氣架構和軟體兩方面定義,一方面,ECU 里的功能模塊持續循環迭代的代碼驅動汽車執行最適宜的動作反饋;另一方面, 車載娛樂系統越發 APP 化吸引較多第三方開發者入場。海量數據在車內流轉, 其深層次的安全防禦(檢測和防禦網路攻擊)愈發重要。經過產業趨勢推演, 提出以下 5 大汽車軟體趨勢預判。
趨勢 1.往車輛集中式電子電氣架構發展,功能中心化
集中式電子電氣架構為終極構架體系。以域控制器為代表產品的跨域集中式電 子電氣架構再往後走,就是集成化程度更高的車輛集中式電子電氣架構—— Vehicle computer and zone concept(車載電腦),終極階段為 Vehicle cloud computing(車雲計算)。未來車輛通過用高性能的中央計算單元取代現在常用 的分散式計算的架構,將實現「軟體定義車輛」的終極目標。再此過程 ECU 的整合過程持續提升,應用程序完全從硬體中抽象出來,控制單元概念最終被 智能節點計算網路接棒。
趨勢2.更高傳輸性能的乙太網作為主幹網路承擔信息交換任務
乙太網作為車內通信網路大勢所趨。隨車內數據傳輸總量及對傳輸速度要求持 續提升,以及在跨行業的標準協議需求驅動下,支撐更多應用場景、更高速的 乙太網有望取代 CAN(主要用於車載控制數據傳輸,最大帶寬 1MB/s)、LIN(低 成本通用串列匯流排,主要用於車門、天窗及座椅控制)、Most(主要用於發數據 包)等傳統汽車車內通信網路成為車內通信網路。在對同樣的 ECU 的軟體進行 更新時,CAN 模式下的傳輸時間是乙太網的 30 倍。因此,乙太網的運用趨勢 得到主流整車廠(如寶馬、通用等)及半導體公司(如博通、恩智浦等)認可, 均推出符合乙太網的應用元件。未來趨勢上,乙太網並非能一蹴而就完全替代 CAN、LIN,預計多種通信模式將在較長一段時間內共存——CAN、LIN 用於傳 感器和執行器等封閉低級網路間的數據傳輸;乙太網(取代 MOST 等技術)用 於域控制器及子部件間的信息交換。
趨勢3.OTA 空中升級模式普及
OTA 由特斯拉引領,向全行業普及。由特斯拉最先推行的 OTA 升級功能模塊 能持續修復汽車軟體缺陷、解決部分故障、解鎖或引入新功能以滿足用戶需求, 成為汽車軟體發展的主流趨勢。按照升級對象的不同,OTA 可分為 FOTA(硬 件在線升級)、SOTA(軟體在線升級)兩個大類,其中 FOTA 主要針對基礎硬 件和汽車底層安全相關功能的升級需求,例如剎車系統、制動系統及 BMS 等;SOTA 主要對座艙娛樂系統進行升級。對 ECU 而言,其內部為備份軟體準備了 額外區域空間,以備當前運行程序出現故障或升級中發生斷錯誤時自動滾回備 份軟體系統,防止車輛出現安全事故。
趨勢4.汽車在雲端交換信息
更為靈活的雲服務是 SDV 載體。從早期的機械時代過渡到目前的硬體時代,在 進一步進化至未來的軟體時代,汽車的功能實現方式持續演變,隨著客戶的個 性化定製需求日益增加,加之雲計算對智能、靈活和自動化的天然要求,由「軟 件定義」來操控硬體資源成為更合適的解決方案,未來大部分汽車功能在雲端 運行,為車企轉型提供聯接使能、數據使能、生態使能和演進使能。因此,在 雲計算的計算、存儲和網路等各方面的基礎設施上,均呈現出從軟硬體捆綁, 到硬體+閉源軟體,再到白盒硬體+開源軟體的演進趨勢。而雲服務也成為 AI、 智能汽車、大數據等新興科技實現商業化落地的載體(例如特斯拉在雲服務載 體上進行 OTA 升級)。近年來雲服務市場實現爆髮式增長,而車載環節尚處於 發展初期,後續增量空間大。
趨勢5.信息安全領域需深層次防禦
汽車電子的運用及智能網聯化趨勢推進車載信息安全要求提升。汽車脫離孤立 單元后,隨之而來的是攻擊面的新增,一方面車輛聯網后其數據面臨被盜取、 泄露風險,另一方面電控系統普及后存在轉向、剎車等關鍵功能被外部控制的 可能性(例如破解車機、T-Box、網管后,向 CAN 發送惡意指令)。即接入汽車控制終端的 APP、網路系統、ECU 代碼均可能成為新攻擊向量。雲(車聯網 平台)-管(車聯網基礎設施)-端(車載智能及聯網設備)均存在信息安全問 題,將造成車輛功能性安全隱患:
(1)雲端與管端:接送關鍵數據的中央互聯網關直接連接至車企後台,部分第 三方公司被允許數據訪問。目前網聯實現通常會通過 APP 實現應用層功能(例 如解鎖車門、調用空調功能等),此時存在手機端與雲端的通信過程,且應用程 序供應商能直接訪問開放的相關數據介面。通過雲端和對外通信管端能對車機 端直接進行攻擊。
(2)車機端:當功能系統被授權時,黑客能對CAN匯流排發送相關指令控制ECU。騰訊道恩實驗室曾對特斯拉 Model S 進行過無物理破解實驗,以 Wifi 熱點接入 向車載娛樂系統植入軟體取得車機許可權,在破解網關后能控制其多個電控單元。
為抵禦外部攻擊需建立深層次的安全防禦系統,嚴控與功能安全及數據連接。汽車的防護措施隨交互信息增多其力度持續提升。車企安全團隊通常基於雲-管 -端對症建立安全防禦系統以應對外部攻擊:
(1)雲端:車載終端是汽車安全架構的核心,主要注意 T-BOX(用於車端和 外界通信)和 OBD(用於將汽車外部設備連接到 CAN 匯流排)兩大塊的信息防 護。實時進行入侵檢測,防止 DDos 攻擊。
(2)管端:汽車在未來將頻繁接入和退出網路節點,存在被篡改信息的風險。通常需要對通訊過程及傳輸數據進行加密,採用專門的 APN 接入網路。
(3)車機端:加強安全固件驗簽及防 root 機制,管理介面並建立監控體系。此外,可在車輛功能模塊上單設安全晶元對數控進行校驗。
部分第三方供應商能參與至信息安全環節。汽車安全防禦對於以特斯拉、蔚來、 小鵬等為代表的有互聯網基因的造車新勢力來說,擁有一定先天的優勢。包括 特斯拉在成立之初便組建了來自谷歌、微軟等互聯網企業的 40 人的網路安全專 家,小鵬和蔚來與阿里、騰訊等互聯網廠商進行深度合作,未來華為等供應商 是此領域的預備軍。目前網路安全系統仍缺乏標準的信息安全方案,原本的汽 車軟硬體供應商難以以統一標準滿足不同整車廠的信息安全要求,並且在測試 階段很難直接接入車企平台進行網路安全試驗。預計未來行業將有提供信息安 全方案、網路安全模塊以及某一特定領域防禦系統的第三方軟體供應商出現。
投資建議和推薦標的
百年汽車工業面臨由機械機器向電子產品過渡的新變局,在我們看不到的隱秘 角落——上百的電子控制單元循環執行軟體代碼功能塊,通過高性能的中央計 算單元,與硬體體繫結合以解析駕駛員需求,邏輯運算後向機械部件發送相應 響應指令。近年來,SDV(軟體定義汽車)概念逐步被整車廠認知,根源在於 「汽車如何體現差異化」問題的變遷,硬體體系將逐漸趨於一致,軟體成為定 義汽車的關鍵,即造車壁壘已經由從前的上萬個零部件拼合能力演變成將上億 行代碼組合運行的能力。
SDV 趨勢下汽車軟硬體分離重塑市場格局,盈利模式由硬體向持續賦予附加值 的軟體傾斜。主機廠愈發需具備軟體的管理能力及核心軟體設計能力,並引入 供應商及互聯網企業參與此環節,開發基礎平台並收取許可費用、供應功能模 塊按汽車出貨量 Royalty 收費及基於車企平台做定製化的二次開發均為未來主 流的軟體供應商盈利模式。預計 2030 年 500 億美元市場空間,復合增速 9%。
汽車最終會成為搭載「差異化元素」的通用化平台。一方面,ECU 里的功能模 塊持續循環迭代的代碼驅動汽車執行最適宜的動作反饋;另一方面,車載娛樂 信息系統越發 APP 化吸引較多第三方開發者入場。海量數據在車內流轉,其深 層次的安全防禦(檢測和防禦網路攻擊)愈發重要。關於賦能域控制器、定位 車機系統的各項軟體性能升級,包括車內乙太網應用、整車 OTA 升級、信息交 互上雲及深層次的信息安全防禦等,或將帶來一系列發展機遇。
資料來源:https://m.news.sina.com.tw/article/20201001/36497492.html?fbclid=IwAR1zWwTMiTHwfLyqZ7Qx698UjYwI3v0c-hs3gXdy560Rf5BgAS4Ts4QLbOQ
智捷能源評價 在 夏雪Angela beatrice Facebook 的最佳解答
#無須六百萬直接入籍臺灣👑
兩星期前,有任職傳媒朋友密我想問關於專業移民人才移民臺灣的細節。所以今天想來跟大家分享,到底什麼「專業」能合資格無須付出600萬臺幣,就能移民臺灣。
所謂高級專業人才,須滿足以下條件:
一、#科技領域
1.在奈米、微機電技術、光電技術、資訊及通訊技術、通訊傳播技術、自動化系統整合技術、材料應用技術、高精密感測技術、生物科技、資源開發或能源節約及尖端基礎研究、國防及軍事戰略等尖端科技上具有獨到才能或有傑出研發設計。
2.在人工智慧、物聯網、擴增實境、區塊鏈、虛擬實境、機器人、積層製造等前瞻科技上具有獨到才能或有傑出研發設計者。
二、#經濟領域
1.在產業之關鍵技術、產品關鍵零組件或其他技術上具有獨到專業技能,能實際促進我國產業升級。
2.在農、工、商業之農業開發、運銷、機器設備、半導體、積體電路、光電、資通訊、電子電路設計、生技醫材、精密機械、汽車零組件、系統整合、大眾傳播、法律、保險、銀行、翻譯、諮詢顧問、綠色能源、醫療照護、文化創意或觀光旅遊等企業擔任專業職務,具傑出專業才能或有跨國經驗為臺灣極需之人才。
三、#教育領域
1.曾任國內外大學講座教授、教授、副教授或助理教授,現受聘於臺灣教育、學術或研究機構。
2.現任或曾任國內外研究機構之研究人員或研究技術人員,現受聘於臺灣教育、學術或研究機構。
3.學術活動或研究結果獲得國家機關或國際著名學會、團體頒發獎項或論文刊登於著名論文引用目錄或國際著名學術雜誌。
四、#文化或藝術領域
1、獲各界或知名評論家、文化、藝術協會、重要媒體報章雜誌評論肯定者。
2、現任或曾擔任獲傑出評價之活動(指標性藝術博覽會、雙年展等藝文計畫)主要或重要角色者。
3、曾獲得國內或國際認可之獎項或擔任獎項之評審者。
4、具備傑出成就始得加入之組織成員。
5、在文化資產或固有文化之保存、維護、傳承及宣揚具有特殊技能或成就者。
6、在音樂、舞蹈、美術、戲劇、文學、民俗技藝、工藝、環境藝術、攝影、廣播、電影、電視等各種文藝工作有傑出技能或成就者。
五、#體育領域
1、曾獲國際體育(運動)比賽前三名或具優異技能有助提升臺灣運動競技實力。
2、曾任各國家代表隊教練、國際性體育(運動)比賽裁判或具優異賽事績效而有助提升臺灣運動競技實力。
其他領域:符合下列條件之一
1、在民主、人權、宗教等領域有重要著作或享譽國際之具體事蹟。
2、在金融、醫學、公路、高速鐵路、捷運系統、電信、飛航、航運、深水建設、氣象或地震等領域具傑出專業才能或有跨國經驗且為我國亟需之人才。
3、在社會、生活、飲食及流行時尚等具優異才能者
以上專業,由移民署、科技部、工業局、文化部,聯合審查會審核認定後,出具歸化國籍之高級專業人才推薦理由書,將由移民署核發梅花卡。
當收到梅花卡後,其家屬包括配偶、未成年子女、成年不能自理之成年子女(殘障),可以一併申請永久居留。且沒有期限,沒有居住義務。定居、入籍台灣,不必放棄原有國籍。沒有申請規費,臺灣收入想有所得稅減半優惠。可向勞動部申請開放式工作許可函並自由從事工作,不必由聘僱單位代為申請。分別是「殊勳」、「傑出貢獻」,可以直接入籍。
如果你是特殊貢獻、高級專業人才,更可直接入籍。以下是特殊貢獻、高級專業人才的認定標準。
一、
1.曾獲部會級以上政府機關獎章。
2、曾獲國際性組織頒授獎章或參加國際性比賽獲得前五名,有助於提昇我國相關技術與人才培育。
3、對民主、人權、宗教、教育、文化、藝術、經濟、金融、醫學、體育、其他領域,有卓越貢獻。
4、有助於提高臺灣國際形象。
5、對臺灣社會長期奉獻服務,具有顯著成效
6、其他有殊勳於臺灣。
二、對臺灣有特殊貢獻:指能證明自身對國家、社會之貢獻程度,如經報章、雜誌等之報導資料或政府機關出具之證明文件,顯示對國家、社會及其他領域有正面之貢獻事蹟。
凡「殊勳」、「傑出貢獻」者可以直接入籍。其家屬:配偶、未成年子女、成年不能自理之成年子女(殘障),也可以一併直接申請入籍。入籍台灣,不必放棄原有國籍。
如果你屬於上述專業人士,那就可以省下六百萬,直接向臺灣申請專業人才移民。
背景:#花蓮清水斷崖
#移民臺灣小撇步